

Correspondence Pattern Attribute Selection for

Consumption of Federated Data Sources

Brian Walshe
1
, Rob Brennan

1
, Declan O’Sullivan

1

1
FAME and Knowledge and Data Engineering Group, School of Computer Science and Statistics

Trinity College Dublin

Dublin, Ireland

{walshebr, rob.brennan, declan.osullivan}@scss.tcd.ie

Abstract—When consuming data from federated domains, it is

often necessary to identify the relationships that exist between the

data schemas used in each domain. Discovering the exact nature

of these relationships is difficult due to data set schema

heterogeneity. Prior work has focused on inter-domain class

equivalence. However it is not always possible to find an

equivalent class in both schemas. For example, when instances

are modeled as classes in one domain (e.g. router type) but as the

attribute values of a single class in the other domain (e.g. router

interface). This paper investigates whether when classifying

instances in one data set against a second schema, it may be more

useful to use some attribute (or attribute group) other than the

original class type, to perform this classification. A machine-

learning based classification approach to appropriate attribute

selection is presented and its operation is evaluated using two

large data-sets available on the web as Linked Data. The

classification problem is compounded by the less formal

semantics of Linked Data when compared to full ontologies but

this also highlights the strength of our approach to dealing with

noisy or under-specified data-sets and schemas. The experimental

results show that our attribute selection approach is capable of

discovering appropriate mappings for cases where the

correspondence is conditioned on one attribute and that

information gain provides a suitable scoring function for selection

of correspondence patterns to describe these complex attribute-

based mappings.

Keywords—Data Federation, Attribute Selection, Semantic

Mapping

I. INTRODUCTION

Sharing data is of fundamental importance to federated

domains, whether directly via access to federated data-bases or

triple-stores or indirectly through service and query interfaces.

However, despite the ubiquity of the Internet as a generic data

sharing infrastructure, the main obstacle to federated data

sharing remains data schema (structure) diversity and

opaqueness.

In recent years ontology or knowledge-model-based

approaches to data or knowledge modeling and publication

have provided a standards-based
1
 means to capture the

semantics or meaning behind data and to make the schemas

queryable. This addresses the federated data sharing challenge

of opaqueness; however the challenge of data diversity

remains. Even with explicitly defined semantics, different

1 Most notably the W3C’s Semantic Web suite of standards including

Resource Description Framework (RDF), the Web Ontology Language OWL

and SPARQL for querying RDF.

people’s viewpoints and the level of detail they use in

describing a problem domain mean that while the ontologies

give a better starting point than, for example, a database

schema, it is still necessary to work to resolve the differing

views of the data. If one ontology, O1, provides a rich class

hierarchy to describe network components with separate

classes for managed and unmanaged network switches, while

another ontology, O2, uses a shallower hierarchy with only a

single class for describing switches, how should we describe

the relationship between a managed network switch in O1 and

a network switch in O2? Should we simply say that the types

are similar? Is it possible to use some other information to

make the relationship more explicit? For example, if instances

of type NetworkSwitch in O2 have attributes describing their

SNMP details, might we infer their class is equivalent to

ManagedNetworkSwitch in O1?
Finding and describing the relationship between ontology

elements is known as Ontology Mapping. Within this there are

two main tasks, first the matching process which involves

finding the concepts that are related, and then the mapping

process which describes how these concepts are related.

Ontology Mapping is an active topic, with the matching

process being the most investigated component of the field

[1].

Discovering and describing the relationship between the

semantically related elements in independent sources is a

relatively old problem. It can be found in the field of database

integration, where many common forms of heterogeneity have

been identified [2][3] which impede our ability to easily

combine data found in federated databases. Classical

approaches to ontology mapping have emphasized finding

relationships between classes in the source and target

ontologies. Due to the differing ways that ontologies are

modeled this may not always provide a suitably expressive

method for describing mappings, and more complex forms of

mappings may be necessary, such as mappings between

subsets of named classes defined by the attributes rather than

whole class-to-class mappings [4]. This means that in some

cases sub-sets of the instances of a class in the source domain

are mapped to a more specialized class in the target domain. In

recent work [4], Scharffe and Fensel call these types of

complex mappings “correspondence patterns”.

A relatively new area where the importance of these

correspondence patterns can be demonstrated is for the

consumption of Linked Data [5], which is loosely structured

RDF published on the web. Typically such data has many

978-1-4673-0269-2/12/$31.00 ©2012 IEEE

inconsistencies, both internally and with respect to its schema,

and is not as formally described as a pure OWL ontology –

perhaps using RDFS (RDF Schema) to define a number of

component vocabularies. Such data is often unequipped with a

comprehensive class hierarchy for use by classical mapping

methods, and the presence of errors means that

correspondence patterns can be used to clean up data for

consumption.

In such a system we wish to enable the automated or semi-

automated detection of appropriate transformational

correspondences rather than the old focus on concept matching

between rich and formally described ontologies. A key focus

of such an automated technique is the identification of instance

attributes or attribute values that can be used to define class

membership in the target schema (usually the internal schema

of the Federation member). Hence this defines the attributes

used and the specific correspondence pattern form in

constructing a complex mapping.

Given two overlapping, error-containing, semi-formally

described data sets to be mapped, we have the following

research questions:

 What is a suitable algorithm to identify the

appropriate attributes and correspondence patterns to

enable automated generation of complex mappings

between instances in the source data-set and classes

in the destination data-set schema?

 How much, if any, training data or background

knowledge is required by such an algorithm?

 What is a suitable strategy to deal with arbitrary

ranges of attribute values in a generic algorithm?

 How would such an algorithm fit into an overall

mapping framework or process?

 What accuracy could be obtained by such an

algorithm?

The work presented in this paper addresses the first of these

research questions. In this paper we describe a novel approach

to this problem based on the idea that, given limited training

data, a machine learning attribute selection algorithm can use

the instance data in two data-sets to infer the complex

mappings between those data-sets. More specifically, our

algorithm applies a standard information gain measure to

identify the particular attributes or attribute values to be used

for constructing complex mappings as a correspondence

pattern. This provides the basis for a tool which would

generate candidate executable correspondence patterns

(complex mappings) between two data-sets, even in the

presence of data-set errors and limited availability of full,

formal schemas or ontology definitions describing the data. In

order to evaluate our method we have carried out an

experiment on two very large linked data sets describing

people in the movie/entertainment domain – dbpedia [6] and

YAGO [7].

The rest of this paper is laid out as follows: section II presents

related work, section III a formal problem statement, section

IV proposes our mapping algorithm approach, section V

describes an experiment that we have performed to evaluate

our approach, and finally section VI presents conclusions and

future work.

II. BACKGROUND

1) Data Sets

RDF/Linked data is an accessible source of real life instance

data developed independently and published on the web. This

data is well described and intended for ease of integration, yet

this is still not a straightforward task. A primary reason for the

difficulty in integrating these sources is the differences in the

way they were designed. An example of this are the YAGO

[7] and DBpedia [6] projects. Both of these projects provide

linked data sources generated form Wikipedia
2
 entries, and we

would expect them to be extremely similar – yet actually their

structure is quite different.

YAGO provides a rich class hierarchy based on WordNet [8].

In YAGO, a class is a sublclass of another one, if the first’s set

of synonyms is a hyponym of the second’s. YAGO allows

very specific classifications – such as American people in

Japan – it contains 149,162 classes, and 143,210 subClassOf
declarations. In contrast, the DBpedia Ontology classification

scheme consists of 170 classes that form a shallow

subsumption hierarchy.

2) Ontology Mapping

Ontology Mapping tools commonly use lexical similarity,

graph comparison, or a combination of these techniques to

produce matches and mappings. The S-Match [9] tool, for

example, treats the ontologies to be matched as labeled graphs.

It uses background information such as WordNet to remove

ambiguities such as homonyms and synonyms from the

graphs’ labels. The semantic meaning of the nodes is inferred

by first looking at the meaning of their labels (without

considering context) and then refining this meaning by

considering the node’s position in the schema tree. Once

semantic meaning for each node in each graph has been

evaluated and refined, matching the nodes in each tree can be

solved as a standard Boolean satisfiability problem.

S-Match is capable of finding the relationships: equivalence

(≡), less general (⊑), more general (⊒) and disjointness (≢),

between the concepts in the ontologies. This is common of

most ontology alignment tools – in general they map concepts

based on their rdf:type attribute, with equivalence being the

most common type of mapping. Due to the differing ways that

ontologies are modeled this may always not provide a suitably

expressive method for describing alignments, and more

complicated forms of mappings may be necessary. For

example these relationships cannot accurately model the

relationship o1:NetworkSwitch|o1:hasSNMPAgent=x →
o2:ManagedNetworkSwitch, as described in section 1.

These types of complex mappings are called Correspondence

Patterns in [4]. They cover a wide range of cases, including

not only the more standard relationships such as equivalence

and subsumption, but also Conditional and Transformation

patterns. Conditional patterns are used when the scope of one

2 http://wikipedia.org

entity in an ontology needs to be narrowed to match the scope

of an entity in the other ontology, as in the network switch

example presented in section 1. Possible conditions include

constraints on the value of an attribute, its type, or simply its

occurrence. Transformation correspondences include cases

where elements must be altered in some way. For example this

could include concatenating a first and second name together,

or converting from one currency to another.

Current research in the area of Correspondence Patterns is

focused on identifying and cataloging the different forms of

pattern that exist. The EDOAL language [10] provides a

method for describing complex forms of alignments. EDOAL

uses an OWL-like syntax, though it is more rule orientated,

allowing variables in expressions which can be used to

describe constraints and transformations. It also contains

additional constructs for expressing data transformations.

There are few matchers capable of generating the complex

mappings that EDOAL allows, and support for the language in

the Alignment API is still under development [10]. Ritze et. al.

[11] describe a first attempt at a process for detecting complex

mappings. It requires a set of input mappings which it refines

using pattern matching at the schema level. A more machine

learning approach is outlined in [12], which describes how the

mapping task can be reformulated as an Inductive Logic

Programming problem. They note however that there are many

issues that must be resolved before this can provide a robust

solution, issues such as incompleteness, inconsistency and

uncertainty.

As stated previously, most ontology alignment techniques

focus on analyzing schema. Typically they are intended to be

used with well defined ontologies. Linked Data sources are not

always as well defined, which may hamper schema based

approaches. In [13] it was demonstrated that real world RDF

vocabularies are often either over or under specified.

Overspecification occurs when a class has many properties

specified in the schema, yet real-world instances of the class

rarely use these properties. A class is underspecified if

instances of the class have many properties that were not

specified in the schema. As real-world data may not adhere to

its schema, this is something that we may wish to take into

account when selecting appropriate correspondence patterns. If

for example there is a choice of two patterns that are

semantically equivalent it would be preferable to select the one

that uses the more reliably set attributes in the instance data.

In summary, while the use of description languages such as

RDF and OWL have made data sources more understandable,

the diversity in the way they describe their data is still a

challenge to federation. Even when they cover over-lapping

domains, real world data sources often use very different

schemata, as can be seen in YAGO and DBpedia. Current

semantic mapping tools focus on describing simple

relationships such as equivalence, but often we need more

complicated relationships with rules or conditions. These more

complicated mappings are still in their infancy, and most work

has concentrated on providing methods for describing and

sharing the mappings. Current initial attempts at automatically

identifying complex mappings concentrate on pattern

matching at the schema level. Real world semantic web data

has been demonstrated to often deviate from its schema, so an

approach that considers instance data may be of benefit when

deciding on how best to specify a complex mapping.

III. PROBLEM STATEMENT

Differing conceptual models used in ontologies mean that

simple class-class mappings are not always sufficient to

describe the relationship between the elements of the

ontologies. Some relationships are best described using a

correspondence pattern that places some condition on an

attribute of the instances of the class being mapped. Finding

which condition should be used is a challenge. Schema

information does not always tell us enough to make this

choice, so instead we look to using instance level data.

Given a source ontology Os and a target ontology Ot, a

subsumption mapping between classes Cs and Ct – with Cs ∈
Os and Ct ∈ Ot – and a set of instances, I, that exist in both Os

and Ot that each are members of both Cs and Ct, we wish to

use the information we learn from I to refine the mapping from

a subsumption relationship:

 ⊑

to a Conditional Class Correspondence pattern of the form:

 ≡

That is, all instances of class Cs with attribute a
*
 set to some

value v are instances of class Ct. In addition to considering a
*

equal to a specific value of v, we can also consider a
*
 set to

any value, or type(a
*
) = t, for some type t.

IV. APPROACH

Our approach relies on analyzing a user supplied sample of

mapped instances to refine our understanding of the

relationship between the classes of the instances found in two

ontologies. In the scope of this paper, we make no attempt to

infer any information from class labels or the structure of the

ontologies taxonomies. Our process instead considers the

structure as used by the instance data. There are several

advantages to this approach, in that it allows us to consider

attributes other than rdf:type contributing to an instance’s

classification. It does not require the schema to provide

information such as the domain and range of attributes that

would be necessary for a pattern matching based approach, as

described in [11]. The main disadvantage of this approach

however, is that it does require a set of pre-matched instances

of the classes in the mapping to be refined.

To refine the subsumption mapping Ct ⊑ Cs where Ct is a class

in our target ontology and is more specific than Cs the class in

our source ontology it has been mapped to, we wish to find an

attribute of the instances of class Cs which we can use to test if

that instance is also a member of class Ct. We use the

following process (as illustrated in fig. 1):

The user decides on the mapping to be refined Ct ⊑ Cs

1. Using a set of pre-matched instances of our source

and target ontologies, the user selects a sample of

instances that have type Ct, and a set of instances that

have type Cs, but not type Ct

2. These sets are combined to create our training sample

and passed to the Attribute Ranker

3. The Attribute Ranker searches the source ontology to

find all attributes the instances with type Ct in the

training sample have been assigned.

4. Each of these attributes is ranked using a scoring

function which evaluates the attributes ability to

differentiate instances of types Ct and Cs

Constructing a suitable training set attribute selection is

complicated by the fact that it is possible for each instnace to

have multiple values for each attribute. Therefore, for each

instance we must construct a bit vector, with one bit for each

attribute and value combination. As this can lead to an

extremely large number of attribute/value pairs to test, our

method requires the user to manually pick which attributes to

test. The scoring function can then evaluate which value of

which attribute provides the best condition for refining the

mapping. Future implementations will need methods for

narrowing down the range of values considered for each

attribute.

To refine the mapping Ct ⊑ Cs, we require that our training set

contain two kinds of instances, one set of positive matches I
+

⊂ Ct ∩Cs, which are identified to have both class Ct and Cs
and a set of negative matches, I- ⊂ Cs \ Ct. Using this

information, we can detect the existence of two kinds of

Correspondence pattern, Class by Attribute Value – where our

mapping is conditioned on a specific value of an attribute –

and Class by Attribute Existence – where the specific value of

the attribute does not matter, we only care if it has been set or

not.

To evaluate Class by Attribute Value, the attribute to be tested,

a
*
 must be specified. We then enumerate all possible values of

a
*
 for the elements of I

+
 and which we label v1..n We then

construct indicator vectors for each element of I
+
 ∪ I- where

each vector has its ith element set to 1 if its corresponding
instance has a*

= vi and 0 otherwise. Having constructed the

indicator vectors we rank v1..n using their information gain

score to find the most suitable value for the given attribute to

condition the correspondence pattern on.

The Class by Attribute Existence pattern follows a similar

procedure. Again, we use the sets I
+
 and I

-
defined as above,

but no attribute to be tested is specified. In this case we

enumerate all possible attributes that the instances of I
+
 can

have, and label them a1..n. Our indicator vectors are

constructed so that each vector has its i
th

 element set to 1 if the

corresponding instance has ai set to any value, and 0

otherwise. Again these are ranked to find the most suitable

attribute, regardless of its specific value, to condition the

correspondence pattern on.

There are several different metrics that could be used to

provide our attribute rankings. One of the most common

functions to use is an entropy measure based score known as

Information Gain (IG) [14], which we have elected to use. The

χ-squared function was also considered, but this function can

behave erratically for small sample sizes or low expected

counts for individual classes. For each attribute, A,

Information Gain measures the average decrease in the

number of bits required to describe the class, C, of an instance

if the value of A is known. It is defined as follows:

Where H(C) is the entropy of C – the number of bits, on

average, required to transmit a stream of values drawn from

C’s distribution:

And H(C|A) is the conditional entropy of C given A

Fig. 1: The sequence for selecting an appropriate attribute to condition

a correspondence pattern on. First the user creates a list of test

instances, then the Attribute Ranker evaluates which attributes these

instances may have, and how those attributes contribute to classifying
the instances.

Using the standard implementation of IG as our scoring

function requires us to make a closed world assumption – that

any statement that is not explicitly said to be true is false. This

is in contrast to the open world assumption used in the

semantic web, which requires statements to be considered as

simply unknown if they are not explicitly said to be true or

false. In addition, most implementations of IG expect each

attribute to only have one value per instance. Because of this

we need to perform an evaluation to test the suitability of IG

as an attribute scoring function.

V. EVALUATION

This section describes an experiment to evaluate the

hypothesis that the Information Gain measure is an appropriate

scoring function for selecting a correspondence pattern to

refine a given semantic mapping. To evaluate this, the measure

was used to select appropriate correspondence patterns for a

set of initial semantic mappings. For each initial mapping we

measured the information gain score for all possible

correspondence patterns that can exist between the classes in

the mappings. This was repeated for 100 randomly chosen

training sets to test the mean and variance of the IG score for

each attribute as well as the stability of the ranking, given

different training sets. Ranking stability was measured by both

the percentage of times a gold standard correspondence pattern

was ranked first and the percentage of times it appears in the

top five rankings.

We use the following process to establish these values:

1. For each mapping, Mi, we randomly generate 100

training sets.

2. For each training set, we record the IG score for all

possible correspondence patterns for Mi.

3. We then rank the correspondence patterns and record

if the gold standard pattern was the highest ranked or

if it was in the top five.

Four initial mappings were used, based on YAGO and

DBpedia. For each mapping a gold standard correspondence

pattern was created, consisting of a condition on an attribute of

the DBpedia class which narrows its scope to the more

specific YAGO class. Searching the entire space of attributes

and their possible values would be too great a challenge for

this initial experiment, so the search was narrowed to three

types of correspondence pattern:

 Class by Attribute Value correspondences

conditioned on values of the rdf:type attribute

 Class by Attribute Value correspondences

conditioned on values of the dbpedia-
owl:occupation attribute,

 Class by Attribute Existence correspondences

conditioned on the existence of any attribute.

The following initial mappings were considered.

M1: yago:Actor ⊑ dbpedia-owl:Person

M2: yago:Director ⊑ dbpedia-owl:Person

M3: yago:Musician ⊑ dbpedia-owl:Person

M4: yago:Politician ⊑ dbpedia-owl:Person

These particular relationships were selected as they allow us to

easily select an appropriate gold standard correspondence

pattern and they provide sufficient instances to allow us to

create random sets of instance mappings which can be used to

evaluate the IG scores of the correspondence patterns. When

selecting the gold standards, preference was given to patterns

conditioned on rdf:type if a suitable type was available. If not,

occupation was chosen if this was reliably set in the instance

data. If not an attribute existence pattern was used instead as

the gold standard.

For Mapping 1, the condition that a person instance with

rdf:type set to dbpedia-owl:Actor was selected as the gold

standard. Mapping 2 is more problematic than that for actors,

as there is no class in the dbpedia schema that corresponds to

yago:Director. Instead the choice is to either select instances

that have their dbpedia-owl:occupation set to

dbpedia:Film_director or select instances that have been

identified to have directed a film using the dbpedia-
owl:director attribute. As the dbpedia-owl:occupation is set

incorrectly for many instances, we elected to use the dbpedia-
owl:director existence condition as our gold standard. For

mapping 3 the condition rdf:type = dbpedia:MusicalArtist
was used, and for Mapping 4 the condition dbpedia-
owl:occupation = dbpedia-owl:Politician was used.

These patterns, expressed as conditions on attributes were as

follows:

p1: rdf:type = dbpedia-owl:Actor

p2:
dbpedia-owl:

director
= [any value]

p3: rdf:type = dbpedia:MusicalArtist

p4:
dbpedia-owl:

occupation
= dbpedia:Politician

Testing the variance of the IG scores depending on the training

set used, and the subsequent effect this has on the

correspondence patterns’ rankings required us to automatically

generate sample training sets. We created these sets to have 30

examples instance mappings with the assumption that it in a

real-world situation could be possible to manually discover

this many examples. To create the these samples we used a

TABLE I. THE NUMBER OF TIMES THE GOLD STANDARD WAS

RANKED FIRST, AND IN THE TOP 5.

Mapping Gold Standard

rank = 1
st

Gold Standard

ranked > 5
th

M1 99 100

M2 72 99

M3 14 98

M4: 44 89

SPARQL SELECT query to retrieve all instances of the

YAGO type being evaluated, then sampled randomly from this

list.

Results:

Running the test for each of the mappings showed good results

for mappings M1 and M2, ranking the gold standard

correspondence pattern in first place, 99% and 72% of the time

respectively. Correspondence pattern selection for M3 and M4

was less satisfactory with the gold standard correspondence

pattern only being selected in first position 14% and 44% of

the time respectively. Still, even for the mappings that our

selection process performed poorly on, the correct

correspondence pattern was reliably able to select the correct

correspondence in the top five – 89% of the time for the worst

case, M3. These results are summarized in table 1, and are

discussed in more depth below.

Mapping M1: The correspondence pattern for this mapping is

very straight forward, as dbpedia:Actor and yago:Actor are

semantically similar. As such we would expect this

correspondence pattern to be easy to detect. The mean and

standard deviation information gain scores for the top five

correspondence patterns refining mapping M1 are displayed in

fig. 2, where rdf:type = dbpedia-owl:Actor can be seen to

score much higher than the other attribute/value pairs.

Mapping M2: The correspondence pattern for this mapping is

more difficult as there is no class in DBpedia that corresponds

to yago:Director. While this did have the highest mean IG

score, the pattern rdf:type = dbpedia-owl:Actor also scored

highly, which can be explained by the fact that many directors

are also actors.

Mapping M3: Our selection process performed poorly on this

mapping, only returning the best correspondence pattern in

first place 14% of the time. The pattern dbpedia-
owl:occupation = dbpedia:Musician scored higher on

average. While not our gold standard, on review this is could

be seen as an acceptable pattern.

Mapping M4: Our selection process performed also performed

poorly on this mapping. As can be seen in figure 3, there was

very little separating the mean IG scores for the top 5 ranked

correspondences in this case. This case was difficult for the

selection process because the attribute dbpedia-
owl:occupation was set to dbpedia:Politician in relatively

few instances, and there was in fact no attribute that could be

used to reliably select politicians.

This demonstrates that for a relatively small training set of

instance mappings, we can use the information gain measure

to find good correspondence patterns. Even though the process

does not always rank the best correspondence pattern the

highest, it was shown to be capable of reliably ranking the best

correspondence pattern within the top five.

VI. CONCLUSIONS

This paper proposes a method for discovering correspondence

patterns that can be used to refine basic subsumption mappings

between classes in independent ontologies. Our evaluation

demonstrates that the Information Gain measure is a suitable

scoring function for selecting correspondence patterns,

provided a suitable training set of matched instances can be

provided. This function allowed us to reliably select the best

correspondence pattern as our top result in two of the four

Fig. 3 Top 5 ranked conditions for refining yago:Politician ⊑
dbpedia-owl:Person

Fig 2. Top 5 ranked conditions for refining yago:Actor ⊑ dbpedia-
owl:Person.

mappings tested, and reliably returns the best correspondence

pattern in the top five results for all four test cases. In one of

the cases where the search algorithm did not return the best

correspondence pattern as the top result (mapping M3), this

was because there were several patterns that could be

considered valid and selecting the “best” among these was

difficult. For the other case (mapping M4) the attribute used in

the best correspondence pattern was unreliably set in the

instance data.

Our evaluation used training sets that were of a consistent size

and quality. Further research will be required to address the

question of how much training data and other background

knowledge is required by our algorithm. Similarly, further

evaluation will be required to establish how robust our

approach is to errors in the training data such as misclassified

instances. Our evaluation only considered selection

correspondence patterns for four mappings, further evaluations

will need to consider more mappings to allow us to more

reliable recall and precision rates for our selection method.

In our evaluation, we limited our search to certain attributes,

as we consider the full range of values for each attribute in our

search. Before we can offer a general solution, we still need to

address the question of how we can limit the range of values

considered for each attribute, to make the search space

tractable.

Our attribute selection method shows a promising start, but we

do not see it as a stand-alone mapping solution. Our attribute

selection process is intended to be used to refine mappings that

have been discovered using existing semantic matching and

mapping tools. Further work will be required to demonstrate

its use in an overall mapping framework or process.

VII. ACKNOWLEDGEMENT

This work is partially funded through the Science Foundation

Ireland FAME Strategic Research Cluster (award No.

08/SRC/I1408), www.fame.ie.

REFERENCES

[1] A. Ferrara, W. R. V. Hage, L. Hollink, A. Nikolov, and P. Shvaiko,
“First results of the Ontology Alignment Evaluation Initiative 2011,”
Informatica, 2011.

[2] J. Hammer, M. Stonebraker, and O. Topsakal, “THALIA : Test Harness
for the Assessment of Legacy Information Integration Approaches,” in
Proceedings of the International Conference on Data Engineering
(ICDE), 2005, no. August, pp. 485-486.

[3] W. Kim and J. Seo, “Classifying schematic and data heterogeneity in
multidatabase systems,” Computer, vol. 24, no. 12, pp. 12–18, 1991.

[4] F. Scharffe and D. Fensel, “Correspondence patterns for ontology
alignment,” Knowledge Engineering: Practice and Patterns, pp. 83–92,
2008.

[5] C. Bizer, “Linked data-the story so far,” International Journal on
Semantic Web and Information Systems, vol. 4, no. 2, pp. 1-22, Jan.
2009.

[6] C. Bizer et al., “DBpedia - A crystallization point for the Web of Data,”
Web Semantics: Science, Services and Agents on the World Wide Web,
no. 7, pp. 154-165, Sep. 2009.

[7] F. M. Suchanek, G. Kasneci, and G. Weikum, “Yago: A large ontology
from wikipedia and wordnet,” Web Semantics: Science, Services and
Agents on the World Wide Web, vol. 6, no. 3, pp. 203–217, Sep. 2008.

[8] C. Fellbaum, Ed., Wordnet: An electronic lexical database. MIT Press,
1998.

[9] F. Giunchiglia, A. Autayeu, and J. Pane, “S-Match : an open source
framework for matching lightweight ontologies,” Compute, vol. 1, pp. 1-
9, 2010.

[10] J. David, J. Euzenat, F. Scharffe, and C. Trojahn dos Santos, “The
alignment api 4.0,” Semantic Web, vol. 2, no. 1, pp. 3–10, 2011.

[11] D. Ritze, C. Meilicke, O. Sváb-Zamazal, and H. Stuckenschmidt, “A
pattern-based ontology matching approach for detecting complex
correspondences,” in Proc. of Int. Workshop on Ontology Matching
(OM), 2009.

[12] H. Stuckenschmidt, L. Predoiu, and C. Meilicke, “Learning Complex
Ontology Alignments A Challenge for ILP Research,” in Proceedings of
the 18th International Conference on Inductive Logic Programming,
2008.

[13] J. Lorey, Z. Abedjan, F. Naumann, and C. Böhm, “RDF Ontology (Re-)
Engineering through Large-scale Data Mining,” in ISWC, 2011.

[14] D. Hand, H. Mannila, and P. Smyth, Data Mining. Cambridge: MIT
Press, 2001, p. 344.

