
HAL Id: hal-00748792
https://hal.science/hal-00748792

Submitted on 6 Nov 2012

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

SDBF: Smart DNS Brute-Forcer
Cynthia Wagner, Jérôme François, Radu State, Thomas Engel, Gérard

Wagener, Alexandre Dulaunoy

To cite this version:
Cynthia Wagner, Jérôme François, Radu State, Thomas Engel, Gérard Wagener, et al.. SDBF: Smart
DNS Brute-Forcer. Network Operations and Management Symposium, Apr 2012, Lahaina, United
States. pp.1001 - 1007, �10.1109/NOMS.2012.6212021�. �hal-00748792�

https://hal.science/hal-00748792
https://hal.archives-ouvertes.fr

SDBF: Smart DNS Brute-Forcer

Cynthia Wagner, Jérôme François, Radu State, Thomas Engel

University of Luxembourg

SnT - Interdisciplinary Centre for Security, Reliability and Trust

L-1359 Luxembourg

Email: firstname.lastname@uni.lu

Gerard Wagener, Alexandre Dulaunoy

CIRCL

Computer Incident Response Center Luxembourg

Luxembourg

Email: firstname.lastname@circl.lu

Abstract—The structure of the domain name is highly relevant
for providing insights into the management, organization and
operation of a given enterprise. Security assessment and network
penetration testing are using information sourced from the DNS
service in order to map the network, perform reconnaissance
tasks, identify services and target individual hosts. Tracking
the domain names used by popular Botnets is another major
application that needs to undercover their underlying DNS
structure.

Current approaches for this purpose are limited to simplistic
brute force scanning or reverse DNS, but these are unreliable.
Brute force attacks depend of a huge list of known words and
thus, will not work against unknown names, while reverse DNS
is not always setup or properly configured. In this paper, we
address the issue of fast and efficient generation of DNS names
and describe practical experiences against real world large scale
DNS names. Our approach is based on techniques derived from
natural language modeling and leverage Markov Chain Models
in order to build the first DNS scanner (SDBF) that is leveraging
both, training and advanced language modeling approaches.

I. INTRODUCTION

DNS means Domain Name System and represents a hier-

archical naming system that translates domain names from

human readable form into IP addresses for computers/services

connected to the Internet and back. This not only makes DNS

indispensable for surfing the net, but it also fills the gap

as interface between human and machine. This also makes

DNS attractive for attackers. For example, DNS probing is an

important task in the reconnaissance phase, where an attacker

collects information. DNS reveals valuable information about

potential targets, as for example infrastructure information,

MX or NS records, etc. This valuable information can serve

as an attack point for attacks, as for example the referencing

to hostile zone transfers, which should not be enabled in duly

configured networks, therefore probing needs to be done.

In this paper, a new approach for the generation of new

DNS names for probing purposes is presented. The smart DNS

Brute-Forcer (SDBF) tool relies on a natural language process-

ing method, called n-gram model, that uses a Markov chain to

synthesize new DNS names. These newly created DNS names

are validated on the net and evaluated by comparing the tool

with others.

The paper is organized as follows: The SDBF model is

described in section II, where the main features and modules

are presented. Furthermore, this section describes how to gen-

erate new DNS names by referring to the n-gram model with

its Markov chain. In section III, the experimental results are

discussed and the performance evaluated. Section IV includes

relevant research work for this domain and section V describes

possible future work and presents the conclusions.

II. THE ARCHITECTURE

The SDBF tool is composed of two distinct modules, the

Processor and the Generator. The Processor generates statistics

and extracts features from the passive DNS input. It is respon-

sible for the generation of the n-gram probability distribution

(see section II-B). The Generator module is used to compose

!"##$%&'()*'

!"#$%$&%' ()*+#,'

+&,&-"./-'

01.21.'34&5'
!"#$%&'()**!$&'+

()',$-./$!(0+

1'%'$!",$.*"0$2*)+

6'

#

-

"

.#+/01'

&2#34'

!-/7&##/-'

56#"7+6%' ()*+#,'

,0869'

Fig. 1: Architecture of Smart DNS Brute-Forcer (SDBF)

new DNS names by using the n-gram probabilities. The newly

created DNS names are then validated by performing DNS

probing. Figure 1 shows the architecture of SDBF.

A. The Features and Statistical Parameters

To generate new DNS names with SDBF, some features

have been identified. These features mainly are distributions

for different linguistic attributes, as for example the character

distribution. Passive DNS files, provided by a local network

operator have been used to extract these features. The DNS

file has a set of DNS names N = {n1, ..., nP }, a set of

characters C = {c1, ..., cM}, a set of n-grams starting with

a given character, for example x, Gx = {x1, ..., xT } and a set

of domain word levels L = {l1, ..., lS}, where #L has been

set to 4. In this paper the cardinality of a set is denoted by #.

We define,

• #wlenn: the number of DNS names having n words

• #leni,j : the number of words of the ith level (with i ∈ L)

having j characters

• #firstchari,j : the number of words at the ith level (with

i ∈ L) beginning with character j ∈ C

• #ngrami,j,k: the number of times that character j ∈ C

is followed by character k ∈ C at the ith level and i ∈ L

The following list regroups different features that are extracted

by the Processor,

• The number of words in a DNS name, distwlen(x =
k) = #wlenk∑

j
#wlenj

• The distribution for the word-length expressed in char-

acters for a level l, distleni, can be defined as the

length of a domain word of level i in a DNS name,

disti(x = j) =
#wlenj∑
k

#wlenk

• The distribution distfirstchari for the most occur-

ring first character firstchari per word of level i,

distfirstchari(x = j) =
#firstchari,j∑
k

#firstchari,j

• The distribution of n-grams, called ngram is generated

from the n-grams extracted from the passive DNS file.

A detailed description for the n-gram model is given in

sub-section II-B.

The distribution of n-grams can be defined as ,

ngrami,j(x = k) =
#ngrami,j,k∑

P
ngrami,j,p

.

Besides these features, some statistical evaluations are made

to complete the data set and model evaluation. This includes,

• The number of DNS entries in a file, nall

• The average DNS name length in characters, including

numbers and special characters (i.e. -, /, 2, etc.)

• The character frequencies for each character, number or

special character of a DNS name

B. N-gram Model

In natural language processing, n-grams [1] are sequences

of n consecutive characters of a string extracted from a corpus

(a collection of texts, sentences, etc.[1]), with length n=1,

2, 3, 4,.... A n-gram of length 1 is called a unigram, n

= 2 a bigram,... . By a first manual investigation of DNS

names, the n-gram approach in this paper not only considers

letters, but also special characters and numbers, as domain

names cannot be compared with simple text. To illustrate an

example of n-grams, please consider the following example,

test1.ex2ample.net,

n = 1, t, e, s, t, 1, ...

n = 2, te, es, st, t1, ...

n = 3, tes, est, st1, ...

In a first step, a passive DNS file is used as training to

generated the n-gram frequencies by applying the formulas

from section II-A. The composition of new DNS names by

using the n-gram model which includes a Markov chain.

Referring to the notation of [2], [1], suppose X = X1, ..., Xm,

n

i !"

#$%"

#$&"

#$'"

#$("

#$)"

#$*"

+,-.,"

Fig. 2: Markov chain for n-grams

as a set of random variables, then a Markov chain can be

defined as a set of states S={s1,s2,...,sr}, where a process

starts in a given state and continuously moves from one state

to another or stays in the same state, and a move is called

step. A Markov chain respects the Markov properties1, which

say that future states only depend on current states (history).

A state changes into another one with a certain probability or

remains in the same state with a certain probability, this is also

known as transition probability. These transition probabilities

are taken from the n-gram distribution. If a Markov chain is in

state si, it changes into state sj with probability pij or stays

in the same state with probability pii. Furthermore, an initial

probability distribution about S marks the Markov chain start

state. An example of a state diagram for a Markov chain is

given in Figure 2. The n-gram transition probabilities from one

state to an other other are represented. Here, the probability

that ‘u‘ is followed by ‘n‘ is 0.4, whereas the probability of

having a ‘u‘ followed by a letter ‘i‘ is 0.6. The probability

that an ‘i‘ is followed by another ‘i‘ is 0.2.

C. The Generator Module

The generator module in Figure 3 is responsible for the

generation of new DNS names. In a first step, the number

of domain words is generated, either by triggering a random

number for the number of words in a DNS name or by using a

custom number of words, see Figure 3(1). For each generated

word, the character length is set by the user or randomly

generated using the distribution distwlenli, being the word

length distribution for a word level i, see (2). For each domain

word, the first character is randomly selected by using the

first character distribution, see (3). By taking the Markov

probability transition matrix that has been generated from

the n-gram model and the generated word lengths as input,

words can be created by applying the most likely successive

n-grams (based on the probability distribution). The user may

also define a subpart of the DNS name, see (2’). For example

in Figure 3, a DNS name of 3 words has to be created and

the user has set up the second level as uni. The first level

is automatically generated as snt. Adding a third level by

using one of the previous methods then gives the full domain

name snt.uni.lu. Thus, the user may easily probe domain

names matching a regular expression like ns.*.lu.

1Markov properties following [1] notation, X is a Markov chain if
Limited horizon: P (Xt+1 = sk|X1, ..., Xt) = P (Xt+1 = sk|Xt)
and stationary : = P (X2 = sk|X1)

To make the creation of DNS names more flexible, all

the distributions consider a factor ǫ. For instance, even if

the learning database does not contain any first level word

starting with a z, this still can be generated, while introducing

this small probability factor ǫ. SDBF can be run in parallel,

} snt.uni.lu

(1) Number of words

user-definedrandom

3

(2) Word length

user-defined
random

(3) First character

random

3

s
markov chain

(4) Next characters

s
n

e
t

a snt

user-defined

(2') Word definition

...

uni

lu

Fig. 3: Generator module

probing from multiple locations without probing the same

DNS name multiple times. Moreover, language specificities

might be discarded, since participating machines can be

located in different countries, having each one their own

local feature database. In addition, large enterprise networks

deploy multiple authoritative servers for reliability reason. By

performing parallel and iterative queries to this server from

multiple internal locations, divergences can be revealed, which

may indicate configuration errors.

III. EXPERIMENTAL RESULTS

A. Learning Data

The learning data set that has been used has been provided

from a local operator. This data set describes approximately

1 hour of passive DNS monitoring activity that has been

captured between Resolver and Authoritative server. The table

below regroups the principal characteristics of the learning

data set,

Duration 60 min

Size 257 MB

Number of all domain names 1 M

Number of unique domain names 689 331

Avg. domain name length in characters 15.80

Avg. number of words 3

Size of alphabet 46

Most occurring first character e

TABLE I: Characteristics for the learning data set

B. Validation

As SDBF aims to discover hostnames, the experimental

evaluation considers #D, the number of names that have

been discovered on a probed domain. Since these numbers

are highly dependent of the probed domain, the order of

magnitude may vary a lot between two domains. Thus, this

should be expressed as a ratio regarding the total number

of real names that should have been discovered. Practically,

getting such information is impossible.

The performance assessment is based on the comparison

with other existing tools: Fierce [3] and DNSenum [4], both

included in Backtrack [5], a linux distribution that is widely

used by security experts for penetration testing. In [5], DNS

probing is done by applying a dictionary of common machine

names. DNSenum includes a large dictionary of 266 930

entries, whereas Fierce only has 1 895 entries. SDBF is not

limited in its amount of names to generate. Thus, the value

was set to 280 000 in order to have a similar value than

DNSenum including a margin to see, if the testing of more

hostnames is still efficient. Some other techniques are like

Google, scrapping for getting more information about living

hosts in a domain. Since, such techniques are out of scope for

pure DNS probing, this kind of application has been discarded.

The SDBF validations assume the number of DNS names

discovered by each tool: #Dsdbf , #Ddnsenum and #Dfierce.

This can also be expressed as the ratio of the maximal number

of names that any tool can discover,

%Dsdbf =
#Dsdbf

max(#Dsdbf , #Dfierce, #Ddnsenum)
(1)

However, this experiment was faced to virtual hosting,

where the same host may match different names. This allows

a single host to host multiple services on the same port. A

standard example is a web server, where the DNS names

differentiate the websites and the user who wants to access

(see [6] for more details). A simple solution would be to take

only different IP addresses into account, but this seems too

restrictive, as it is important to detect different services, even

if they are executed on the same machine. However, probing

certain domains with different hostnames always returned

positive results and in many cases the public web server.

But these cases are not considered relevant and thus, IP

addresses are considered. Otherwise, domain names are kept.

The experiments focus on A requests, but SDBF can also be

configured such that it can use other kinds of requests.

C. Hostname Probing

This first set of experiments aims to identify all hosts for a

given domain. For example, one targeted domain is the uni-

versity domain, uni.lu. The goal is to detect names match-

ing the regular expression *.uni.lu like www.uni.lu.

Furthermore, SDBF will also probe other subdomains and

generate requests like www.snt.uni.lu, since the learning

data behind includes domain names up to 4 words (see III-A.

Table II shows the number of discovered hosts for a probed

domain name inspecting the number of items #D and the

rate %D. It can be seen in Table II that it holds first, some

local domains from Luxembourg and second, domains located

(a) Luxembourg domains (b) World domains

Fig. 4: Speed of name discovery

SDBF Fierce DNSenum
#D %D #D %D #D %D

Local
pt.lu 71 1.00 42 0.59 49 0.69

uni.lu 57 0.85 22 0.33 67 1.00

circl.lu 17 1.00 6 0.35 9 0.53
vdl.lu 15 0.94 11 0.69 16 1.00

wort.lu 4 0.50 8 1.00 7 0.88
rtl.lu 14 0.78 18 1.00 17 0.94

World
google.com 69 0.82 84 1.00 83 0.99

facebook.com 101 1.00 42 0.42 71 0.70
youtube.com 55 1.00 49 0.89 35 0.64
yahoo.com 145 1.00 110 0.76 138 0.95

blogspot.com 3 1.00 3 1.00 3 1.00

baidu.com 409 1.00 178 0.44 238 0.58
wikipedia.org 282 1.00 143 0.51 139 0.49

live.com 48 0.83 53 0.91 58 1.00

twitter.com 31 0.94 33 1.00 30 0.91

TABLE II: Efficiency in discovering valid names (Bold font

indicates the best tool for each domain)

around the world, called world. SDBF is the most efficient

tool, since it has discovered the maximal number of valid

names with a permanent ratio over 50%. Assuming the 75%

of best results, the rate is at least 85% although for Fierce and

DNSenum, this value drops to 69% respectively 51%.

SDBF seems more appropiate for probing worldwide than

local based domains, even if it was trained using a local DNS

capture. This may be due to the fact that world domains have

been extracted from the top ranking of the Alexa web-site [7],

leading to probe famous large domains with many hosts in the

background, whereas local domains in Luxembourg are small

with fewer hosts. Generating various DNS names, like with

SDBF, is efficient.

D. Speed of Discovery

SDBF may generate infinitively new DNS names to probe

and so, has greater chance to discover more hosts than ordinary

dictionary based tools. This section analyses discovery process

speed that can be defined as the number of valid probed names

after i generated ones: #Di. This value can be expressed for

a single tool from which the rate can be derived,

%Di
sdbf =

#Di
sdbf

max(#Di
sdbf ,#Di

fierce,#Di
dnsenum)

where the notation #(x) is the cardinality of a set x.

This metric is plotted in Figure 4(a) and 4(b), where

the average over all probed domains in Luxembourg and

worldwide have been computed. Fierce is very fast in finding

hosts, but since its dictionary is very small (1895 hostnames),

it may miss less common names. The other tools have a

lower discovery speed, but match more names. Comparing

DNSenum and SDBF , the latter is always faster, except at the

end of the curve where DNSenum is better. In fact, dictionaries

are used in alphabetical order (as done usually) and the slope

changes in the DNSenum curves mean that valid names exist in

close alphabetical position. For example, the last slope change

is mainly due to the following names www,www2, web, etc.

E. Tool Complementarity

In the previous experiment, the evaluation is based on the

number of probed DNS names that were successful. However,

sometimes good results can be achieved with a well designed

dictionary. However, it may lead to probe only common names

such as web, ftp or mail server. SDBF exceeds this limitation

and can be considered as a complementary tool. Therefore, the

next experiment evaluates the complementarity by counting the

number of successful probed names, which have not been seen

by the other tools. Three sets based on the previously defined

denominations are defined,

• Ssdbf : names discovered by SDBF

• Sdnsenum: names discovered by DNSenum

Fig. 5: Complementarity of tools – Shaded areas represents the

uniqueness metric of the tools, dotted and bold lines delimit

the complementarity of SDBF against DNSenum and Fierce

separately

Fig. 6: Uniqueness of discovered valid names – The index

represents the domains sorted by uniqt

• Sfierce: names discovered by Fierce

Figure 5 is a illustrative example. The uniqueness metric

for a tool can be defined as the ratio between the number of

successfully probed names and the total number of generated

names. This metric is represented by grey shaded areas in

the figure and is formally defined for each tool t ∈ T =
{sdbf, dnsenum, fierce} as:

uniqt =
#(St − ∪xinT,x6=rSx)

#(St)
(2)

To strengthen the validation, the SDBF complementarity

against the other tools is considered (see Figure 5) by com-

puting the following metric:

uniqt,y =
#(St − Sy)

#(St)
(3)

In order to focus on the evaluation of SDBF, t is always fixed

to SDBF as shown in equation 3.

Figure 6 summarizes the results in a comprehensive manner.

The x-axis represents domains sorted by descending order

regarding uniqt, but are expressed as an index, since the order

may be different for each tool. Hence, the first index may

not represent the same domain, but here, the goal is not to

compare the tools per domain by figuring out the uniqueness

of the discovered. From a general point of view, the tools

have similar performances, but SDBF has a little advantage by

having a higher average ratio (0.69). Since the index is sorted,

Fig. 7: Complementarity of SDBF against other tools

uniqsdbf,y

Figure 6 shows the 50th and 75th percentile by a vertical

line. Hence, the uniqsdbf value for the 75% in SDBF (0.67)

is higher than for Fierce (0.52) and DNSEnum (0.54). This

means that SDBF is able to explore a large variety of DNS

names, which have not been discovered by the other tools. To

be brief, all tested tools are very complementary.

Figure 7 shows the uniqueness of values discovered by

SDBF against each tool individually (uniqsdbf,y). DNS names

find out by SDBF seems more unique compared with Fierce

that DNSenum. However, this small bias is mainly due to

a very small dictionary. Furthermore, this is not always the

case especially for rtl.lu and facebook.com where

uniqsdbf,fierce is quite lower than uniqsdbf,dnsenum. Such

examples prove that even SDBF uses a random process to

generated domain names and the learning phase is quite

efficient to generate new valid names, as those that have been

fed into expert dictionaries.

To summarize the previous experiments, SDBF is able to

discover more DNS names and the majority of these are not

discovered by dictionary based approaches. This justifies the

cost of SDBF, even if the generation of many requests is

needed. For instance, the experiments require the generation

of 280 000 names, unlike Fierce is limited to 1 895 names.

Thus, the right trade-off has to be made between the names to

discover and the risk to be filtered, since SDBF is quite noisy

from a network point of view. To avoid this issue, distributing

the scanning over multiple machines can be performed, as

mentioned in II-C, but another alternative could be to use

caching servers. By leveraging iterative queries, SDBF can

directly probe the cache of a non-authoritative server, hiding

itself from the targeted domain. For a better efficiency, such an

approach has to query highly loaded server like for example,

the public DNS of Google [8].

F. Domain Name Probing

Usual tools based on dictionaries are designed to probe

all hostnames of a domain, like in the previous experiments.

For instance, they may generate FQDNs matching a regular

expression like *.uni.lu. SDBF is able to match an expres-

sion like ns.*.lu (looking for name servers in .lu domain),

since it processes each word separately and the user can set

the name structure. Below, some examples of invalid probed

domain names for the domain *.pt.lu are given.

gbnsy.1bl.pt.lu

sa174fz7246fof35to.du.pt.lu

nes.pt.lu

Some examples for valid domain names are,

www.pt.lu

roma.pt.lu

mmail.pt.lu

In an additional experiment, FTP [9] and name servers for

domains in Luxembourg have been probed. This matches the

following expression: ns.*.lu and ftp.*.lu. Even if this

experiment does not include all possible existing names, finally

30 name servers and 706 FTP servers have been discovered.

IV. RELATED WORK

In the research area of DNS analysis, papers can be mainly

classified into two different categories, surveys and papers

implementing solutions of most different kind. The first cate-

gory of papers relevant for this research area are the surveys

that have been made, as [10], [11]. These describe possible

attack schemes as suspicious port numbers, mass-mailing,

spam, fast flux, etc. and relevant countermeasures. The second

category of papers applies approaches on statistical evaluations

or present new methods to redesign DNS [12], but only a few

papers treat about the knowledge on domain names,[13], [14].

For example in article [15], the authors want to detect

various fast poisoning attacks which manipulate resolution

caches through different methods of blind off-path guessing

of transaction components, which are used for DNS message

integrity. In this kind of attack, clients are redirected to

new different IP addresses of harmful sites. To counter-fight

this attack, in [15] it is referred to statistical evaluations

with whitelists and different kind of classifiers, as k-nearest

neighbors or support vector machines to detect anomalies in

RR data. In [16], the authors describe the deployment of a

university monitoring tool on the local network and monitored

the network activities. [16] describes different possible DNS

anomalies and as evaluation tool different statistics are drawn,

for example by simply studying typographical errors in DNS

entries or the amount of changes in IP addresses for fast-flux

domains. In [17], a large-scale passive DNS tool is described.

Exposure decribes a large-scale passive DNS analysis tool

that relies on a selection of 15 different features. In [17],

the focus is not on one special kind of anomaly, but the

detection of various malicious behaviours. The defined features

are time-based for long period analysis, or the calculation

of the euclidean distance between entries in order to detect

abrupt changes. They discovered for example that short-lived

domains have only two sudden behaviour changes and long-

lived domains have multiple behavioural changes. In their

experimentation, they used a classifier which was trained

during a week and then they were only able to test their tool.

The more, the false positive rate was estimated by perform-

ing different experiments as manually checking domains on

Google. In paper [18], the autors majorily describe how to

analyze top-level DNS domains listed by the VerSign Servers.

For the analyses they use a similiarity metric, the Jaccard Index

to compare sets of of aggregated (/24) IP-addresses. To analyze

Network-wide patterns, they simply calculate the average of

Jaccard Indexes and by this can regroup domains into different

classes, as for example phishing, spam etc. The paper shows

that malicious domains show more variance in their network

patterns that look them up.

It can be observed that a lot of research is mainly focused

on the evaluation of anomalies respectively attacks on DNS. In

this paper, it is more investigated on the visibility of domains

that are on the network. Therefore, another focus is to look at

the domain names themselves. A recent observed trend is the

use of natural language processing techniques in forensic and

security research. An example is [13], where domain names

are automatically. They refer to a syllable based algorithm

to generated passwords or usernames. The main difference

to our paper is that they mainly generate full words, in our

approach the n-gram approach is used such that characters can

be generated into words by using a probability distribution.

In [19], the technique presented in [13] is used to generate

domain names. With aid of statistical approaches, as Kulback-

Leibler divergence or edit distance measures, domain names

generated by well-known Botnets for domain fluxing should

be detected. In [14], different approaches for extracting DNS

meta-data in reconnaissance phase are presented. Therefore

an inference algorithms, as Dictionary attack or Brute forcing

are applied to generate names and send to the DNS resolver.

Another interesting work for security aspects is the paper of

[20], where it has been referred to probabilistic context-free

grammar for generating rules to crack passwords.

V. CONCLUSION

In this paper, a new approach for the smart generation

of new DNS names has been introduced that referred to a

natural language processing method, the n-gram model. The

advantage of SDBF is that it is not limited to the knowledge

of dictionaries, as it is common for this kind of expert tools.

The experiments show that SDBF is able to discover more

names than dictionary-based tools. This can be explained by

the fact, that the n-gram model does not need to generate

existing words, but also can generated simple sequences of

characters including numbers and special characters for DNS

names.

ACKNOWLEDGMENTS

We acknowledge Prof. T. Duhautpas from Restena Luxem-

bourg for his counsel. This project is partially funded by the

FNR Luxembourg.

REFERENCES

[1] C. Manning and H. Schütze, Foundations of Statistical Natural Lan-

guage Processing. Cambridge, MA, USA: MIT Press, 1999.
[2] C.M.Grinstead and J.N.Snell, Introduction to Probability. American

Mathematical Society, 1997.
[3] “Fierce,” http://ha.ckers.org/fierce/.
[4] “Dnsenum,” http://code.google.com/p/dnsenum/.
[5] “Backtrack,” http://www.backtrack-linux.org/.
[6] “Virtual host,” http://httpd.apache.org/docs/2.0/vhosts/.
[7] “Alexa website,” http://www.alexa.com.
[8] “Google Public DNS,” accessed on 08/22/11. [Online]. Available:

http://code.google.com/speed/public-dns/index.html
[9] “Ftp,” http://tools.ietf.org/html/rfc959.

[10] D. David, P. Niels, L. C. L., and L. Wenke, “Corrupted dns resolution
paths: The rise of a malicious resolution authority,” in Proceedings of

NDSS’08, 2008.
[11] H. van Heide and N. Barendregt, “Dns anomaly detection,” 2011.
[12] V. Ramasubramanian and E. Sirer, “The design and implementation of

a next generation name service for the internet,” SIGCOMM Comput.

Commun. Rev., vol. 34, pp. 331–342, August 2004.
[13] H. Crawford and J. Aycock, “Kwyjibo: automatic domain name gen-

eration,” Software Practice and Experience, vol. 38, pp. 1561–1567,
November 2008.

[14] A. da Silveira and N. Garcia, “Algorithms for extraction and visu-
alization of metadata from domain name server records,” in Third

International Conference on Advances in Mesh Networks. IEEE, 2010,
pp. 81–85.

[15] M. Antonakakis, D. Dagon, X. Luo, R. Perdisci, W. Lee, and J. Bellmor,
“A centralized monitoring infrastructure for improving dns security,” in
Recent Advances in Intrusion Detection, ser. Lecture Notes in Computer
Science. Springer Berlin / Heidelberg, 2010, vol. 6307, pp. 18–37.

[16] B. Zdrnja, N. Brownlee, and D. Wessels, “Passive monitoring of dns
anomalies,” in Proceedings of the 4th international conference on

Detection of Intrusions and Malware, and Vulnerability Assessment, ser.
DIMVA ’07. Berlin, Heidelberg: Springer-Verlag, 2007, pp. 129–139.

[17] L. Bilge, E. Kirda, C. Kruegel, and M. Balduzzi, “Exposure : Finding
malicious domains using passive dns analysis,” p. 17, 2011. [Online].
Available: http://iseclab.org/papers/bilge-ndss11.pdf

[18] S. Hao, N. Feamster, and R.Pandrangi, “An internet wide view into
DNS lookup patterns,” School of Computer Science, Georgia Tech,
Tech. Rep., june 2010. [Online]. Available: http://labs.verisign.com/
projects/malicious-domain-names.html

[19] S. Yadav, A. K. K. Reddy, A. N. Reddy, and S. Ranjan, “Detecting
algorithmically generated malicious domain names,” in Proceedings of

the 10th annual conference on Internet measurement, ser. IMC ’10. New
York, NY, USA: ACM, 2010, pp. 48–61.

[20] M. Weir, S. Aggarwal, B. d. Medeiros, and B. Glodek, “Password
cracking using probabilistic context-free grammars,” in Proceedings of

the 2009 30th IEEE Symposium on Security and Privacy. Washington,
DC, USA: IEEE Computer Society, 2009, pp. 391–405.

