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Abstract— In recent years, the networking community has put a 
significant research effort in identifying new ways to distribute 
content to multiple users in a better-than-unicast manner. 
Scalable delivery is more important now video is the dominant 
traffic type and further growth is expected. To make content 
distribution scalable, in-network optimization functions are 
needed such as caches. The established transport layer protocols 
are end-to-end, and do not allow optimizing transport below the 
application layer, hence the popularity of overlay application 
layer solutions located in the network. In this paper, we introduce 
a novel transport protocol, the Shared Content Addressing 
Protocol (SCAP) that allows in-network intermediate elements to 
participate in optimizing the delivery process, using only the 
transport layer. SCAP runs on top of standard IP networks, and 
SCAP optimization functions can be plugged-in the network 
transparently as needed. As such, only transport protocol based 
intermediate functions need to be deployed in the network, and 
the applications can stay at the topological end points. We define 
and evaluate a prototype version of the SCAP protocol using both 
simulation and a prototype implementation of a transparent 
SCAP-only intermediate optimization function. 

Keywords - Buffering, Caching, Content Distribution, 
Multicast, Networking, Retransmission, SCAP, Scheduling, 
Streaming, Time-Shift, Transport protocol, Transparent 

I.  INTRODUCTION 

Content delivery over the Internet and IP networks in 
general is increasing enormously, with a clear trend towards 
video being the dominant traffic type. Next to existing IPTV 
and VOD systems, new internet video services with their 
typical consumption patterns have emerged, such as live 
streaming, video on reservation and user generated content, all 
having different timing and latency requirements for delivery. 
Next to RTP and RTSP-based video delivery, another recent 
trend is the rise of Internet video using the standard HTTP 
infrastructure, running on top of TCP as transport layer. A 
number of mechanisms are used such as HTTP progressive 
download, HTTP adaptive streaming, and proprietary formats 
tunneled over HTTP. As TCP is an end-to-end transport 
protocol, scaling of the delivery infrastructure typically is 
achieved by distributing HTTP proxy servers nearer to the end-
users and redirecting requests towards the most appropriate 
proxy, as such introducing application-layer functions into the 
network. The deployment of scalability and optimization 
functions at the application level requires a lot of preparation, 

including application design impact and operational 
management and configuration. Our first objective is to define 
a transport protocol that allows applications to stay at the 
topological end points, and needs only transport protocol layer 
packets to be processed in the network for the optimized 
content delivery functions. Our second objective is to define 
the transport protocol such that it enables transparent and 
gradual deployment of intermediate functions and can operate 
on the existing IP infrastructure. Additionally, our third 
objective is to exploit the different timing requirements of the 
different applications. We believe that using deadlines at the 
lower layers in combination with announcing content 
requirements upfront, will result in additional improvements 
compared to real-time delivery or near real-time (greedy flows 
with fair-share bandwidth division and limited client buffers as 
in most current HTTP based video services). In this paper we 
define a basis for an internet transport protocol called Shared 
Content Addressing Protocol (SCAP).  

This paper is structured as follows: Section 2 describes 
some work related to scalable content delivery. The SCAP 
protocol is explained in detail in Section 3, and Section 4 
describes a back-to-back transparent proxy as an example for a 
possible in-network function. Section 5 presents the results of a 
simulation and prototype evaluation. Finally we indicate items 
for future work in Section 6, and conclude with Section 7. 

II. RELATED WORK 

In this section we discuss some work done in the domain of 
scalable content distribution. 

CDN solutions make use of the popularity of HTTP 
protocol and its capabilities for redirection to proxy servers and 
application replicas. These services are good for offloading the 
core of the network, but are not generally economically viable 
for deeply deployed caches, very close to the clients (such as 
caches for access and aggregation networks). To achieve 
significant cache hit rates with the commonly known cache 
replacement algorithms (e.g. LRU, LFU), cache sizes should be 
large enough. For small caches, timing information in 
combination with sufficient upfront content request advertising 
[5] and recommendation based request overlap [13] can 
improve the cache performance dramatically. Though these 
mechanisms can also be applied on HTTP based content 
distribution, they introduce extra application state and 
algorithms, and don’t result in a solution for our targets. 
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With the Subscribe-GET (S-GET) extension to HTTP, the 
authors of [9] propose a mechanism to setup a standardized 
HTTP based multicast tree between HTTP proxies to support 
scalable live traffic. It is used to support scalable real-time 
multicast of datagrams over HTTP. Per channel, a delivery tree 
is built between HTTP proxies that multicast any datagram sent 
by the server to all subscribed clients. As this is a solution for 
content that is only relevant for real-time consumption by 
many, it is not supporting content reuse over time (timeshift) 
and transparent gradual deployment. 

For scalable delivery of content also peer-to-peer 
application overlay multicast trees are well studied [3].The 
main advantage is server offload in the absence of network 
support for multicast. Their major drawbacks are a substantial 
overhead on the local network (if sufficiently localized, 
otherwise even larger global overhead), and the consumption of 
extra resources at the peer nodes. 

A more radical clean slate approach is the Content Centric 
Networking (CCN) paradigm [7]. CCN focuses on a content 
naming solution replacing the current internet, decoupling 
document naming from the location where the document 
resides. CCN gives human readable names to documents and 
chunks documents in large packets using an application 
dependent chunk naming scheme. Due to the globally unique 
content naming per packet and its pull based protocol behavior 
with the request/response (interest/data) mechanism, it also 
allows packet level reuse over time and between different 
users. CCN redefines the complete network stack, envisioning 
as extra advantages global content mobility and security as part 
of the underlying mechanism. While CCN can run over IP, 
using it as a data link layer, the final objective is to replace the 
existing internet. Questions rise around scalability due to the 
large amount of names to be known in the network and security 
handling overhead. Another open question is if all types of 
communication paradigms can be handled efficiently with the 
CCN naming mechanism, as all communication needs to use 
CCN as communication means (both shareable static content as 
private and live communication). 

Protocol independent redundancy elimination (PIRE) is 
another line of work related to content optimization by reuse in 
the network [10][2]. It removes duplicate byte series in network 
packets going over the same link between 2 nodes. Results 
show that there is a lot of redundant information, and that a lot 
of identical parts of info is passed between clients and servers. 
The advantage of PIRE is that redundancy elimination is 
automatic, without the need for specific application actions. 
PIRE is protocol independent, and can eliminate redundancy 
even for SCAP, between different servers and protocols. A 
disadvantage of PIRE is that it does not offload the server, 
because the content must be delivered before it can be analyzed 
and eliminated. 

III.  SCAP PROTOCOL 

SCAP is a transport protocol specialized in content 
distribution and streaming from a server to multiple clients. We 
designed the protocol to retrieve static content that can be 
reused in the network between clients, even over time. SCAP 
has specific information in its protocol headers that make 
intelligent in-network functions possible without the help of 
application layers. First, a simple unique content identification 

scheme allows identifying each byte uniquely. Secondly, the 
content range (comprising offset and size) that needs to be 
transported is provided. The third enabler is the linear stream 
deadline information. It is a simple expression to determine the 
deadline for each requested byte in the content range.  

The protocol allows retrieving flexibly addressable ranges 
of content, with accompanied linear mapped deadlines. The 
client application provides this information to the transport 
layer, allowing all nodes to combine requests for the same 
content, to store and reuse previously received content and to 
schedule the receive, store, delivery and replacement of that 
content. Intermediate nodes can decide - independently from 
each other - which content to store and for how long. Clients 
can request content with a content size from a few bytes to 
gigabytes and with deadlines from mere milliseconds up to 
several days. A multimedia presentation that knows upfront the 
scenario to be played can request content upfront, providing 
extra room for scheduling, buffering and caching 
optimizations.  

The following subsections explain the key concepts of the 
SCAP transport protocol. We describe the message structure, 
request and content identification, and the dynamic behavior 
between client and server. Client and server can either reside 
on end-points or on intermediate network elements. An 
intermediate node should be seen as a server for the original 
client and a client for the original server, and should behave 
accordingly. Intermediate functions are using the protocol, but 
are not part of the protocol. Intermediate functions are 
described in the next section, and are allowed to process 
messages in any way, as long as the in- and outgoing flows 
respect the protocol as described in this section. 

A. Content identification 

In SCAP, content is identified uniquely and efficiently by 
the combination of IP address (IPv4 or IPv6) and a local 128 
bit identifier. Each IP address has its own 128 bit address 
space. Each origin server is responsible for mapping content 
correctly in the local address spaces of each IP address it is 
responsible for. It is the responsibility of the application to 
transport this low level address provided by the server to the 
client, using commonly known mechanisms (for instance 
embedding a URL in an HTML page or specifying the 
parameters in a video manifest file). 

TABLE I.  MESSAGE LAYOUT 

Message Layer 3: IP Layer 4: SCAP 
   

Request Protocol = SCAP 
Source address (S) = client 
Destination address (D) = server 

Flags = Rq 
Request id (Ri) 
Content address (Ca) 
Content size (Cs) 
Deadline begin (Db) 
Deadline end (De) 
Receive window (Wr) 

   

Response Protocol = SCAP 
Source address (S) = server 
 
 
 
Destination address (D) = client 

Flags = Rp 
Content address (Ca) 
Content size (Cs) 
Deadline packet (Dp) 
Expiration time (Te) 
Request id (Ri) 
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Figure 1.  Example of SCAP messages in a request session. 

Typically, content is addressed sequentially in ranges. A 
content range is identified by a start address and a size. In the 
example in Fig. 1 the client requests a range of content 
identified as 2.2.2.2:100000~21111, which means that it needs 
content from the server with IP address 2.2.2.2, starting at local 
content address 100000 and with a content size of 21111 bytes. 

B. Request and response messages 

The protocol is built around two basic message types: a 
request message and a response message. Fig. 1 shows an 
example flow for one request session from a client towards a 
server and in Table 1 a high level representation of the message 
format is shown. A client can request content by sending 
request messages. Request messages contain the start address 
and size of a consecutive range of bytes a client is interested in, 
together with timing requirements for the delivery. In Fig. 1, a 
request is sent for 21111 bytes of content (= Cs), where the first 
byte is expected within a time span of 100 ms (= Db), and the 
last byte 1 second later at 1100 ms (= De). Request messages 
are updated and sent repeatedly (in this example 83 and 280 ms 
after the first request) to refresh the request, until all content 
has been received. Refresh messages can be updated, due to 
either changed timing requirements, or partial completion of it. 
In the example, the message at 83 ms requests only the part of 
the content that is not yet received and the last message at 280 
ms closes the request session by sending a request with content 
size set to 0. 

The server sends response messages, each carrying a part of 
the requested content. The response message header includes 
the content identification of the content range it carries. 

Both request and response messages contain a unique 
request identification that is the concatenation of the L3 
network address of the client and a L4 request id value. Since 
request messages are sent multiple times for the same request 
session, and the requested content range changes over time 
(typically, shrinks or slides as the request is gradually 
completed), a request identification is needed for fast and 
unambiguous lookup of the request states on the server, and for 
fast mapping of the response messages to the request states on 
the client. In the example in Fig. 1, the request identification 
field is left out for brevity, but is the same for all messages that 

are shown, since they handle the same client request session. 
A client can change its mind about the timing requirements, 

or can even give up its request, for instance when pausing 
playback of a video stream. To take this into account, the 
request should be rescheduled in time by updating the 
deadlines in a new request message with the same request id. 

Content is acknowledged by means of a new request 
message with the same request id, but with a higher start 
address. As such, the server is informed that the given client is 
no longer interested in the part before the new start address. 
Similarly, an application can skip content, even when the data 
was not received at all. 

A client expects to receive content for a request in an 
earliest-deadline-first order. In case a gap is detected while 
content is being received (i.e. not the next expected address), 
the client must send a new request with a new request id for the 
missing gap that was detected. The original request will 
acknowledge both the missing gap and the received content. 
This mechanism results in a selective NACK mechanism, 
similar to the TCP Selective Acknowledgment mechanism [8], 
but reuses the normal request message instead of extra options 
which keeps the protocol handling simple. 

For the case that content is lost, and there is no later content 
received to create a detectable gap, a second mechanism is 
defined. It is similar to the TCP fast retransmit mechanism 
Error! Reference source not found., and is based on 
receiving duplicate acknowledgments. If the server receives a 
specified number of duplicate acknowledging request messages 
with an identical start address smaller than the last send address 
by the server, the server should retransmit messages from this 
start address. As such, this mechanism allows dealing with 
packet loss in a way that complements the first mechanism. As 
long as there are newer packets, the first mechanism will 
trigger a new request for the missing gap. If this gap is at the 
end of a range, the client will not request the missing gap based 
on the first mechanism, as it is not detected, and the server will 
wait for the final acknowledgment.  Only the second 
mechanism based on the duplicate acknowledgements will 
trigger the server to resend the lost content. Note that duplicate 
acknowledgements for the last packet(s) are triggered by 
timeouts, and can take a long time to arrive. 

When a request is fulfilled, a final request message with 
content size 0 must be sent, allowing clean up of network and 
server state for this request. In Fig. 1 the message at time 280 is 
an example of such a final acknowledgment message. To avoid 
unnecessary delivery of content that is no longer asked for, 
requests can time out. If a request received by a server is not 
refreshed within a request timeout window, the server can 
forget this request. A client can refresh the request by sending a 
request message with the same request id at a certain interval, 
sufficiently below the request timeout threshold. 

Some extra fields that are shown are outside the scope of 
this paper, but are necessary for receive window management, 
congestion control, content expiration, etc … 

C. Linear stream deadlines 

As shown in the example in Fig. 1, SCAP allows requesting 
content with timing requirements. In general, client 
applications are aware of the deadlines of content they need. If 
the network is aware of these deadlines, the delivery of content 



over multiple clients and servers can be optimized by 
evaluating the scheduling priority of several competing 
requests.  

For continuous media delivery we typically have a specific 
arrival curve of the content stream. Assuming a constant bit 
rate, each byte has a deadline that is c seconds later than the 
previous byte. If a stream has a constant bit rate r in bytes per 
second, then c = 1/r. In SCAP the deadlines of the first and last 
bytes are specified in the request. Every intermediate byte x has 
a deadline dx that is obtained through linear interpolation, as: 

 dx = db + x . c = db + x . (de - db) / s (1) 

with db and de the deadline of the beginning and the end of the 
range, s the content size, and dx the deadline of byte x. This 
combination of a start and end deadline, with its linear 
interpolation, mapped to a range, is what we call a linear 
stream deadline. In the remainder of the document this is also 
simply called the deadline if applicable to a range. Deadlines 
are expressed in milliseconds with a value that indicates the 
time span between now and the latest expected delivery time to 
the client. A deadline is positive if it is in the future, 0 if it is 
now, and negative if it is expired. We used a signed 32 bit 
fixed-point data representation for simplicity, since 32 bit allow 
to cover a range of [- 24 days, + 24 days] with a resolution of 
milliseconds. 

When a node keeps state of a request, it decrements the 
deadlines according to progression of time. The time that a 
message is "on the wire" should be compensated by the request 
sender. This is the round trip time between the 2 SCAP aware 
nodes and can easily be calculated by subtracting the local 
deadline by the received deadline in responses. 

The linear interpolation could be seen as restrictive, but 
note that a content request can be split in multiple ranges with 
linear deadlines to approximate more complex deadline 
functions. The granularity of the approximation depends on the 
client buffer size and response time constraints of the receiver. 

IV.  SCAP FUNCTIONS 

Intermediate SCAP functions are transparent to clients, 
servers and other intermediates, which facilitates their 
incremental introduction. Non-SCAP elements use standard IP 
mechanisms to route the SCAP messages to the next node. This 
can be seen as the basic non-optimizing SCAP function, and 
any extra functionality is possible as long as it is desired or 
improves the overall efficiency of content delivery. SCAP 
functions can be implemented on the packet level for maximum 
throughput, with minimal soft-state. The amount of required 
soft state depends on the capability and complexity of the 
deployed function. The SCAP-aware functions can be part of a 
switching/routing device, or can be attached to a non-SCAP-
aware node, which is configured to redirect all or a subset of 
the SCAP traffic to this SCAP-aware function. Since SCAP 
uses a dedicated IP protocol id, its redirection is supported by 
most of the existing network devices. 

Different functions can be envisioned, ranging from 
measurements, shaping, policing/admission, billing, buffering, 
caching, scheduling and scaling functions. The advantage of 
understanding the requests from the clients is that most 
functions can perform control functionality on requests before 

the server is informed and responses with data arrive. For 
instance policing can be performed by inspecting and 
manipulating the requests coming from the clients, before they 
are sent to the server. 

Depending on the needs of the function different system 
architectures can be used to implement such a function. A 
SCAP-aware node can be implemented as a back-to-back 
client-server or as a packet-processor/forwarder. A back-to-
back implementation is consuming all incoming packets, 
storing state in internal structures, and generating packets 
independently from the incoming packets. Alternatively, a 
packet processor/forwarder implementation is steered by 
update and forward rules, generated by a control plane. The 
implementation choice depends on the constraints and 
limitations of the function. A measurement function is the 
simplest function, and can just inspect the request messages, 
without the need to filter or manipulate them. 

Below a few relevant scenarios and aspects are detailed. 

A. Back-to-back message flow 

Fig. 2 shows the message flow for a back-to-back SCAP 
proxy. It is demonstrated for the first messages of a simple 
scenario. A client sends a message (1) towards the origin server 
to request a range of content. A SCAP router is allowed to 
intercept the message, and finds out that a part of the requested 
content (2) is already in the local buffer or cache. The router 
sends this content as a response message (3) towards the client. 
The source IP address of a response message must be kept as 
the address of the origin server, since that IP@ is part of the 
content identification. The response carries the deadline of the 
most urgent byte in that packet (typically the first byte), aged 
by the processing time (here as an example 10 ms). The client 
can use it to calculate the roundtrip time if he compares this 
value with his own expected deadline value. The router also 
sends a request message (4) towards the server for the missing 
part of the content. The source address of the request message 
is changed to the source address of the router, to assure that the 
response arrives to the SCAP function, instead of following 
potentially an alternative path directly to the client. This action 
is only necessary if the intermediate function generates the 
request (and request id) and needs to process the responses for 
this request. The deadlines are recalculated for the partial 
range, and aged by the time necessary for internal router 
processing (here as an example: 20 ms). The request arrives at 
the origin server, where the content is originally stored. The 
server sends response messages (5) to the router. The router 
can then send this content further to clients that have asked for 
that content. The request-ids are not shown, but should be 
unique per client IP address. Since the SCAP router behaves as 
a single client towards all other servers (or other intermediate  
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Figure 2.  SCAP back-to-back message flow. 



proxies), it must also allocate unique request-ids for outgoing 
requests that it issues. The SCAP router behaves as multiple 
servers towards its clients, proxying the real servers. 

B. Buffering and Caching 

Since SCAP publishes the required content, size and 
deadlines upfront, intermediate nodes can detect overlapping 
requests. They are allowed to combine content overlaps by 
requesting only the most urgent ranges, and later when 
receiving content sending it to multiple interested clients, 
possibly with additional delay by buffering it. At a second 
stage, content that is already buffered for another node can be 
reused to send to a new interested client. If the new request had 
a more urgent deadline, it can be sent to the second client 
before it is sent to the first client. If the deadline is later, then 
the content can be buffered longer than originally planned. As 
long as there are clients known to wait for stored content, we 
define the storing action as buffering. If content is kept inside a 
node without any known client expressing a need for it, we 
define this action as caching. Caching is useful if memory is 
available after buffering content for all known requests. Also if 
content is estimated to be more popular (statistically needed 
sooner) than buffered content with the longest deadline, it can 
be useful to reduce buffer capacity to keep content cached. 

The scheduling timing for receiving (open the receive 
window), storing (buffering and caching) and sending 
(assigning priority and performing congestion control) is not 
defined as part of the transport protocol. It is up to the clients, 
servers and intermediate function to decide what actions are 
possible and beneficial to improve the overall content delivery 
efficiency. A topic for further research is to define the most 
optimal delivery strategy. 

C. Intermediate soft-state management 

In Fig. 3, a detail of the intermediate soft-state is shown for 
a back-to-back implementation. A Response List is keeping a 
list of all incoming requests that need responses to be sent to. 
The entries are indexed via the client IP address and the unique 
request id given by that client. An entry contains further the 
state that is needed to handle the incoming request dynamics 
(request, send and acknowledgement addresses and timeout), 
and has a link in the content index to ranges that cover the 
consecutive content range that is requested by the client. This 
Response List is used by the response scheduler, which is 
responsible for the scheduling of response packets on the links 
of the node. 
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Figure 3.  SCAP back-to-back internal state. 

The responses determine the entries in the Content Index. 
This index is a unique overview of the all requested content 
and on its turn determines the entries in the Content List and 
Request List. If the content in a range is available in the node, 
then the Content Index points to a Content List entry, if not, it 
points to a Request List entry. Content that is not referenced by 
any incoming request can be referenced by the Cache List or 
else is freed again. The Content Scheduler is responsible for 
managing the content stored in the node. It determines the 
amount of content that is requested, received, buffered and 
cached. The entries in the Request List are used by the Request 
Scheduler, which is responsible for sending request packets 
(for new requests, or to refresh and acknowledge existing 
requests). Any new entry in the Request List gets a unique 
request id assigned by this node because requests are sent with 
the IP address(es) of this node. When response packets are 
received, the range in the Request List entry shrinks and grows 
in the preceding Content List entry. Entries in the Content List 
are shrunk when acknowledgements are received from clients 
and make preceding entries referenced by the Response or 
Cache List grow. 

V. EVALUATION 

We evaluate the protocol in the context of optimization 
functions in access networks. These nodes are highly 
distributed (a large number of devices are deployed), serve a 
relatively low number of users per node (hundreds to 
thousands), and have limited storage capabilities (cost 
reduction is an important objective). We evaluate the benefit of 
SCAP in an access network for making multimedia delivery 
more scalable. We compare native SCAP transport using an 
intermediate SCAP aware access node, with HTTP based 
delivery using an intermediate HTTP proxy. Typically an 
access network has many access nodes, each serving a 
relatively small amount of clients with limited available 
resources. In this context, we focus on the memory and 
bandwidth usage efficiency. 

A. Scenario and Topology 
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Figure 4.  Evaluated topology. 

In this evaluation, both simulations and prototype runs were 
performed. For both, the same topology and input data were 
used. 

The topology in Fig. 4 represents 3 different applications on 
a central content server, one access node extended with an 
intermediate proxy and 99 video clients, each requesting one 
video session for 1.5 hours viewing time. The available buffer 
memory on the clients is not limited to give the intermediate 
function a high level of scheduling freedom. The available 
bandwidth on the link between the content server and access 



node (Ba) was varied in order to study the effect of bandwidth 
bottlenecks on performance. The link between the access node 
and every client (Bc) was given a fixed 20 Mbps bandwidth 
limit. This bandwidth is reserved for the generated SCAP or 
HTTP traffic and resembles actual bandwidths assigned to 
managed multimedia applications. 

Each application on the content server offers another type 
of content. First, the live stream content type (LS) represents an 
infinite video stream where content is made available 
progressively in time. Second, the video on demand content 
(VoD) represents pre-recorded streams of a finite length that 
are requested just before the user wants to start viewing them. 
Finally, video on reservation (VoR) is an alternative to video 
on demand, where content is requested up to 1.5 hours before 
usage. In the presented evaluation scenario, live streams and 
video on demand content have a bit rate selected at random 
from the set (3, 8) Mbps, while video on reservation has a bit 
rate randomly selected from the set (4, 15) Mbps. A higher 
quality (and consequential bandwidth) is assumed for VoR as 
an incentive for the user to reserve its content upfront. 

A constant bit rate is assumed for all types of video. Each 
content server contains 6 unique content items of its type. Each 
of the three services is requested by 33 clients with a content 
item that is uniform randomly selected from the available 6. 
Live stream content is requested with a deadline of 1 second, 
which means that the user expects the live stream to start 
playing one second after selecting the requested content. The 
live stream content selected by the client has a delay of 10 
seconds compared to the live feed. This makes it possible to 
download the content up to 10 seconds upfront, but the start of 
the playout begins already after 1 second. For video on demand 
the deadline is 10 seconds, while for video on reservation it is 
chosen at random from the interval [30, 180] minutes. Video 
on demand and video on reservation are fully available on the 
server, and download is only limited by link capacities. The 
scenario runs over a 6 hour period. Requests arrive at uniform 
random moments within this timeframe. 

In both the simulation and the prototype we measure the 
minimum deadline value that the intermediate is scheduling. If 
deadlines are not met (go below zero), both the prototype and 
the simulation continue scheduling the content, with negative 
deadline values as a result. The minimum deadline (in seconds) 
over the complete experiment is plotted for different access 
link capacities to compare the different scheduling methods. If 
this time is at least zero, all deadlines are met, and a perfect 
delivery is achieved. The minimum link bandwidth for which 
all deadlines are met (BM) for all clients is a measure for the 
performance of the scheduling, buffering and/or caching 
algorithm. To evaluate the content reuse performance, also the 
hit ratio is calculated as one minus the ratio of the total content 
size transported over the Ba link and the total content size 
transported over the Bc links. The utility measure gives an 
indication of how well peak bandwidth requirements can be 
smoothened out over time. It is the ratio between the link 
capacity (BM) and the average bandwidth over the access link. 

For the SCAP prototype and the simulator we have not used 
buffer control, buffer replacement and congestion control 
mechanisms. Enough memory is available to buffer any 
excessive incoming rate which is not consumed by a 
compensating outgoing rate. Link congestion is avoided by 

limiting the rate at the source to the bandwidths defined for the 
links. Simulations are done using fair-share scheduling 
resembling TCP, but buffer and request reuse as in SCAP were 
used in stead of LRU caching. The HTTP proxy prototype on 
the other hand uses the LRU replacement algorithm with a 
fixed cache size that is at least the peak buffer size used by the 
SCAP proxy, and link capacity is limited using the Traffic 
Control settings in the Linux kernel (tc command). 

B. Simulation 

A simulation implementation for scheduling and buffering 
was built in order to compare earliest deadline first (EDF) with 
fair share (FS) and real-time (RT) scheduling. The simulator 
abstracts the underlying network layers and packet-based 
transport mechanisms. Instead, it uses a stream-based event-
driven approach. These streams are modeled as request flows 
between adjacent network nodes. Every flow is associated with 
a single-hop outstanding request and keeps a state in the form 
of the address of the next byte that needs to be sent towards the 
receiver, its deadlines and a current bit rate. Before and after 
every event, the simulator recalculates the state of all flows and 
node buffers for the new time, and searches for the next soonest 
event. These events can be for instance the start and end of a 
flow or deadlines of flows that meet each other. These event 
actions are performed in a loop for every event until all 
requests are handled. Further, the network latency, node 
processing delay and packet loss ratio on the network links are 
assumed to be neglectable and set to zero. The simulator makes 
abstraction of the actual transport protocol, and just applies the 
correct scheduling algorithm. For all scheduling algorithms the 
memory is used only for pure buffering and buffer reuse. Once 
content is not requested anymore, it is discarded and its 
memory is freed again. 

In Fig. 5 the minimum deadline per access link bandwidth 
(Ba) limitation is plotted for the different scheduling policies 
and topologies. 

The values for minimum bandwidth (BM), link utility and 
hit ratio are shown in Table 2. 

 

-8000

-7000

-6000

-5000

-4000

-3000

-2000

-1000

 0

 0  5
0

 1
00

 1
50

 2
00

 2
50

 3
00

m
in

im
um

 d
ea

dl
in

e 
(s

)

access link bandwidth (Mbps)

EDF with proxy
FS with proxy

EDF end-to-end
FS end-to-end
RT end-to-end

 
Figure 5.  Simulation minimum deadlines per access link bandwidth. 

TABLE II.  SIMULATION RESULTS 

 Without proxy With proxy 

 EDF  FS  RT  EDF FS 

BM (Mbps) 190 267 310 88 143 
Utility (%) 88 62 54 85 64 
Hit ratio (%) 0 0 0 55 45 
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Without a proxy (end-to-end), RT scheduling requires a 

peak bandwidth of 310 Mbps. RT scheduling is not using the 
scheduling freedom, and content is delivered at the deadline. 
FS and EDF scheduling start using the bandwidth from the 
moment a request is known. Therefore they can serve requests 
upfront, and require less peak bandwidth with higher utility. 
Without a proxy, the end-to-end flows are limited to the 20 
Mbps link capacity of the client links. Only when the flows 
start competing for bandwidth on the access link, the scheduler 
at the server will determine the bandwidth share. The FS 
scheduler is just dividing the bandwidth evenly over the 
running flows, and the flows with highest bandwidth and 
shortest deadlines will miss their deadline first. As EDF is 
giving priority to the flows with the shortest deadline, it 
requires the smallest link capacity. 

With a proxy, FS and EDF scheduling use the full link 
capacity if at least one request is known. If the bandwidth is 
higher than the 20 Mbps client link limitation, the content is 
buffered in the proxy. This not only allows content to be reused 
over the different requests, but also to fully use the access link 
capacity whenever requests are known.  

The results for our scenario show that EDF without a proxy 
requires 39% less bandwidth than RT, and with a proxy even 
72% less. Compared to FS, EDF requires 29% less bandwidth 
without a proxy, and 39% less with the proxy. These results are 
promising, because they show that using SCAP end-to-end can 
already give a substantial advantage compared to FS and RT 
based protocols, and that adding intermediate functions is 
further increasing substantially the performance of the delivery 
network.  

C. Prototype evaluation 

In addition to the simulation results, the prototype 
implementation of the SCAP protocol was evaluated in a 
physical setup. In the prototype setup, the SCAP protocol with 
an earliest deadline first scheduling strategy is compared with 
the EDF simulation results and an HTTP setup containing an 
HTTP proxy. The same client scenario is used for the 
prototypes as was used for the simulations. Due to the memory 
limitations of the in-memory buffer of the SCAP router and the 
in-memory LRU-cache of the HTTP proxy, time was down-
scaled with a factor of 10, and bandwidths with a factor of 4. 
The results in the graphs are again scaled up. This setup was 
created on a Emulab setup [12]. The nodes in the Emulab 
network are equipped with two dual core opteron 2212 
processors and 4GB RAM. 

The SCAP prototype is a simplified implementation of the 
back-to-back proxy described above, focusing on a first set of 
functionalities. Workarounds are defined for functionalities that 
are out of the scope of this paper. All limitations and 
restrictions described here should not be applicable to the final 
protocol or final intermediate function behavior, and are only 
provided for a detailed understanding of the evaluation results. 

The prototype does not implement the Cache List described 
in Fig. 3. As in the simulator, content that is not referenced by 
any incoming request is immediately freed again, and thus 
memory is used only for buffering and buffer reuse. This 
means that the amount of reuse is only determined by time-
shifts due to overlapping requests pending at the same time. 

This is actually reducing the potential for content reuse, and is 
a disadvantage for the SCAP runs, and an advantage for the 
HTTP-LRU runs, which can use all available memory. 

The prototype implements neither a congestion control nor 
receive window strategy. The receive window is always kept 
completely open, so there is no way to limit incoming flow and 
limit the buffering, and hence memory usage. The buffering in 
the proxy is limited only by the incoming link capacity. 
Therefore the response scheduler uses a configured scheduling 
rate limitation per request IP address. This rate is used to limit 
the bandwidths for the SCAP runs. 

The response scheduler uses strict earliest deadline first 
scheduling. If content is available in the Content List for an 
incoming request, then the request is inserted in a deadline 
ordered list. The next packet is sent from the first entry in this 
list, and the request is reinserted in the list for the next not yet 
sent byte. As a result, requests are preempted by more urgent 
requests. As long as a request is the most urgent, it will be 
served with priority. The requester will receive responses only 
for this request with the full link capacity. If the deadline of a 
first request reaches the same value as for another request, the 
two requests will share the link capacity, based on the deadline 
rate ratio. This resembles exactly with the EDF implementation 
in our simulator. The response scheduler retransmits after 2 
duplicate acknowledgments. Refresh and timeout times are 
fixed. The request scheduler used 100 ms for the refresh 
interval, and the response scheduler will use a timeout window 
of 250 ms before removing an incoming request and all its 
state, which allows for one consecutive lost request message. 

The prototype has additionally a local socket interface that 
applications can use to request ranges with deadlines, and read 
from the content stream. Additionally, an API is present to 
insert content directly in the Content Index and Content List. 
As such the same prototype process is started in all SCAP-
aware nodes, and having the same functionality for the clients, 
server and intermediate function. 

In addition to the SCAP setup, which matched the topology 
and setup that was also used in the simulation, an HTTP setup 
was also created with the Squid caching proxy [11]. This setup 
has the same topology as the SCAP setup, but with HTTP over 
TCP as the protocol and an HTTP proxy with the least recently 
used (LRU) cache replacement strategy. The peak buffer 
memory usage of the SCAP scenario was 20GB, so we 
configured the LRU proxy cache with the same memory limit. 
We applied the same scaling factors as for the SCAP prototype, 
resulting in the same down-scaled cache limit of 500MB. The 
same client requests with the same timings were applied. The 
video files were stored as 2 second fragments to facilitate 
caching in limited memory. The clients and server are C++ 
developed processes to control the correct request and release 
of the video content. The clients will download the requests in 
sequence. Only if the download of the previous fragment is 
completed, the download of the next fragment is started. The 
server will release the content controlled for the live streams 
and immediately for VoD and VoR. The capacity of the links is 
limited using the Traffic Control settings in the Linux kernel (tc 
command).  
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Figure 6.  Prototype minimum deadlines per access link bandwidth. 

TABLE III.  PROTOTYPE RESULTS 

 SCAP / buffering HTTP / LRU 

BM (Mbps) 88 180 
Utility (%) 85 78 
Hit ratio (%) 55 16 

 
In table 3 the results are shown for the prototype runs. The 

SCAP results are, as expected, equal to the simulation results. 
Due to the small cache size and the high interval caching [4] 
opportunities, the SCAP prototype has a 3.45 times higher hit 
ratio compared to the LRU cache. 

Fig. 6 plots the minimum deadline per access link 
bandwidth (Ba) limitation for the two prototype runs. 

The results show that using end-to-end SCAP (as 
simulated) almost performs as good as a proxied HTTP/LRU 
setup with a small cache size. Adding the SCAP proxy is 
further halving the required bandwidth. 

VI.  FUTURE WORK 

In this paper, the focus was on the transparent intermediate 
optimization concept. We shortly discuss what we think is 
needed to further evolve the protocol. A receive window 
strategy with buffer and caching management must be defined. 
A (near) optimal and simple heuristic is needed that balances 
the amount of memory usage between 4 types of storage: actual 
receive window storage, buffer storage for a single flow, buffer 
reuse between flows and cache storage for statistically popular 
content. For an internet wide deployment, the security aspects 
must be taken into account. Also TCP friendliness with slow 
start and congestion control are important aspects to look into. 
Further, investigation of the impact of different scheduling 
strategies and the interworking with congestion control on 
larger networks is needed. The impact on scalability of using 
ranges and different strategies for handling them should be 
further investigated. Finally, exploration of possible functions 
and a study on their interworking on a global scope should be 
performed. 

VII.  CONCLUSION 

In this paper we introduced a novel transport protocol that 
can be used for transparent network optimization. This protocol 
supports the scalable delivery of content from one server to 
multiple clients. Content is uniquely identified and deadline 
information that expresses “when the content is required” is 

also provided. The SCAP protocol allows intermediate network 
devices to take this deadline information into account when 
scheduling the transmission of data packets. By uniquely 
identifying content it enables application agnostic caching and 
buffering. We have evaluated the SCAP protocol both in a 
simulation environment and in a physical setup using a 
prototype implementation. The prototype behavior matches the 
simulation results. In the simulation environment, using earliest 
deadline first scheduling allowed a significant bandwidth 
reduction when compared to traditional real-time and fair share 
scheduling techniques. In the prototype test setup, a transparent 
SCAP function was compared with an HTTP/LRU proxy 
cache. The tests showed an extra reduction on bandwidth 
requirements by exploiting the timing information when 
buffering and reusing content. The presented results show on 
the one hand that providing and using deadline information 
improves the efficiency of network optimization, and show also 
that intermediate nodes can be deployed transparently in the 
network without impact on clients and servers. 
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