Shared Content Addressing Protocol (SCAP)

Optimizing multimedia content distribution at timartsport layer

Koen De Schepper, Bart De Vleeschauwer, Chris
Hawinkel, Werner Van Leekwijck

Bell Labs
Alcatel-Lucent
Antwerp, Belgium
koen.de_schepper@alcatel-lucent.com

Abstract— In recent years, the networking community has puta
significant research effort in identifying new waysto distribute
content to multiple users in a better-than-unicast manner.
Scalable delivery is more important now video is tb dominant
traffic type and further growth is expected. To male content
distribution scalable, in-network optimization functions are
needed such as caches. The established transporyda protocols
are end-to-end, and do not allow optimizing transpd below the
application layer, hence the popularity of overlayapplication
layer solutions located in the network. In this papr, we introduce
a novel transport protocol, the Shared Content Addessing
Protocol (SCAP) that allows in-network intermediateelements to
participate in optimizing the delivery process, usig only the
transport layer. SCAP runs on top of standard IP néworks, and
SCAP optimization functions can be plugged-in the etwork
transparently as needed. As such, only transport mtocol based
intermediate functions need to be deployed in theatwork, and
the applications can stay at the topological end jrats. We define
and evaluate a prototype version of the SCAP protat using both
simulation and a prototype implementation of a trarsparent
SCAP-only intermediate optimization function.

Keywords - Buffering, Caching, Content Distribution,
Multicast, Networking, Retransmission, SCAP, Scheduling,
Streaming, Time-Shift, Transport protocol, Transparent

. INTRODUCTION

Content delivery over the Internet and IP netwoiks
general is increasing enormously, with a cleardréswards
video being the dominant traffic type. Next to éxig IPTV
and VOD systems, new internet video services withirt
typical consumption patterns have emerged, suchlivas
streaming, video on reservation and user genecatetént, all
having different timing and latency requirements delivery.
Next to RTP and RTSP-based video delivery, anotbeent
trend is the rise of Internet video using the staddHTTP
infrastructure, running on top of TCP as transpayer. A

Jeroen Famaey, Wim Van de Meerssche,
Filip De Turck

Department of Information Technology
Ghent University-IBBT
Ghent, Belgium

including application design impact and operational
management and configuration. Our first objectiv¢oi define

a transport protocol that allows applications taysat the
topological end points, and needs only transpartogol layer
packets to be processed in the network for themiped
content delivery functions. Our second objectivaoisdefine
the transport protocol such that it enables tramspaand
gradual deployment of intermediate functions and aperate
on the existing IP infrastructure. Additionally, rouhird
objective is to exploit the different timing reqeinents of the
different applications. We believe that using deedi at the
lower layers in combination with announcing content
requirements upfront, will result in additional impements
compared to real-time delivery or near real-timeégy flows
with fair-share bandwidth division and limited cltebuffers as

in most current HTTP based video services). In plaiger we
define a basis for an internet transport protoedled Shared
Content Addressing Protocol (SCAP).

This paper is structured as follows: Section 2 dess
some work related to scalable content delivery. B@AP
protocol is explained in detail in Section 3, anect®n 4
describes a back-to-back transparent proxy as amge for a
possible in-network function. Section 5 presengsréésults of a
simulation and prototype evaluation. Finally weigade items
for future work in Section 6, and conclude with &t 7.

. RELATED WORK

In this section we discuss some work done in thmado of
scalable content distribution.

CDN solutions make use of the popularity of HTTP
protocol and its capabilities for redirection t@yy servers and
application replicas. These services are good fftwaaling the
core of the network, but are not generally econattyicviable
for deeply deployed caches, very close to the wdi¢such as
caches for access and aggregation networks). Tdevach
significant cache hit rates with the commonly knowache

number of mechanisms are used such as HTTP progressreplacement algorithms (e.g. LRU, LFU), cache s&temild be

download, HTTP adaptive streaming, and propriefarynats

large enough. For small caches, timing information

tunneled over HTTP. As TCP is an end-to-end tramspocombination with sufficient upfront content requadvertising

protocol, scaling of the delivery infrastructurepigally is
achieved by distributing HTTP proxy servers net&wehe end-
users and redirecting requests towards the mosboppate
proxy, as such introducing application-layer fuors into the
network. The deployment of scalability and optintiza
functions at the application level requires a Ibpreparation,

This work was performed partially within the PHANREesearch project at
supported in part by the I.W.T. (Flemish Institéde Scientific and
Technological Research in Industry)

[5] and recommendation based request overlap [18] c
improve the cache performance dramatically. Thotlykse
mechanisms can also be applied on HTTP based donten
distribution, they introduce extra application etatnd
algorithms, and don’t result in a solution for ¢angets.

With the Subscribe-GET (S-GET) extension to HTTH t
authors of [9] propose a mechanism to setup a atdimd
HTTP based multicast tree between HTTP proxiesufipart
scalable live traffic. It is used to support scldabeal-time
multicast of datagrams over HTTP. Per channel lisatyg tree
is built between HTTP proxies that multicast antadeam sent
by the server to all subscribed clients. As thia isolution for
content that is only relevant for real-time constiop by
many, it is not supporting content reuse over t{tirmeshift)
and transparent gradual deployment.

For scalable delivery of content
application overlay multicast trees are well stdd{8].The
main advantage is server offload in the absenceebivork
support for multicast. Their major drawbacks arsubstantial
overhead on the local network (if sufficiently Itizad,
otherwise even larger global overhead), and thewoption of
extra resources at the peer nodes.

A more radical clean slate approach is the CorfBamitric
Networking (CCN) paradigm [7]. CCN focuses on ateah
naming solution replacing the current internet, adgding

scheme allows identifying each byte uniquely. Sdbgnthe
content range (comprising offset and size) thatdset® be
transported is provided. The third enabler is thedr stream
deadline information. It is a simple expressiomébermine the
deadline for each requested byte in the conteigeran

The protocol allows retrieving flexibly addressabéages
of content, with accompanied linear mapped deasllifde
client application provides this information to theansport
layer, allowing all nodes to combine requests fog same
content, to store and reuse previously receivedecbrand to

also peer-to-peeschedule the receive, store, delivery and replanerog that

content. Intermediate nodes can decide - indepdiyd&zom
each other - which content to store and for hovgld®lients
can request content with a content size from a ligtes to
gigabytes and with deadlines from mere millisecongsto
several days. A multimedia presentation that knopfsont the
scenario to be played can request content upfol/iding
extra room for scheduling, buffering and caching
optimizations.

The following subsections explain the key conceyftthe

document naming from the location where the documenSCAP transport protocol. We describe the messagetste,

resides. CCN gives human readable names to docsraedt

chunks documents in large packets using an apiplicat

dependent chunk naming scheme. Due to the globailyue

content naming per packet and its pull based pobteehavior
with the request/response (interest/data) mechaniisralso

allows packet level reuse over time and betweeferéifit

users. CCN redefines the complete network stackisieming

as extra advantages global content mobility andrégas part
of the underlying mechanism. While CCN can run olrer
using it as a data link layer, the final objectisdo replace the
existing internet. Questions rise around scalgbdiie to the
large amount of names to be known in the netwotksaurity
handling overhead. Another open question is iftgtles of
communication paradigms can be handled efficiewith the

CCN naming mechanism, as all communication needss¢o
CCN as communication means (both shareable statteit as
private and live communication).

Protocol independent redundancy elimination (PIRE)
another line of work related to content optimizatny reuse in
the network [10][2]. It removes duplicate byte esrin network
packets going over the same link between 2 nodesuli®
show that there is a lot of redundant informatiamd that a lot
of identical parts of info is passed between ctieanid servers.
The advantage of PIRE is that redundancy eliminati®
automatic, without the need for specific applicatiactions.
PIRE is protocol independent, and can eliminataumdency
even for SCAP, between different servers and pod$ocA
disadvantage of PIRE is that it does not offload $erver,
because the content must be delivered before ibeanalyzed
and eliminated.

Ill. SCAPPROTOCOL

SCAP is a transport protocol specialized in conten

distribution and streaming from a server to mudtiplients. We
designed the protocol to retrieve static contestt ttan be
reused in the network between clients, even owee.tiSCAP
has specific information in its protocol headersittimake
intelligent in-network functions possible withoutet help of
application layers. First, a simple unique conidentification

request and content identification, and the dynabsbavior
between client and server. Client and server ctirerereside
on end-points or on intermediate network elemems.
intermediate node should be seen as a server dooriinal
client and a client for the original server, aned behave
accordingly. Intermediate functions are using thetqrol, but
are not part of the protocol. Intermediate fundiioare
described in the next section, and are allowed rmcgss
messages in any way, as long as the in- and ogfdtows
respect the protocol as described in this section.

A. Content identification

In SCAP, content is identified uniquely and effitly by
the combination of IP address (IPv4 or IPv6) ardcal 128
bit identifier. Each IP address has its own 128 dultiress
space. Each origin server is responsible for mappiontent
correctly in the local address spaces of each tRead it is
responsible for. It is the responsibility of thephgation to
transport this low level address provided by theveseto the
client, using commonly known mechanisms (for ins&an
embedding a URL in an HTML page or specifying the
parameters in a video manifest file).

TABLE I MESSAGE LAYOUT

‘ Message| Layer 3: IP ‘ Layer 4: SCAP |

Request | Protocol = SCAP Flags = Rq
Source address (S) = client Request id (Ri)
Destination address (D) = server Content address (Ca)
Content size (Cs)
Deadline begin (Db)
Deadline end (De)
Receive window (Wr)
Response| Protocol = SCAP Flags = Rp
Source address (S) = server Content address (Ca)
Content size (Cs)
Deadline packet (Dp)
Expiration time (Te)
Destination address (D) = clienf Request id (Ri)

Client
IP=1.1.1.1

Time (ms)

Server
IP=2.2.2.2
Application

L3:IP L4: SCAP

0 —{ $=1.1.11D=22.2.2 IRq Ca=100000 Cs=21111 Db=100 De=1100 }—»
8 4—{ $=2.2.22D=1.1.1.1 lRp Ca=100000 Cs=1300 Dp=92 l Data }—
15 4—{ $=22.22D=1.1.1.1 lRp Ca=101300 Cs=1300 Dp=147 l Data }—
81 <—{ $=2.2.22D=1.1.11 lRp Ca=110400 Cs=1300 Dp=512 [Data }—

—{ S=11.11D=2222 qu Ca=111700 Cs=9411 Db=571 De=1017 }_’
Data }_

Data }—
Db=820 De=820 }—’

4—{ $=2222D=1111 lRp Ca=111700 Cs=1300 Dp=568 [

‘—{ $=2222D=1111 IRp Ca=120800 Cs=311 Dp=810 [

—{ $=1.1.1.1D=2222 qu Ca=121111 Cs=0

Figure 1. Example of SCAP messages in a request session.

Typically, content is addressed sequentially ingesn A
content range is identified by a start addressasite. In the
example in Fig. 1 the client requests a range aiterd
identified as 2.2.2.2:100000~21111, which meansitheeeds
content from the server with IP address 2.2.2atiag at local
content address 100000 and with a content siz& BfPbytes.

B. Reguest and response messages

The protocol is built around two basic message sype
request message and a response message. Fig. § ahow
example flow for one request session from a cliemtards a
server and in Table 1 a high level representatfdth@message
format is shown. A client can request content bpdsey
request messages. Request messages contain thadsiiass
and size of a consecutive range of bytes a clgemtérested in,
together with timing requirements for the delivelty.Fig. 1, a
request is sent for 21111 bytes of content (= @kgre the first
byte is expected within a time span of 100 ms (3, @hd the
last byte 1 second later at 1100 ms (= De). Requessages
are updated and sent repeatedly (in this exampén8280 ms
after the first request) to refresh the requesti ail content
has been received. Refresh messages can be updaédp
either changed timing requirements, or partial detign of it.
In the example, the message at 83 ms requestshmlyart of
the content that is not yet received and the lassage at 280
ms closes the request session by sending a regjtiestontent
size set to 0.

The server sends response messages, each carpangod
the requested content. The response message heeldeies
the content identification of the content rangeaitries.

Both request and response messages contain a uni
request identification that is the concatenation tioé L3
network address of the client and a L4 requesialdes Since
request messages are sent multiple times for tine saquest
session, and the requested content range changestime
(typically, shrinks or slides as the request is dgedly
completed), a request identification is needed fast and
unambiguous lookup of the request states on theisend for
fast mapping of the response messages to the tesjagss on
the client. In the example in Fig. 1, the requeésitification
field is left out for brevity, but is the same falt messages that

are shown, since they handle the same client regassion.

A client can change its mind about the timing reguients,
or can even give up its request, for instance wpausing
playback of a video stream. To take this into aotothe
request should be rescheduled in time by updatimg t
deadlines in a new request message with the sajuestid.

Content is acknowledged by means of a new request
message with the same request id, but with a highent
address. As such, the server is informed that itrengclient is
no longer interested in the part before the newt stadress.
Similarly, an application can skip content, everewtthe data
was not received at all.

A client expects to receive content for a requestan
earliest-deadline-first order. In case a gap iedet while
content is being received (i.e. not the next exgmbeddress),
the client must send a new request with a new qddor the
missing gap that was detected. The original requeit
acknowledge both the missing gap and the receieosdent.
This mechanism results in a selective NACK mechanis
similar to the TCP Selective Acknowledgment mecsianj8],
but reuses the normal request message insteadrafaptions
which keeps the protocol handling simple.

For the case that content is lost, and there lateo content
received to create a detectable gap, a second misghas
defined. It is similar to the TCP fast retransmieahanism
Error! Reference source not found, and is based on
receiving duplicate acknowledgments. If the seregeives a
specified number of duplicate acknowledging requestsages
with an identical start address smaller than teedand address
by the server, the server should retransmit messtigm this
start address. As such, this mechanism allows rdgadiith
packet loss in a way that complements the firstharism. As
long as there are newer packets, the first mectmanid!
trigger a new request for the missing gap. If thap is at the
end of a range, the client will not request thesimig gap based
on the first mechanism, as it is not detected,thadserver will
wait for the final acknowledgment. Only the second
mechanism based on the duplicate acknowledgemeilits w
trigger the server to resend the lost content. Nweduplicate
acknowledgements for the last packet(s) are tregheby
timeouts, and can take a long time to arrive.

When a request is fulfilled, a final request messagth
content size 0 must be sent, allowing clean upebivark and
server state for this request. In Fig. 1 the messagime 280 is
an example of such a final acknowledgment mesSamavoid
unnecessary delivery of content that is no longsed for,
requests can time out. If a request received bgrees is not
refreshed within a request timeout window, the sergan
forget this request. A client can refresh the retjbg sending a

uest message with the same request id at ancitierval,
sufficiently below the request timeout threshold.

Some extra fields that are shown are outside tbpesof
this paper, but are necessary for receive windowagement,
congestion control, content expiration, etc ...

C. Linear streamdeadlines

As shown in the example in Fig. 1, SCAP allows esging
content with timing requirements. In general, dlien
applications are aware of the deadlines of cortteyt need. If
the network is aware of these deadlines, the dglieEcontent

over multiple clients and servers can be optimiZegd
evaluating the scheduling priority of several cotimze
requests.

For continuous media delivery we typically havepadific
arrival curve of the content stream. Assuming astamt bit

rate, each byte has a deadline that seconds later than the

previous byte. If a stream has a constant bit raebytes per

the server is informed and responses with dataveariror
instance policing can be performed by inspectingd an
manipulating the requests coming from the cliebépre they
are sent to the server.

Depending on the needs of the function differerstey
architectures can be used to implement such aifumcA
SCAP-aware node can be implemented as a back-to-bac

second, thero = 1/r. In SCAP the deadlines of the first and lastclient-server or as a packet-processor/forwarderbagk-to-

bytes are specified in the request. Every interatediytex has
a deadlinal, that is obtained through linear interpolation, as:

dy=dy+x.c=dy+ x.(de-0dp) /s (D)

back implementation is consuming all incoming paske
storing state in internal structures, and genegatiackets
independently from the incoming packets. Alterreliry a
packet processor/forwarder implementation is steelsy
update and forward rules, generated by a contianepl The

with dy andd, the deadline of the beginning and the end of thdmplementation choice depends on the constraintd an

range,s the content size, and, the deadline of byte. This
combination of a start and end deadline, with itsedr
interpolation, mapped to a range, is what we calinaar
stream deadline. In the remainder of the docuntesti$ also
simply called the deadline if applicable to a ranDeadlines
are expressed in milliseconds with a value thaicatds the
time span between now and the latest expectedetigliime to
the client. A deadline is positive if it is in tHieture, O if it is
now, and negative if it is expired. We used a gigBe bit
fixed-point data representation for simplicity, @32 bit allow
to cover a range of [- 24 days, + 24 days] witlesolution of
milliseconds.

When a node keeps state of a request, it decrentests
deadlines according to progression of time. Theetitmat a
message is "on the wire" should be compensateteisejuest
sender. This is the round trip time between theCAS aware
nodes and can easily be calculated by subtrachiegldcal
deadline by the received deadline in responses.

The linear interpolation could be seen as restactbut
note that a content request can be split in meltiphges with
linear deadlines to approximate more complex deadli
functions. The granularity of the approximation eegs on the
client buffer size and response time constrainth@feceiver.

IV. SCAPFUNCTIONS

Intermediate SCAP functions are transparent tontdje
servers and other intermediates, which facilitateir
incremental introduction. Non-SCAP elements usadsted 1P
mechanisms to route the SCAP messages to the o@et fhis
can be seen as the basic non-optimizing SCAP famctind
any extra functionality is possible as long assitdesired or
improves the overall efficiency of content deliverSCAP
functions can be implemented on the packet levaiaximum
throughput, with minimal soft-state. The amountrefjuired
soft state depends on the capability and compleaftythe
deployed function. The SCAP-aware functions capdot of a
switching/routing device, or can be attached tooa-8CAP-
aware node, which is configured to redirect allacsubset of
the SCAP traffic to this SCAP-aware function. SirfBEAP
uses a dedicated IP protocol id, its redirectioaugported by
most of the existing network devices.

Different functions can be envisioned, ranging from

measurements, shaping, policing/admission, billlmgffering,
caching, scheduling and scaling functions. The athge of
understanding the requests from the clients is thaist
functions can perform control functionality on regts before

limitations of the function. A measurement functitn the
simplest function, and can just inspect the requastsages,
without the need to filter or manipulate them.

Below a few relevant scenarios and aspects ardeatkta

A. Back-to-back message flow

Fig. 2 shows the message flow for a back-to-bacRFSC
proxy. It is demonstrated for the first messages adfimple
scenario. A client sends a message (1) towardsrihm server
to request a range of content. A SCAP router iswatl to
intercept the message, and finds out that a paheofequested
content (2) is already in the local buffer or cachike router
sends this content as a response message (3) sothardlient.
The source IP address of a response message mksptbas
the address of the origin server, since that IP@ars of the
content identification. The response carries tredtliee of the
most urgent byte in that packet (typically thetfiogte), aged
by the processing time (here as an example 10Ths) client
can use it to calculate the roundtrip time if henpares this
value with his own expected deadline value. Theermalso
sends a request message (4) towards the senrefonissing
part of the content. The source address of theestquessage
is changed to the source address of the routeissore that the
response arrives to the SCAP function, insteadotbviing
potentially an alternative path directly to theenl. This action
is only necessary if the intermediate function getes the
request (and request id) and needs to procesgspenses for
this request. The deadlines are recalculated fer ghrtial
range, and aged by the time necessary for intermater
processing (here as an example: 20 ms). The regtrasts at
the origin server, where the content is originatgred. The
server sends response messages (5) to the rotwerrotter
can then send this content further to clients lizate asked for
that content. The request-ids are not shown, batldhbe
unique per client IP address. Since the SCAP rdugbaves as
a single client towards all other servers (or othesrmediate

Scap-request; L4: SCAP
a=14000; cs=5678; ‘ @ L3: IP request
db=100; de=2100 Scap-request;
ca=15200; cs=4478;
db=503; de=2080

®

§52.2.2.2;
d=1.1.1.1;
prot=SCAP

SCAP
Client

IP@=2.2.2.2

Prot=SCAP

F-——————| SCAP

'(Po-4444| | Server
@ P@ = 1.1.1.1

s=1.1.1.1; Scap-response;
d=4.4.4.4; ca=15200;
prot=SCAP || cs=1335; db=503

s=1.1.1.1;

d=2.2.2.2;
prot=SCAP
L3: IP L4: SCAP Paylpad
response

7ESAD1
B70C12
48153...

Scap-response;
ca=14000;
€s=1200; db=90

3CE571
B5AD12
45078..

Figure 2. SCAP back-to-back message flow.

proxies), it must also allocate unique requestfaisoutgoing
requests that it issues. The SCAP router behavesuitiple
servers towards its clients, proxying the real sesv

B. Buffering and Caching

The responses determine the entries in the Coitdek.
This index is a unique overview of the all requéstentent
and on its turn determines the entries in the Curtést and
Request List. If the content in a range is avadlablthe node,
then the Content Index points to a Content Listyerit not, it

Since SCAP publishes the required content, size anploints to a Request List entry. Content that israfgrenced by

deadlines upfront, intermediate nodes can deteetlapping
requests. They are allowed to combine content apsrby
requesting only the most urgent ranges, and lathenw
receiving content sending it to multiple interestelients,
possibly with additional delay by buffering it. A second
stage, content that is already buffered for anotioele can be
reused to send to a new interested client. If 8w request had
a more urgent deadline, it can be sent to the sectiant
before it is sent to the first client. If the deadlis later, then
the content can be buffered longer than originplnned. As
long as there are clients known to wait for stotedtent, we
define the storing action as buffering. If contankept inside a
node without any known client expressing a needitfowe
define this action as caching. Caching is usefuh&mory is
available after buffering content for all known vegts. Also if
content is estimated to be more popular (statisticeeeded
sooner) than buffered content with the longest lilsadit can
be useful to reduce buffer capacity to keep cortached.

The scheduling timing for receiving (open the reeei
window), storing (buffering and caching) and segdin
(assigning priority and performing congestion coitis not
defined as part of the transport protocol. It istaghe clients,
servers and intermediate function to decide whéibrs are
possible and beneficial to improve the overall eabhdelivery
efficiency. A topic for further research is to defithe most
optimal delivery strategy.

C. Intermediate soft-state management

In Fig. 3, a detail of the intermediate soft-stiatshown for
a back-to-back implementation. A Response Listesping a
list of all incoming requests that need responsedset sent to.
The entries are indexed via the client IP addredstlae unique
request id given by that client. An entry contafugher the
state that is needed to handle the incoming reciygsmics
(request, send and acknowledgement addresses raedut),
and has a link in the content index to ranges tlaer the
consecutive content range that is requested bylibet. This
Response List is used by the response scheduléch vi$
responsible for the scheduling of response packethe links
of the node.

Response Scheduler

Content Scheduler R Schedul

any incoming request can be referenced by the Chisher

else is freed again. The Content Scheduler is resipe for

managing the content stored in the node. It detexsnithe
amount of content that is requested, received,ebedf and
cached. The entries in the Request List are usebdebRequest
Scheduler, which is responsible for sending reqpeskets
(for new requests, or to refresh and acknowledgstieg

requests). Any new entry in the Request List getsnigue

request id assigned by this node because requessgiat with
the IP address(es) of this node. When responseefsacke
received, the range in the Request List entry khrand grows
in the preceding Content List entry. Entries in @@ntent List
are shrunk when acknowledgements are received ét@mnts

and make preceding entries referenced by the Respon
Cache List grow.

V. EVALUATION

We evaluate the protocol in the context of optirtima
functions in access networks. These nodes are yhighl
distributed (a large number of devices are deplpyserve a
relatively low number of users per node (hundreds t
thousands), and have limited storage capabilitiesst(
reduction is an important objective). We evaluat ienefit of
SCAP in an access network for making multimediavdey
more scalable. We compare native SCAP transponguan
intermediate SCAP aware access node, with HTTP dbase
delivery using an intermediate HTTP proxy. Typigakn
access network has many access nodes, each seaving
relatively small amount of clients with limited akadle
resources. In this context, we focus on the memang
bandwidth usage efficiency.

A. Scenario and Topology

Client1 [] /“ Bc: client link limit
Ba: Access link limit
Client2 [}

Central
content
server

Live Stream
service
VoD
service
VoR
service

|

Aggregation
network

Access
Node

’_/

No link limit

Client 99

Content Index Request List

[7.42.5.6 |

1034539
1080000
1080001
1110000
1110001
1230099
1230100
1231500
1231501
1700000

[5.4.25.9]
1230100
1231500

1231501
1700000

Content List
Response List —

12.34.5.7
34

259 _F—

—

604

A

client ip reqid

10/0)1

[/

Cache List

| 48 |

replacement order content ip_addr range reqid

data

Figure 3. SCAP back-to-back internal state.

Figure 4. Evaluated topology.

Proxy

In this evaluation, both simulations and prototyes were
performed. For both, the same topology and inpt aeere
used.

The topology in Fig. 4 represents 3 different aggilons on
a central content server, one access node extemidbdan
intermediate proxy and 99 video clients, each rstjg one
video session for 1.5 hours viewing time. The a@d buffer
memory on the clients is not limited to give théeimediate
function a high level of scheduling freedom. Theaikable
bandwidth on the link between the content server arcess

node (Ba) was varied in order to study the effédiamdwidth
bottlenecks on performance. The link between thesgtnode
and every client (Bc) was given a fixed 20 Mbps dveidth

limit. This bandwidth is reserved for the genera®&dAP or
HTTP traffic and resembles actual bandwidths assigto

managed multimedia applications.

Each application on the content server offers arotype
of content. First, the live stream content type)(t&presents an
infinite video stream where content is made avé&lab
progressively in time. Second, the video on demematent
(VoD) represents pre-recorded streams of a firategth that
are requested just before the user wants to dtasing them.
Finally, video on reservation (VoR) is an altermatto video
on demand, where content is requested up to 1.6 Hmfore
usage. In the presented evaluation scenario, tiearas and
video on demand content have a bit rate selectadratom
from the set (3, 8) Mbps, while video on reservati@ms a bit
rate randomly selected from the set (4, 15) Mbpshigher
quality (and consequential bandwidth) is assumedviR as
an incentive for the user to reserve its contefroap.

A constant bit rate is assumed for all types okwidEach
content server contains 6 unique content itemssdfpe. Each
of the three services is requested by 33 clients wicontent
item that is uniform randomly selected from theilmde 6.
Live stream content is requested with a deadliné sécond,
which means that the user expects the live strearstart
playing one second after selecting the requestetenb The
live stream content selected by the client has laydef 10
seconds compared to the live feed. This makesssiple to
download the content up to 10 seconds upfrontthmustart of
the playout begins already after 1 second. Forova@edemand
the deadline is 10 seconds, while for video onrkegmn it is
chosen at random from the interval [30, 180] miautéideo
on demand and video on reservation are fully abkdlan the
server, and download is only limited by link capas. The
scenario runs over a 6 hour period. Requests aativmiform
random moments within this timeframe.

In both the simulation and the prototype we meashee
minimum deadline value that the intermediate i=edating. If
deadlines are not met (go below zero), both théopmpe and
the simulation continue scheduling the contenthwiegative
deadline values as a result. The minimum deadimsgconds)
over the complete experiment is plotted for différaccess
link capacities to compare the different schedulimgthods. If
this time is at least zero, all deadlines are ramtl a perfect
delivery is achieved. The minimum link bandwidthr fehich
all deadlines are meBy;) for all clients is a measure for the
performance of the scheduling, buffering and/or hazg
algorithm. To evaluate the content reuse performaalso the
hit ratio is calculated as one minus the ratiohef total content
size transported over the Ba link and the totaltexnsize
transported over the Bc links. The utility measgiees an
indication of how well peak bandwidth requirementn be
smoothened out over time. It is the ratio betweles link
capacity By) and the average bandwidth over the access link.

For the SCAP prototype and the simulator we haveised
buffer control, buffer replacement and congestiamtiol

mechanisms. Enough memory is available to buffey an

excessive incoming rate which is not consumed by
compensating outgoing rate. Link congestion is @i by

limiting the rate at the source to the bandwidteingd for the
links. Simulations are done using fair-share sclieglu
resembling TCP, but buffer and request reuse &ClP were
used in stead of LRU caching. The HTTP proxy prgieton
the other hand uses the LRU replacement algorithth &
fixed cache size that is at least the peak buffer gsed by the
SCAP proxy, and link capacity is limited using theaffic
Control settings in the Linux kernel (tc command).

B. Smulation

A simulation implementation for scheduling and leuffg
was built in order to compare earliest deadlingt EDF) with
fair share (FS) and real-time (RT) scheduling. Bhaulator
abstracts the underlying network layers and pabksed
transport mechanisms. Instead, it uses a streasdbasgent-
driven approach. These streams are modeled assteffss
between adjacent network nodes. Every flow is agset with
a single-hop outstanding request and keeps aistdlte form
of the address of the next byte that needs to tieteeards the
receiver, its deadlines and a current bit rateoBefnd after
every event, the simulator recalculates the stiaddl ows and
node buffers for the new time, and searches fonéxt soonest
event. These events can be for instance the stdread of a
flow or deadlines of flows that meet each othereSehevent
actions are performed in a loop for every eventil uait
requests are handled. Further, the network latemode
processing delay and packet loss ratio on the n&tlitks are
assumed to be neglectable and set to zero. Théasommakes
abstraction of the actual transport protocol, arsd applies the
correct scheduling algorithm. For all schedulingoaithms the
memory is used only for pure buffering and buffemge. Once
content is not requested anymore, it is discarded is
memory is freed again.

In Fig. 5 the minimum deadline per access link lvdadth
(Ba) limitation is plotted for the different scheitig policies
and topologies.

The values for minimum bandwidtiB,g), link utility and
hit ratio are shown in Table 2.

-1000

-2000

-3000

-4000

-5000

minimum deadline (s)

FS with proxy

EDF end-to-end —Y—
FS end-to-end —+— "
RT end-to-end —H—

-6000

-7000

-8000
o

5!
300

access link bandwidth (Mbps)

Figure 5. Simulation minimum deadlines per access link badttwi

TABLE II. SIMULATION RESULTS
Without proxy With proxy
EDF FS RT EDF FS
Bum (Mbps) 190 267 310 88 143
A Utility (%) 88 62 54 85 64
Hit ratio (%) 0 0 0 55 45

Without a proxy (end-to-end), RT scheduling recsliee
peak bandwidth of 310 Mbps. RT scheduling is nahgishe
scheduling freedom, and content is delivered atdibadline.
FS and EDF scheduling start using the bandwidtim ftbe
moment a request is known. Therefore they can gexygests
upfront, and require less peak bandwidth with higity.
Without a proxy, the end-to-end flows are limitex the 20
Mbps link capacity of the client links. Only whehet flows
start competing for bandwidth on the access lin&, dcheduler
at the server will determine the bandwidth sharbe TS
scheduler is just dividing the bandwidth evenly roike
running flows, and the flows with highest bandwickind
shortest deadlines will miss their deadline firkt EDF is
giving priority to the flows with the shortest ddiad, it
requires the smallest link capacity.

With a proxy, FS and EDF scheduling use the fulkli
capacity if at least one request is known. If tlaedwidth is
higher than the 20 Mbps client link limitation, tieentent is
buffered in the proxy. This not only allows contémbe reused
over the different requests, but also to fully tiee access link
capacity whenever requests are known.

The results for our scenario show that EDF witheptoxy
requires 39% less bandwidth than RT, and with aypmven
72% less. Compared to FS, EDF requires 29% lessvibdtin
without a proxy, and 39% less with the proxy. Thesilts are
promising, because they show that using SCAP emhdocan
already give a substantial advantage compared tarfiSRT
based protocols, and that adding intermediate fumetis
further increasing substantially the performancéhefdelivery
network.

C. Prototype evaluation

In addition to the simulation results, the protatyp
implementation of the SCAP protocol was evaluatedai
physical setup. In the prototype setup, the SCAtoppl with
an earliest deadline first scheduling strategyoimgared with
the EDF simulation results and an HTTP setup coirigian

This is actually reducing the potential for contesiise, and is
a disadvantage for the SCAP runs, and an advarfitagie
HTTP-LRU runs, which can use all available memory.

The prototype implements neither a congestion cbmior
receive window strategy. The receive window is gsvlept
completely open, so there is no way to limit incogflow and
limit the buffering, and hence memory usage. Thiéebng in
the proxy is limited only by the incoming link cayi.
Therefore the response scheduler uses a configahestiuling
rate limitation per request IP address. This ratesed to limit
the bandwidths for the SCAP runs.

The response scheduler uses strict earliest deadlist
scheduling. If content is available in the Conteist for an
incoming request, then the request is inserted oeadline
ordered list. The next packet is sent from the rgry in this
list, and the request is reinserted in the listth@ next not yet
sent byte. As a result, requests are preempteddrg orgent
requests. As long as a request is the most urgewi]l be
served with priority. The requester will receivepenses only
for this request with the full link capacity. Ifehdeadline of a
first request reaches the same value as for anmheest, the
two requests will share the link capacity, basedhendeadline
rate ratio. This resembles exactly with the EDFlamentation
in our simulator. The response scheduler retrassafier 2
duplicate acknowledgments. Refresh and timeout stiraee
fixed. The request scheduler used 100 ms for tlieste
interval, and the response scheduler will use adimwindow
of 250 ms before removing an incoming request dhdtsa
state, which allows for one consecutive lost rejoessage.

The prototype has additionally a local socket faiez that
applications can use to request ranges with desg]land read
from the content stream. Additionally, an API isggnt to
insert content directly in the Content Index anch@at List.
As such the same prototype process is startedl iBGAP-
aware nodes, and having the same functionalityhferclients,
server and intermediate function.

In addition to the SCAP setup, which matched tipelogy
and setup that was also used in the simulatiotjBRP setup

HTTP proxy. The same client scenario is used fog thwas also created with the Squid caching proxy [Th]s setup

prototypes as was used for the simulations. Dubganemory
limitations of the in-memory buffer of the SCAP teuand the
in-memory LRU-cache of the HTTP proxy, time was dew
scaled with a factor of 10, and bandwidths withaetdr of 4.
The results in the graphs are again scaled up. Seiigp was
created on a Emulab setup [12]. The nodes in theld&m

has the same topology as the SCAP setup, but WithP+bver
TCP as the protocol and an HTTP proxy with thetleasently
used (LRU) cache replacement strategy. The peakerbuf

memory usage of the SCAP scenario was 20GB, so we

configured the LRU proxy cache with the same mentiomit.
We applied the same scaling factors as for the Sraftype,

network are equipped with two dual core opteron 2221 resulting in the same down-scaled cache limit diN8B. The

processors and 4GB RAM.

The SCAP prototype is a simplified implementatidrtte
back-to-back proxy described above, focusing oimsa et of
functionalities. Workarounds are defined for fuantlities that
are out of the scope of this paper. All limitatioasd
restrictions described here should not be appkcabthe final
protocol or final intermediate function behaviondaare only
provided for a detailed understanding of the evanaesults.

The prototype does not implement the Cache Listriteed
in Fig. 3. As in the simulator, content that is neferenced by
any incoming request is immediately freed againd #ms
memory is used only for buffering and buffer reu3éis
means that the amount of reuse is only determinetinte-
shifts due to overlapping requests pending at #mestime.

same client requests with the same timings werdieabprhe

video files were stored as 2 second fragments dtilitéde

caching in limited memory. The clients and server &++

developed processes to control the correct reqrebtrelease
of the video content. The clients will download tieguests in
sequence. Only if the download of the previous rfragt is

completed, the download of the next fragment istestia The
server will release the content controlled for live streams
and immediately for VoD and VoR. The capacity & timks is

limited using the Traffic Control settings in theaux kernel (tc
command).

B A .

2000 77T 1

G000 [1

L e .

O R B R 1

minimum deadline (s)

G000 [1

(VO i A SCAP/buffering —%— |

HTTP/LRU

Q o
red =
54 @

-8000
o

100
150
200

access link bandwidth (Mbps)

Figure 6. Prototype minimum deadlines per access link baritiwid

TABLE III. PROTOTYPE RESULTS
SCAP / buffering HTTP /LRU
Bw (Mbps) 88 180
Utility (%) 85 78
Hit ratio (%) 55 16

In table 3 the results are shown for the prototypes. The
SCAP results are, as expected, equal to the siomnlegsults.
Due to the small cache size and the high interaahing [4]
opportunities, the SCAP prototype has a 3.45 tihigker hit
ratio compared to the LRU cache.

Fig. 6 plots the minimum deadline per access
bandwidth (Ba) limitation for the two prototype sin

The
simulated) almost performs as good as a proxied FAIRU
setup with a small cache size. Adding the SCAP yrizx
further halving the required bandwidth.

VI. FUTUREWORK

In this paper, the focus was on the transpareatrirgdiate
optimization concept. We shortly discuss what wimkhis
needed to further evolve the protocol. A receivendeiw
strategy with buffer and caching management mustefieed.
A (near) optimal and simple heuristic is needed Haances
the amount of memory usage between 4 types ofgeoextual
receive window storage, buffer storage for a siffighe, buffer
reuse between flows and cache storage for stafigticopular
content. For an internet wide deployment, the sgcaspects
must be taken into account. Also TCP friendlinesth wlow
start and congestion control are important aspecisok into.
Further, investigation of the impact of differentheduling
strategies and the interworking with congestion t@dnon
larger networks is needed. The impact on scalglilitusing
ranges and different strategies for handling thémukl be
further investigated. Finally, exploration of pdssi functions
and a study on their interworking on a global scepeuld be
performed.

VIl. CONCLUSION

In this paper we introduced a novel transport protehat
can be used for transparent network optimizatidis protocol
supports the scalable delivery of content from saever to
multiple clients. Content is uniquely identified daxleadline
information that expresses “when the content isiireq” is

IinlﬁS]

results show that using end-to-end SCAP (as

also provided. The SCAP protocol allows intermesliatwork
devices to take this deadline information into artowhen
scheduling the transmission of data packets. Byqualy
identifying content it enables application agnostching and
buffering. We have evaluated the SCAP protocol batta
simulation environment and in a physical setup gisan
prototype implementation. The prototype behaviotamas the
simulation results. In the simulation environmersing earliest
deadline first scheduling allowed a significant daith
reduction when compared to traditional real-timd &air share
scheduling techniques. In the prototype test setuggnsparent
SCAP function was compared with an HTTP/LRU proxy
cache. The tests showed an extra reduction on hdtdw
requirements by exploiting the timing informationhem
buffering and reusing content. The presented egliow on
the one hand that providing and using deadlinerinéion
improves the efficiency of network optimizationdashow also
that intermediate nodes can be deployed transparienthe
network without impact on clients and servers.

REFERENCES

[1] M. Allman, V. Paxson, W. Stevens. “TCP Congestioontol”, RFC
2581 (Proposed Standard), April 1999.

[2] A. Anand, C. Muthukrishnan, A. Akella, and R. Ra&jjéRedundancy
in network traffic: findings and implications”, roceedings of the 11th
international joint conference on Measurement anddeting of
computer systems 2009, Seattle, WA, USA

S. Banerjee and B. Bhattacharjee, “A comparativeysbf application
layer multicast protocols,” available at http://wves.umd.edu/projects
/nice/papers/compare.ps.gz.

[4] A. Dan and D. Sitaram, “A Generalized Interval daghPolicy for
Mixed Interactive and Long Video Environments”, €eedings of SPIE
Multimedia Computing and Networking Conference, Shise, CA,
1996.

[5] J. Famaey, W. Van de Meerssche, S. Latre, S. Meligyauters, F. De
Turck, K. De Schepper, B. De Vleeschauwer, and Rysedgems,
“Towards intelligent scheduling of multimedia camtén future access
networks”, in proceedings of the 12th IEEE/IFIP Wetk Operations
and Management Symposium (NOMS), 2010.

[6] R. Huysegems, B. De Vleeschauwer, and K. De Schefipeablers for
non-linear video distribution”, Bell Labs Techniciurnal, June 2011,
pp. 77-90.

[7] V. Jacobson, D. K. Smetters, J. D. Thornton, MPEss, N. H. Briggs,
and R. L. Braynard, “Networking named content.”, QoNEXT '09:
Proceedings of the 5th international conferenc&merging networking
experiments and technologies, pp. 1-12, New York, NSA, 2009.
ACM.

[8] M. Mathis, J. Mahdavi, S. Floyd, and A. RomanowCH Selective
Acknowledgment Options”, RFC 2018 (Proposed Statjd&ct. 1996.

[9] L. Popa, A. Ghodsi, and |. Stoica. “HTTP as therbarWaist of the
Future Internet”. In ACM SIGCOMM HotNets, 2010

[10] N. T. Spring, and D. Wetherall, “A protocol-indeplemt technique for
eliminating redundant network traffic”, in SIGCOMR000, pp. 87-95.

[11] Squid Web Proxy Cache Home Page, “http://www.saqaicke.org/”,
2011.

[12] B. White, J. Lepreau, L. Stoller, R. Ricci, S. Gorasad, M. Newbold,
M. Hibler, C. Barb, and A. Joglekar, “An integrateckperimental
environment for distributed systems and networE$GOPS Oper. Syst.
Rev., 36(Sl):255-270, 2002.

[13] T. Wu, K. De Schepper, W. Van Leekwijck, and D. Ydeeschauwer,
“Reuse time based caching policy for video streghisubmitted to
CCNC 2012 - 9th Annual IEEE Consumer Communicati@msl
Networking Conference.

