
Shared Content Addressing Protocol (SCAP)
Optimizing multimedia content distribution at the transport layer

Koen De Schepper, Bart De Vleeschauwer, Chris
Hawinkel, Werner Van Leekwijck

Bell Labs
Alcatel-Lucent

Antwerp, Belgium
koen.de_schepper@alcatel-lucent.com

Jeroen Famaey, Wim Van de Meerssche,
Filip De Turck

Department of Information Technology
Ghent University-IBBT

Ghent, Belgium

Abstract— In recent years, the networking community has put a
significant research effort in identifying new ways to distribute
content to multiple users in a better-than-unicast manner.
Scalable delivery is more important now video is the dominant
traffic type and further growth is expected. To make content
distribution scalable, in-network optimization functions are
needed such as caches. The established transport layer protocols
are end-to-end, and do not allow optimizing transport below the
application layer, hence the popularity of overlay application
layer solutions located in the network. In this paper, we introduce
a novel transport protocol, the Shared Content Addressing
Protocol (SCAP) that allows in-network intermediate elements to
participate in optimizing the delivery process, using only the
transport layer. SCAP runs on top of standard IP networks, and
SCAP optimization functions can be plugged-in the network
transparently as needed. As such, only transport protocol based
intermediate functions need to be deployed in the network, and
the applications can stay at the topological end points. We define
and evaluate a prototype version of the SCAP protocol using both
simulation and a prototype implementation of a transparent
SCAP-only intermediate optimization function.

Keywords - Buffering, Caching, Content Distribution,
Multicast, Networking, Retransmission, SCAP, Scheduling,
Streaming, Time-Shift, Transport protocol, Transparent

I. INTRODUCTION

Content delivery over the Internet and IP networks in
general is increasing enormously, with a clear trend towards
video being the dominant traffic type. Next to existing IPTV
and VOD systems, new internet video services with their
typical consumption patterns have emerged, such as live
streaming, video on reservation and user generated content, all
having different timing and latency requirements for delivery.
Next to RTP and RTSP-based video delivery, another recent
trend is the rise of Internet video using the standard HTTP
infrastructure, running on top of TCP as transport layer. A
number of mechanisms are used such as HTTP progressive
download, HTTP adaptive streaming, and proprietary formats
tunneled over HTTP. As TCP is an end-to-end transport
protocol, scaling of the delivery infrastructure typically is
achieved by distributing HTTP proxy servers nearer to the end-
users and redirecting requests towards the most appropriate
proxy, as such introducing application-layer functions into the
network. The deployment of scalability and optimization
functions at the application level requires a lot of preparation,

including application design impact and operational
management and configuration. Our first objective is to define
a transport protocol that allows applications to stay at the
topological end points, and needs only transport protocol layer
packets to be processed in the network for the optimized
content delivery functions. Our second objective is to define
the transport protocol such that it enables transparent and
gradual deployment of intermediate functions and can operate
on the existing IP infrastructure. Additionally, our third
objective is to exploit the different timing requirements of the
different applications. We believe that using deadlines at the
lower layers in combination with announcing content
requirements upfront, will result in additional improvements
compared to real-time delivery or near real-time (greedy flows
with fair-share bandwidth division and limited client buffers as
in most current HTTP based video services). In this paper we
define a basis for an internet transport protocol called Shared
Content Addressing Protocol (SCAP).

This paper is structured as follows: Section 2 describes
some work related to scalable content delivery. The SCAP
protocol is explained in detail in Section 3, and Section 4
describes a back-to-back transparent proxy as an example for a
possible in-network function. Section 5 presents the results of a
simulation and prototype evaluation. Finally we indicate items
for future work in Section 6, and conclude with Section 7.

II. RELATED WORK

In this section we discuss some work done in the domain of
scalable content distribution.

CDN solutions make use of the popularity of HTTP
protocol and its capabilities for redirection to proxy servers and
application replicas. These services are good for offloading the
core of the network, but are not generally economically viable
for deeply deployed caches, very close to the clients (such as
caches for access and aggregation networks). To achieve
significant cache hit rates with the commonly known cache
replacement algorithms (e.g. LRU, LFU), cache sizes should be
large enough. For small caches, timing information in
combination with sufficient upfront content request advertising
[5] and recommendation based request overlap [13] can
improve the cache performance dramatically. Though these
mechanisms can also be applied on HTTP based content
distribution, they introduce extra application state and
algorithms, and don’t result in a solution for our targets.

This work was performed partially within the PHANTER research project and
supported in part by the I.W.T. (Flemish Institute for Scientific and
Technological Research in Industry)

With the Subscribe-GET (S-GET) extension to HTTP, the
authors of [9] propose a mechanism to setup a standardized
HTTP based multicast tree between HTTP proxies to support
scalable live traffic. It is used to support scalable real-time
multicast of datagrams over HTTP. Per channel, a delivery tree
is built between HTTP proxies that multicast any datagram sent
by the server to all subscribed clients. As this is a solution for
content that is only relevant for real-time consumption by
many, it is not supporting content reuse over time (timeshift)
and transparent gradual deployment.

For scalable delivery of content also peer-to-peer
application overlay multicast trees are well studied [3].The
main advantage is server offload in the absence of network
support for multicast. Their major drawbacks are a substantial
overhead on the local network (if sufficiently localized,
otherwise even larger global overhead), and the consumption of
extra resources at the peer nodes.

A more radical clean slate approach is the Content Centric
Networking (CCN) paradigm [7]. CCN focuses on a content
naming solution replacing the current internet, decoupling
document naming from the location where the document
resides. CCN gives human readable names to documents and
chunks documents in large packets using an application
dependent chunk naming scheme. Due to the globally unique
content naming per packet and its pull based protocol behavior
with the request/response (interest/data) mechanism, it also
allows packet level reuse over time and between different
users. CCN redefines the complete network stack, envisioning
as extra advantages global content mobility and security as part
of the underlying mechanism. While CCN can run over IP,
using it as a data link layer, the final objective is to replace the
existing internet. Questions rise around scalability due to the
large amount of names to be known in the network and security
handling overhead. Another open question is if all types of
communication paradigms can be handled efficiently with the
CCN naming mechanism, as all communication needs to use
CCN as communication means (both shareable static content as
private and live communication).

Protocol independent redundancy elimination (PIRE) is
another line of work related to content optimization by reuse in
the network [10][2]. It removes duplicate byte series in network
packets going over the same link between 2 nodes. Results
show that there is a lot of redundant information, and that a lot
of identical parts of info is passed between clients and servers.
The advantage of PIRE is that redundancy elimination is
automatic, without the need for specific application actions.
PIRE is protocol independent, and can eliminate redundancy
even for SCAP, between different servers and protocols. A
disadvantage of PIRE is that it does not offload the server,
because the content must be delivered before it can be analyzed
and eliminated.

III. SCAP PROTOCOL

SCAP is a transport protocol specialized in content
distribution and streaming from a server to multiple clients. We
designed the protocol to retrieve static content that can be
reused in the network between clients, even over time. SCAP
has specific information in its protocol headers that make
intelligent in-network functions possible without the help of
application layers. First, a simple unique content identification

scheme allows identifying each byte uniquely. Secondly, the
content range (comprising offset and size) that needs to be
transported is provided. The third enabler is the linear stream
deadline information. It is a simple expression to determine the
deadline for each requested byte in the content range.

The protocol allows retrieving flexibly addressable ranges
of content, with accompanied linear mapped deadlines. The
client application provides this information to the transport
layer, allowing all nodes to combine requests for the same
content, to store and reuse previously received content and to
schedule the receive, store, delivery and replacement of that
content. Intermediate nodes can decide - independently from
each other - which content to store and for how long. Clients
can request content with a content size from a few bytes to
gigabytes and with deadlines from mere milliseconds up to
several days. A multimedia presentation that knows upfront the
scenario to be played can request content upfront, providing
extra room for scheduling, buffering and caching
optimizations.

The following subsections explain the key concepts of the
SCAP transport protocol. We describe the message structure,
request and content identification, and the dynamic behavior
between client and server. Client and server can either reside
on end-points or on intermediate network elements. An
intermediate node should be seen as a server for the original
client and a client for the original server, and should behave
accordingly. Intermediate functions are using the protocol, but
are not part of the protocol. Intermediate functions are
described in the next section, and are allowed to process
messages in any way, as long as the in- and outgoing flows
respect the protocol as described in this section.

A. Content identification

In SCAP, content is identified uniquely and efficiently by
the combination of IP address (IPv4 or IPv6) and a local 128
bit identifier. Each IP address has its own 128 bit address
space. Each origin server is responsible for mapping content
correctly in the local address spaces of each IP address it is
responsible for. It is the responsibility of the application to
transport this low level address provided by the server to the
client, using commonly known mechanisms (for instance
embedding a URL in an HTML page or specifying the
parameters in a video manifest file).

TABLE I. MESSAGE LAYOUT

Message Layer 3: IP Layer 4: SCAP

Request Protocol = SCAP
Source address (S) = client
Destination address (D) = server

Flags = Rq
Request id (Ri)
Content address (Ca)
Content size (Cs)
Deadline begin (Db)
Deadline end (De)
Receive window (Wr)

Response Protocol = SCAP
Source address (S) = server

Destination address (D) = client

Flags = Rp
Content address (Ca)
Content size (Cs)
Deadline packet (Dp)
Expiration time (Te)
Request id (Ri)

Client
IP=1.1.1.1

S=1.1.1.1 D=2.2.2.2

L3: IP L4: SCAP

Rp Ca=100000 Cs=1300 Dp=92S=2.2.2.2 D=1.1.1.1

Rq Ca=100000 Cs=21111 Db=100 De=1100

Data

Time (ms)

0

8

Rp Ca=101300 Cs=1300 Dp=147S=2.2.2.2 D=1.1.1.115

Rp Ca=110400 Cs=1300 Dp=512S=2.2.2.2 D=1.1.1.181

S=1.1.1.1 D=2.2.2.2

Rp Ca=111700 Cs=1300 Dp=568S=2.2.2.2 D=1.1.1.1

Rq Ca=111700 Cs=9411 Db=571 De=101783

86

Rp Ca=120800 Cs=311 Dp=810S=2.2.2.2 D=1.1.1.1275

280

…

Application

…

S=1.1.1.1 D=2.2.2.2 Rq Ca=121111 Cs=0 Db=820 De=820

Data

Data

Data

Data

Server
IP=2.2.2.2

Figure 1. Example of SCAP messages in a request session.

Typically, content is addressed sequentially in ranges. A
content range is identified by a start address and a size. In the
example in Fig. 1 the client requests a range of content
identified as 2.2.2.2:100000~21111, which means that it needs
content from the server with IP address 2.2.2.2, starting at local
content address 100000 and with a content size of 21111 bytes.

B. Request and response messages

The protocol is built around two basic message types: a
request message and a response message. Fig. 1 shows an
example flow for one request session from a client towards a
server and in Table 1 a high level representation of the message
format is shown. A client can request content by sending
request messages. Request messages contain the start address
and size of a consecutive range of bytes a client is interested in,
together with timing requirements for the delivery. In Fig. 1, a
request is sent for 21111 bytes of content (= Cs), where the first
byte is expected within a time span of 100 ms (= Db), and the
last byte 1 second later at 1100 ms (= De). Request messages
are updated and sent repeatedly (in this example 83 and 280 ms
after the first request) to refresh the request, until all content
has been received. Refresh messages can be updated, due to
either changed timing requirements, or partial completion of it.
In the example, the message at 83 ms requests only the part of
the content that is not yet received and the last message at 280
ms closes the request session by sending a request with content
size set to 0.

The server sends response messages, each carrying a part of
the requested content. The response message header includes
the content identification of the content range it carries.

Both request and response messages contain a unique
request identification that is the concatenation of the L3
network address of the client and a L4 request id value. Since
request messages are sent multiple times for the same request
session, and the requested content range changes over time
(typically, shrinks or slides as the request is gradually
completed), a request identification is needed for fast and
unambiguous lookup of the request states on the server, and for
fast mapping of the response messages to the request states on
the client. In the example in Fig. 1, the request identification
field is left out for brevity, but is the same for all messages that

are shown, since they handle the same client request session.
A client can change its mind about the timing requirements,

or can even give up its request, for instance when pausing
playback of a video stream. To take this into account, the
request should be rescheduled in time by updating the
deadlines in a new request message with the same request id.

Content is acknowledged by means of a new request
message with the same request id, but with a higher start
address. As such, the server is informed that the given client is
no longer interested in the part before the new start address.
Similarly, an application can skip content, even when the data
was not received at all.

A client expects to receive content for a request in an
earliest-deadline-first order. In case a gap is detected while
content is being received (i.e. not the next expected address),
the client must send a new request with a new request id for the
missing gap that was detected. The original request will
acknowledge both the missing gap and the received content.
This mechanism results in a selective NACK mechanism,
similar to the TCP Selective Acknowledgment mechanism [8],
but reuses the normal request message instead of extra options
which keeps the protocol handling simple.

For the case that content is lost, and there is no later content
received to create a detectable gap, a second mechanism is
defined. It is similar to the TCP fast retransmit mechanism
Error! Reference source not found., and is based on
receiving duplicate acknowledgments. If the server receives a
specified number of duplicate acknowledging request messages
with an identical start address smaller than the last send address
by the server, the server should retransmit messages from this
start address. As such, this mechanism allows dealing with
packet loss in a way that complements the first mechanism. As
long as there are newer packets, the first mechanism will
trigger a new request for the missing gap. If this gap is at the
end of a range, the client will not request the missing gap based
on the first mechanism, as it is not detected, and the server will
wait for the final acknowledgment. Only the second
mechanism based on the duplicate acknowledgements will
trigger the server to resend the lost content. Note that duplicate
acknowledgements for the last packet(s) are triggered by
timeouts, and can take a long time to arrive.

When a request is fulfilled, a final request message with
content size 0 must be sent, allowing clean up of network and
server state for this request. In Fig. 1 the message at time 280 is
an example of such a final acknowledgment message. To avoid
unnecessary delivery of content that is no longer asked for,
requests can time out. If a request received by a server is not
refreshed within a request timeout window, the server can
forget this request. A client can refresh the request by sending a
request message with the same request id at a certain interval,
sufficiently below the request timeout threshold.

Some extra fields that are shown are outside the scope of
this paper, but are necessary for receive window management,
congestion control, content expiration, etc …

C. Linear stream deadlines

As shown in the example in Fig. 1, SCAP allows requesting
content with timing requirements. In general, client
applications are aware of the deadlines of content they need. If
the network is aware of these deadlines, the delivery of content

over multiple clients and servers can be optimized by
evaluating the scheduling priority of several competing
requests.

For continuous media delivery we typically have a specific
arrival curve of the content stream. Assuming a constant bit
rate, each byte has a deadline that is c seconds later than the
previous byte. If a stream has a constant bit rate r in bytes per
second, then c = 1/r. In SCAP the deadlines of the first and last
bytes are specified in the request. Every intermediate byte x has
a deadline dx that is obtained through linear interpolation, as:

 dx = db + x . c = db + x . (de - db) / s (1)

with db and de the deadline of the beginning and the end of the
range, s the content size, and dx the deadline of byte x. This
combination of a start and end deadline, with its linear
interpolation, mapped to a range, is what we call a linear
stream deadline. In the remainder of the document this is also
simply called the deadline if applicable to a range. Deadlines
are expressed in milliseconds with a value that indicates the
time span between now and the latest expected delivery time to
the client. A deadline is positive if it is in the future, 0 if it is
now, and negative if it is expired. We used a signed 32 bit
fixed-point data representation for simplicity, since 32 bit allow
to cover a range of [- 24 days, + 24 days] with a resolution of
milliseconds.

When a node keeps state of a request, it decrements the
deadlines according to progression of time. The time that a
message is "on the wire" should be compensated by the request
sender. This is the round trip time between the 2 SCAP aware
nodes and can easily be calculated by subtracting the local
deadline by the received deadline in responses.

The linear interpolation could be seen as restrictive, but
note that a content request can be split in multiple ranges with
linear deadlines to approximate more complex deadline
functions. The granularity of the approximation depends on the
client buffer size and response time constraints of the receiver.

IV. SCAP FUNCTIONS

Intermediate SCAP functions are transparent to clients,
servers and other intermediates, which facilitates their
incremental introduction. Non-SCAP elements use standard IP
mechanisms to route the SCAP messages to the next node. This
can be seen as the basic non-optimizing SCAP function, and
any extra functionality is possible as long as it is desired or
improves the overall efficiency of content delivery. SCAP
functions can be implemented on the packet level for maximum
throughput, with minimal soft-state. The amount of required
soft state depends on the capability and complexity of the
deployed function. The SCAP-aware functions can be part of a
switching/routing device, or can be attached to a non-SCAP-
aware node, which is configured to redirect all or a subset of
the SCAP traffic to this SCAP-aware function. Since SCAP
uses a dedicated IP protocol id, its redirection is supported by
most of the existing network devices.

Different functions can be envisioned, ranging from
measurements, shaping, policing/admission, billing, buffering,
caching, scheduling and scaling functions. The advantage of
understanding the requests from the clients is that most
functions can perform control functionality on requests before

the server is informed and responses with data arrive. For
instance policing can be performed by inspecting and
manipulating the requests coming from the clients, before they
are sent to the server.

Depending on the needs of the function different system
architectures can be used to implement such a function. A
SCAP-aware node can be implemented as a back-to-back
client-server or as a packet-processor/forwarder. A back-to-
back implementation is consuming all incoming packets,
storing state in internal structures, and generating packets
independently from the incoming packets. Alternatively, a
packet processor/forwarder implementation is steered by
update and forward rules, generated by a control plane. The
implementation choice depends on the constraints and
limitations of the function. A measurement function is the
simplest function, and can just inspect the request messages,
without the need to filter or manipulate them.

Below a few relevant scenarios and aspects are detailed.

A. Back-to-back message flow

Fig. 2 shows the message flow for a back-to-back SCAP
proxy. It is demonstrated for the first messages of a simple
scenario. A client sends a message (1) towards the origin server
to request a range of content. A SCAP router is allowed to
intercept the message, and finds out that a part of the requested
content (2) is already in the local buffer or cache. The router
sends this content as a response message (3) towards the client.
The source IP address of a response message must be kept as
the address of the origin server, since that IP@ is part of the
content identification. The response carries the deadline of the
most urgent byte in that packet (typically the first byte), aged
by the processing time (here as an example 10 ms). The client
can use it to calculate the roundtrip time if he compares this
value with his own expected deadline value. The router also
sends a request message (4) towards the server for the missing
part of the content. The source address of the request message
is changed to the source address of the router, to assure that the
response arrives to the SCAP function, instead of following
potentially an alternative path directly to the client. This action
is only necessary if the intermediate function generates the
request (and request id) and needs to process the responses for
this request. The deadlines are recalculated for the partial
range, and aged by the time necessary for internal router
processing (here as an example: 20 ms). The request arrives at
the origin server, where the content is originally stored. The
server sends response messages (5) to the router. The router
can then send this content further to clients that have asked for
that content. The request-ids are not shown, but should be
unique per client IP address. Since the SCAP router behaves as
a single client towards all other servers (or other intermediate

s=2.2.2.2;
d=1.1.1.1;
prot=SCAP

Scap-request;
ca=14000; cs=5678;
db=100; de=2100

SCAP
Client

SCAP proxy

ip=1.1.1.1
ca=14000
cs=1200

IP@ = 2.2.2.2 IP@ = 3.3.3.3

IP@ = 4.4.4.4

s=4.4.4.4;
d=1.1.1.1;
prot=SCAP

Scap-request;
ca=15200; cs=4478;
db=503; de=2080

SCAP
Server

IP@ = 1.1.1.1

ip=1.1.1.1
ca=15200
cs=1335

s=1.1.1.1;
d=4.4.4.4;
prot=SCAP

Scap-response;
ca=15200;
cs=1335; db=503

s=1.1.1.1;
d=2.2.2.2;
prot=SCAP

Scap-response;
ca=14000;
cs=1200; db=90

3CE571
B5AD12
45078…

7E5AD1
B70C12
48153…

L3: IP L4: SCAP
response

Payload

L3: IP
L4: SCAP
request

1

4

2

3

5

Figure 2. SCAP back-to-back message flow.

proxies), it must also allocate unique request-ids for outgoing
requests that it issues. The SCAP router behaves as multiple
servers towards its clients, proxying the real servers.

B. Buffering and Caching

Since SCAP publishes the required content, size and
deadlines upfront, intermediate nodes can detect overlapping
requests. They are allowed to combine content overlaps by
requesting only the most urgent ranges, and later when
receiving content sending it to multiple interested clients,
possibly with additional delay by buffering it. At a second
stage, content that is already buffered for another node can be
reused to send to a new interested client. If the new request had
a more urgent deadline, it can be sent to the second client
before it is sent to the first client. If the deadline is later, then
the content can be buffered longer than originally planned. As
long as there are clients known to wait for stored content, we
define the storing action as buffering. If content is kept inside a
node without any known client expressing a need for it, we
define this action as caching. Caching is useful if memory is
available after buffering content for all known requests. Also if
content is estimated to be more popular (statistically needed
sooner) than buffered content with the longest deadline, it can
be useful to reduce buffer capacity to keep content cached.

The scheduling timing for receiving (open the receive
window), storing (buffering and caching) and sending
(assigning priority and performing congestion control) is not
defined as part of the transport protocol. It is up to the clients,
servers and intermediate function to decide what actions are
possible and beneficial to improve the overall content delivery
efficiency. A topic for further research is to define the most
optimal delivery strategy.

C. Intermediate soft-state management

In Fig. 3, a detail of the intermediate soft-state is shown for
a back-to-back implementation. A Response List is keeping a
list of all incoming requests that need responses to be sent to.
The entries are indexed via the client IP address and the unique
request id given by that client. An entry contains further the
state that is needed to handle the incoming request dynamics
(request, send and acknowledgement addresses and timeout),
and has a link in the content index to ranges that cover the
consecutive content range that is requested by the client. This
Response List is used by the response scheduler, which is
responsible for the scheduling of response packets on the links
of the node.

Request Scheduler

content ip addr range

20

…

…

21

…

48

…

12.34.5.7

34

259

2.45.1.19

…

Response List
Content Index

7.42.5.6

data

5.4.25.9

1034539
1080000

1080001
1110000

1110001
1230099

1230100
1231500

1231501
1700000

1230100
1231500

1231501
1700000

Content List Request List

req id

604

Cache List

client ip req id

replacement order

3455

Response Scheduler Content Scheduler

Figure 3. SCAP back-to-back internal state.

The responses determine the entries in the Content Index.
This index is a unique overview of the all requested content
and on its turn determines the entries in the Content List and
Request List. If the content in a range is available in the node,
then the Content Index points to a Content List entry, if not, it
points to a Request List entry. Content that is not referenced by
any incoming request can be referenced by the Cache List or
else is freed again. The Content Scheduler is responsible for
managing the content stored in the node. It determines the
amount of content that is requested, received, buffered and
cached. The entries in the Request List are used by the Request
Scheduler, which is responsible for sending request packets
(for new requests, or to refresh and acknowledge existing
requests). Any new entry in the Request List gets a unique
request id assigned by this node because requests are sent with
the IP address(es) of this node. When response packets are
received, the range in the Request List entry shrinks and grows
in the preceding Content List entry. Entries in the Content List
are shrunk when acknowledgements are received from clients
and make preceding entries referenced by the Response or
Cache List grow.

V. EVALUATION

We evaluate the protocol in the context of optimization
functions in access networks. These nodes are highly
distributed (a large number of devices are deployed), serve a
relatively low number of users per node (hundreds to
thousands), and have limited storage capabilities (cost
reduction is an important objective). We evaluate the benefit of
SCAP in an access network for making multimedia delivery
more scalable. We compare native SCAP transport using an
intermediate SCAP aware access node, with HTTP based
delivery using an intermediate HTTP proxy. Typically an
access network has many access nodes, each serving a
relatively small amount of clients with limited available
resources. In this context, we focus on the memory and
bandwidth usage efficiency.

A. Scenario and Topology

Aggregation
network

Client 1 Central
content
server

Proxy
M

Client 2

Client 99

Access
Node…

No link limit

Ba: Access link limit

Bc: client link limit

Live Stream
service

VoR
service

VoD
service

Figure 4. Evaluated topology.

In this evaluation, both simulations and prototype runs were
performed. For both, the same topology and input data were
used.

The topology in Fig. 4 represents 3 different applications on
a central content server, one access node extended with an
intermediate proxy and 99 video clients, each requesting one
video session for 1.5 hours viewing time. The available buffer
memory on the clients is not limited to give the intermediate
function a high level of scheduling freedom. The available
bandwidth on the link between the content server and access

node (Ba) was varied in order to study the effect of bandwidth
bottlenecks on performance. The link between the access node
and every client (Bc) was given a fixed 20 Mbps bandwidth
limit. This bandwidth is reserved for the generated SCAP or
HTTP traffic and resembles actual bandwidths assigned to
managed multimedia applications.

Each application on the content server offers another type
of content. First, the live stream content type (LS) represents an
infinite video stream where content is made available
progressively in time. Second, the video on demand content
(VoD) represents pre-recorded streams of a finite length that
are requested just before the user wants to start viewing them.
Finally, video on reservation (VoR) is an alternative to video
on demand, where content is requested up to 1.5 hours before
usage. In the presented evaluation scenario, live streams and
video on demand content have a bit rate selected at random
from the set (3, 8) Mbps, while video on reservation has a bit
rate randomly selected from the set (4, 15) Mbps. A higher
quality (and consequential bandwidth) is assumed for VoR as
an incentive for the user to reserve its content upfront.

A constant bit rate is assumed for all types of video. Each
content server contains 6 unique content items of its type. Each
of the three services is requested by 33 clients with a content
item that is uniform randomly selected from the available 6.
Live stream content is requested with a deadline of 1 second,
which means that the user expects the live stream to start
playing one second after selecting the requested content. The
live stream content selected by the client has a delay of 10
seconds compared to the live feed. This makes it possible to
download the content up to 10 seconds upfront, but the start of
the playout begins already after 1 second. For video on demand
the deadline is 10 seconds, while for video on reservation it is
chosen at random from the interval [30, 180] minutes. Video
on demand and video on reservation are fully available on the
server, and download is only limited by link capacities. The
scenario runs over a 6 hour period. Requests arrive at uniform
random moments within this timeframe.

In both the simulation and the prototype we measure the
minimum deadline value that the intermediate is scheduling. If
deadlines are not met (go below zero), both the prototype and
the simulation continue scheduling the content, with negative
deadline values as a result. The minimum deadline (in seconds)
over the complete experiment is plotted for different access
link capacities to compare the different scheduling methods. If
this time is at least zero, all deadlines are met, and a perfect
delivery is achieved. The minimum link bandwidth for which
all deadlines are met (BM) for all clients is a measure for the
performance of the scheduling, buffering and/or caching
algorithm. To evaluate the content reuse performance, also the
hit ratio is calculated as one minus the ratio of the total content
size transported over the Ba link and the total content size
transported over the Bc links. The utility measure gives an
indication of how well peak bandwidth requirements can be
smoothened out over time. It is the ratio between the link
capacity (BM) and the average bandwidth over the access link.

For the SCAP prototype and the simulator we have not used
buffer control, buffer replacement and congestion control
mechanisms. Enough memory is available to buffer any
excessive incoming rate which is not consumed by a
compensating outgoing rate. Link congestion is avoided by

limiting the rate at the source to the bandwidths defined for the
links. Simulations are done using fair-share scheduling
resembling TCP, but buffer and request reuse as in SCAP were
used in stead of LRU caching. The HTTP proxy prototype on
the other hand uses the LRU replacement algorithm with a
fixed cache size that is at least the peak buffer size used by the
SCAP proxy, and link capacity is limited using the Traffic
Control settings in the Linux kernel (tc command).

B. Simulation

A simulation implementation for scheduling and buffering
was built in order to compare earliest deadline first (EDF) with
fair share (FS) and real-time (RT) scheduling. The simulator
abstracts the underlying network layers and packet-based
transport mechanisms. Instead, it uses a stream-based event-
driven approach. These streams are modeled as request flows
between adjacent network nodes. Every flow is associated with
a single-hop outstanding request and keeps a state in the form
of the address of the next byte that needs to be sent towards the
receiver, its deadlines and a current bit rate. Before and after
every event, the simulator recalculates the state of all flows and
node buffers for the new time, and searches for the next soonest
event. These events can be for instance the start and end of a
flow or deadlines of flows that meet each other. These event
actions are performed in a loop for every event until all
requests are handled. Further, the network latency, node
processing delay and packet loss ratio on the network links are
assumed to be neglectable and set to zero. The simulator makes
abstraction of the actual transport protocol, and just applies the
correct scheduling algorithm. For all scheduling algorithms the
memory is used only for pure buffering and buffer reuse. Once
content is not requested anymore, it is discarded and its
memory is freed again.

In Fig. 5 the minimum deadline per access link bandwidth
(Ba) limitation is plotted for the different scheduling policies
and topologies.

The values for minimum bandwidth (BM), link utility and
hit ratio are shown in Table 2.

-8000

-7000

-6000

-5000

-4000

-3000

-2000

-1000

 0

 0 5
0

 1
00

 1
50

 2
00

 2
50

 3
00

m
in

im
um

 d
ea

dl
in

e
(s

)

access link bandwidth (Mbps)

EDF with proxy
FS with proxy

EDF end-to-end
FS end-to-end
RT end-to-end

Figure 5. Simulation minimum deadlines per access link bandwidth.

TABLE II. SIMULATION RESULTS

 Without proxy With proxy

 EDF FS RT EDF FS

BM (Mbps) 190 267 310 88 143
Utility (%) 88 62 54 85 64
Hit ratio (%) 0 0 0 55 45

x

x o

o

v

v
I

I

H

H

Without a proxy (end-to-end), RT scheduling requires a

peak bandwidth of 310 Mbps. RT scheduling is not using the
scheduling freedom, and content is delivered at the deadline.
FS and EDF scheduling start using the bandwidth from the
moment a request is known. Therefore they can serve requests
upfront, and require less peak bandwidth with higher utility.
Without a proxy, the end-to-end flows are limited to the 20
Mbps link capacity of the client links. Only when the flows
start competing for bandwidth on the access link, the scheduler
at the server will determine the bandwidth share. The FS
scheduler is just dividing the bandwidth evenly over the
running flows, and the flows with highest bandwidth and
shortest deadlines will miss their deadline first. As EDF is
giving priority to the flows with the shortest deadline, it
requires the smallest link capacity.

With a proxy, FS and EDF scheduling use the full link
capacity if at least one request is known. If the bandwidth is
higher than the 20 Mbps client link limitation, the content is
buffered in the proxy. This not only allows content to be reused
over the different requests, but also to fully use the access link
capacity whenever requests are known.

The results for our scenario show that EDF without a proxy
requires 39% less bandwidth than RT, and with a proxy even
72% less. Compared to FS, EDF requires 29% less bandwidth
without a proxy, and 39% less with the proxy. These results are
promising, because they show that using SCAP end-to-end can
already give a substantial advantage compared to FS and RT
based protocols, and that adding intermediate functions is
further increasing substantially the performance of the delivery
network.

C. Prototype evaluation

In addition to the simulation results, the prototype
implementation of the SCAP protocol was evaluated in a
physical setup. In the prototype setup, the SCAP protocol with
an earliest deadline first scheduling strategy is compared with
the EDF simulation results and an HTTP setup containing an
HTTP proxy. The same client scenario is used for the
prototypes as was used for the simulations. Due to the memory
limitations of the in-memory buffer of the SCAP router and the
in-memory LRU-cache of the HTTP proxy, time was down-
scaled with a factor of 10, and bandwidths with a factor of 4.
The results in the graphs are again scaled up. This setup was
created on a Emulab setup [12]. The nodes in the Emulab
network are equipped with two dual core opteron 2212
processors and 4GB RAM.

The SCAP prototype is a simplified implementation of the
back-to-back proxy described above, focusing on a first set of
functionalities. Workarounds are defined for functionalities that
are out of the scope of this paper. All limitations and
restrictions described here should not be applicable to the final
protocol or final intermediate function behavior, and are only
provided for a detailed understanding of the evaluation results.

The prototype does not implement the Cache List described
in Fig. 3. As in the simulator, content that is not referenced by
any incoming request is immediately freed again, and thus
memory is used only for buffering and buffer reuse. This
means that the amount of reuse is only determined by time-
shifts due to overlapping requests pending at the same time.

This is actually reducing the potential for content reuse, and is
a disadvantage for the SCAP runs, and an advantage for the
HTTP-LRU runs, which can use all available memory.

The prototype implements neither a congestion control nor
receive window strategy. The receive window is always kept
completely open, so there is no way to limit incoming flow and
limit the buffering, and hence memory usage. The buffering in
the proxy is limited only by the incoming link capacity.
Therefore the response scheduler uses a configured scheduling
rate limitation per request IP address. This rate is used to limit
the bandwidths for the SCAP runs.

The response scheduler uses strict earliest deadline first
scheduling. If content is available in the Content List for an
incoming request, then the request is inserted in a deadline
ordered list. The next packet is sent from the first entry in this
list, and the request is reinserted in the list for the next not yet
sent byte. As a result, requests are preempted by more urgent
requests. As long as a request is the most urgent, it will be
served with priority. The requester will receive responses only
for this request with the full link capacity. If the deadline of a
first request reaches the same value as for another request, the
two requests will share the link capacity, based on the deadline
rate ratio. This resembles exactly with the EDF implementation
in our simulator. The response scheduler retransmits after 2
duplicate acknowledgments. Refresh and timeout times are
fixed. The request scheduler used 100 ms for the refresh
interval, and the response scheduler will use a timeout window
of 250 ms before removing an incoming request and all its
state, which allows for one consecutive lost request message.

The prototype has additionally a local socket interface that
applications can use to request ranges with deadlines, and read
from the content stream. Additionally, an API is present to
insert content directly in the Content Index and Content List.
As such the same prototype process is started in all SCAP-
aware nodes, and having the same functionality for the clients,
server and intermediate function.

In addition to the SCAP setup, which matched the topology
and setup that was also used in the simulation, an HTTP setup
was also created with the Squid caching proxy [11]. This setup
has the same topology as the SCAP setup, but with HTTP over
TCP as the protocol and an HTTP proxy with the least recently
used (LRU) cache replacement strategy. The peak buffer
memory usage of the SCAP scenario was 20GB, so we
configured the LRU proxy cache with the same memory limit.
We applied the same scaling factors as for the SCAP prototype,
resulting in the same down-scaled cache limit of 500MB. The
same client requests with the same timings were applied. The
video files were stored as 2 second fragments to facilitate
caching in limited memory. The clients and server are C++
developed processes to control the correct request and release
of the video content. The clients will download the requests in
sequence. Only if the download of the previous fragment is
completed, the download of the next fragment is started. The
server will release the content controlled for the live streams
and immediately for VoD and VoR. The capacity of the links is
limited using the Traffic Control settings in the Linux kernel (tc
command).

-8000

-7000

-6000

-5000

-4000

-3000

-2000

-1000

 0

 0 5
0

 1
00

 1
50

 2
00

 2
50

 3
00

m
in

im
um

 d
ea

dl
in

e
(s

)

access link bandwidth (Mbps)

SCAP/buffering
HTTP/LRU

Figure 6. Prototype minimum deadlines per access link bandwidth.

TABLE III. PROTOTYPE RESULTS

 SCAP / buffering HTTP / LRU

BM (Mbps) 88 180
Utility (%) 85 78
Hit ratio (%) 55 16

In table 3 the results are shown for the prototype runs. The

SCAP results are, as expected, equal to the simulation results.
Due to the small cache size and the high interval caching [4]
opportunities, the SCAP prototype has a 3.45 times higher hit
ratio compared to the LRU cache.

Fig. 6 plots the minimum deadline per access link
bandwidth (Ba) limitation for the two prototype runs.

The results show that using end-to-end SCAP (as
simulated) almost performs as good as a proxied HTTP/LRU
setup with a small cache size. Adding the SCAP proxy is
further halving the required bandwidth.

VI. FUTURE WORK

In this paper, the focus was on the transparent intermediate
optimization concept. We shortly discuss what we think is
needed to further evolve the protocol. A receive window
strategy with buffer and caching management must be defined.
A (near) optimal and simple heuristic is needed that balances
the amount of memory usage between 4 types of storage: actual
receive window storage, buffer storage for a single flow, buffer
reuse between flows and cache storage for statistically popular
content. For an internet wide deployment, the security aspects
must be taken into account. Also TCP friendliness with slow
start and congestion control are important aspects to look into.
Further, investigation of the impact of different scheduling
strategies and the interworking with congestion control on
larger networks is needed. The impact on scalability of using
ranges and different strategies for handling them should be
further investigated. Finally, exploration of possible functions
and a study on their interworking on a global scope should be
performed.

VII. CONCLUSION

In this paper we introduced a novel transport protocol that
can be used for transparent network optimization. This protocol
supports the scalable delivery of content from one server to
multiple clients. Content is uniquely identified and deadline
information that expresses “when the content is required” is

also provided. The SCAP protocol allows intermediate network
devices to take this deadline information into account when
scheduling the transmission of data packets. By uniquely
identifying content it enables application agnostic caching and
buffering. We have evaluated the SCAP protocol both in a
simulation environment and in a physical setup using a
prototype implementation. The prototype behavior matches the
simulation results. In the simulation environment, using earliest
deadline first scheduling allowed a significant bandwidth
reduction when compared to traditional real-time and fair share
scheduling techniques. In the prototype test setup, a transparent
SCAP function was compared with an HTTP/LRU proxy
cache. The tests showed an extra reduction on bandwidth
requirements by exploiting the timing information when
buffering and reusing content. The presented results show on
the one hand that providing and using deadline information
improves the efficiency of network optimization, and show also
that intermediate nodes can be deployed transparently in the
network without impact on clients and servers.

REFERENCES
[1] M. Allman, V. Paxson, W. Stevens. “TCP Congestion Control”, RFC

2581 (Proposed Standard), April 1999.

[2] A. Anand, C. Muthukrishnan, A. Akella, and R. Ramjee, “Redundancy
in network traffic: findings and implications”, in Proceedings of the 11th
international joint conference on Measurement and modeling of
computer systems 2009, Seattle, WA, USA

[3] S. Banerjee and B. Bhattacharjee, “A comparative study of application
layer multicast protocols,” available at http://www.cs.umd.edu/projects
/nice/papers/compare.ps.gz.

[4] A. Dan and D. Sitaram, “A Generalized Interval Caching Policy for
Mixed Interactive and Long Video Environments”, Proceedings of SPIE
Multimedia Computing and Networking Conference, San Jose, CA,
1996.

[5] J. Famaey, W. Van de Meerssche, S. Latre, S. Melis, T. Wauters, F. De
Turck, K. De Schepper, B. De Vleeschauwer, and R. Huysegems,
“Towards intelligent scheduling of multimedia content in future access
networks”, in proceedings of the 12th IEEE/IFIP Network Operations
and Management Symposium (NOMS), 2010.

[6] R. Huysegems, B. De Vleeschauwer, and K. De Schepper, “Enablers for
non-linear video distribution”, Bell Labs Technical Journal, June 2011,
pp. 77-90.

[7] V. Jacobson, D. K. Smetters, J. D. Thornton, M. F. Plass, N. H. Briggs,
and R. L. Braynard, “Networking named content.”, in CoNEXT '09:
Proceedings of the 5th international conference on Emerging networking
experiments and technologies, pp. 1-12, New York, NY, USA, 2009.
ACM.

[8] M. Mathis, J. Mahdavi, S. Floyd, and A. Romanow, “TCP Selective
Acknowledgment Options”, RFC 2018 (Proposed Standard), Oct. 1996.

[9] L. Popa, A. Ghodsi, and I. Stoica. “HTTP as the Narrow Waist of the
Future Internet”. In ACM SIGCOMM HotNets, 2010

[10] N. T. Spring, and D. Wetherall, “A protocol-independent technique for
eliminating redundant network traffic”, in SIGCOMM 2000, pp. 87–95.

[11] Squid Web Proxy Cache Home Page, “http://www.squid-cache.org/”,
2011.

[12] B. White, J. Lepreau, L. Stoller, R. Ricci, S. Guruprasad, M. Newbold,
M. Hibler, C. Barb, and A. Joglekar, “An integrated experimental
environment for distributed systems and networks”, SIGOPS Oper. Syst.
Rev., 36(SI):255-270, 2002.

[13] T. Wu, K. De Schepper, W. Van Leekwijck, and D. De Vleeschauwer,
“Reuse time based caching policy for video streaming”, submitted to
CCNC 2012 - 9th Annual IEEE Consumer Communications and
Networking Conference.

x

x o

o

