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Abstract—When consuming data from federated domains, it is 

often necessary to identify the relationships that exist between the 

data schemas used in each domain. Discovering the exact nature 

of these relationships is difficult due to data set schema 

heterogeneity. Prior work has focused on inter-domain class 

equivalence. However it is not always possible to find an 

equivalent class in both schemas. For example, when instances 

are modeled as classes in one domain (e.g. router type) but as the 

attribute values of a single class in the other domain (e.g. router 

interface). This paper investigates whether when classifying 

instances in one data set against a second schema, it may be more 

useful to use some attribute (or attribute group) other than the 

original class type, to perform this classification. A machine-

learning based classification approach to appropriate attribute 

selection is presented and its operation is evaluated using two 

large data-sets available on the web as Linked Data. The 

classification problem is compounded by the less formal 

semantics of Linked Data when compared to full ontologies but 

this also highlights the strength of our approach to dealing with 

noisy or under-specified data-sets and schemas. The experimental 

results show that our attribute selection approach is capable of 

discovering appropriate mappings for cases where the 

correspondence is conditioned on one attribute and that 

information gain provides a suitable scoring function for selection 

of correspondence patterns to describe these complex attribute-

based mappings. 

 
Keywords—Data Federation, Attribute Selection, Semantic 

Mapping 

I. INTRODUCTION 

Sharing data is of fundamental importance to federated 

domains, whether directly via access to federated data-bases or 

triple-stores or indirectly through service and query interfaces. 

However, despite the ubiquity of the Internet as a generic data 

sharing infrastructure, the main obstacle to federated data 

sharing remains data schema (structure) diversity and 

opaqueness. 

In recent years ontology or knowledge-model-based 

approaches to data or knowledge modeling and publication 

have provided a standards-based
1
 means to capture the 

semantics or meaning behind data and to make the schemas 

queryable. This addresses the federated data sharing challenge 

of opaqueness; however the challenge of data diversity 

remains. Even with explicitly defined semantics, different 

                                                           
1 Most notably the W3C’s Semantic Web suite of standards including 

Resource Description Framework (RDF), the Web Ontology Language OWL 

and SPARQL for querying RDF. 

people’s viewpoints and the level of detail they use in 

describing a problem domain mean that while the ontologies 

give a better starting point than, for example, a database 

schema, it is still necessary to work to resolve the differing 

views of the data. If one ontology, O1, provides a rich class 

hierarchy to describe network components with separate 

classes for managed and unmanaged network switches, while 

another ontology, O2, uses a shallower hierarchy with only a 

single class for describing switches, how should we describe 

the relationship between a managed network switch in O1 and 

a network switch in O2? Should we simply say that the types 

are similar? Is it possible to use some other information to 

make the relationship more explicit? For example, if instances 

of type NetworkSwitch in O2 have attributes describing their 

SNMP details, might we infer their class is equivalent to 

ManagedNetworkSwitch in O1? 
Finding and describing the relationship between ontology 

elements is known as Ontology Mapping. Within this there are 

two main tasks, first the matching process which involves 

finding the concepts that are related, and then the mapping 

process which describes how these concepts are related. 

Ontology Mapping is an active topic, with the matching 

process being  the most investigated component of the field 

[1]. 

Discovering and describing the relationship between the 

semantically related elements in independent sources is a 

relatively old problem. It can be found in the field of database 

integration, where many common forms of heterogeneity  have 

been identified [2][3] which impede our ability to easily 

combine data found in federated databases. Classical 

approaches to ontology mapping have emphasized finding 

relationships between classes in the source and target 

ontologies. Due to the differing ways that ontologies are 

modeled this may not always provide a suitably expressive 

method for describing mappings, and more complex forms of 

mappings may be necessary, such as  mappings between 

subsets of named classes defined by the attributes rather than 

whole class-to-class mappings [4]. This means that in some 

cases sub-sets of the instances of a class in the source domain 

are mapped to a more specialized class in the target domain. In 

recent work [4], Scharffe and Fensel call these types of 

complex mappings “correspondence patterns”. 

A relatively new area where the importance of these 

correspondence patterns can be demonstrated is for the 

consumption of Linked Data [5], which is loosely structured 

RDF published on the web. Typically such data has many 
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inconsistencies, both internally and with respect to its schema, 

and is not as formally described as a pure OWL ontology –

perhaps using RDFS (RDF Schema) to define a number of 

component vocabularies. Such data is often unequipped with a 

comprehensive class hierarchy for use by classical mapping 

methods, and the presence of errors means that 

correspondence patterns can be used to clean up data for 

consumption. 

In such a system we wish to enable the automated or semi-

automated detection of appropriate transformational 

correspondences rather than the old focus on concept matching 

between rich and formally described ontologies. A key focus 

of such an automated technique is the identification of instance 

attributes or attribute values that can be used to define class 

membership in the target schema (usually the internal schema 

of the Federation member). Hence this defines the attributes 

used and the specific correspondence pattern form in 

constructing a complex mapping. 

Given two overlapping, error-containing, semi-formally 

described data sets to be mapped, we have the following 

research questions: 

 What is a suitable algorithm to identify the 

appropriate attributes and correspondence patterns to 

enable automated generation of complex mappings 

between instances in the source data-set and classes 

in the destination data-set schema? 

 How much, if any, training data or background 

knowledge is required by such an algorithm? 

 What is a suitable strategy to deal with arbitrary 

ranges of attribute values in a generic algorithm? 

 How would such an algorithm fit into an overall 

mapping framework or process? 

 What accuracy could be obtained by such an 

algorithm?  

The work presented in this paper addresses the first of these 

research questions. In this paper we describe a novel approach 

to this problem based on the idea that, given limited training 

data, a machine learning attribute selection algorithm can use 

the instance data in two data-sets to infer the complex 

mappings between those data-sets. More specifically, our 

algorithm applies a standard information gain measure to 

identify the particular attributes or attribute values to be used 

for constructing complex mappings as a correspondence 

pattern. This provides the basis for a tool which would 

generate candidate executable correspondence patterns 

(complex mappings) between two data-sets, even in the 

presence of data-set errors and limited availability of full, 

formal schemas or ontology definitions describing the data. In 

order to evaluate our method we have carried out an 

experiment on two very large linked data sets describing 

people in the movie/entertainment domain – dbpedia [6] and 

YAGO [7]. 

The rest of this paper is laid out as follows: section II presents 

related work, section III a formal problem statement, section 

IV proposes our mapping algorithm approach, section V 

describes an experiment that we have performed to evaluate 

our approach, and finally section VI presents conclusions and 

future work. 

II. BACKGROUND 

1) Data Sets 

RDF/Linked data is an accessible source of real life instance 

data developed independently and published on the web. This 

data is well described and intended for ease of integration, yet 

this is still not a straightforward task. A primary reason for the 

difficulty in integrating these sources is the differences in the 

way they were designed. An example of this are the YAGO 

[7] and DBpedia [6] projects. Both of these projects provide 

linked data sources generated form Wikipedia
2
 entries, and we 

would expect them to be extremely similar – yet actually their 

structure is quite different. 

YAGO provides a rich class hierarchy based on WordNet [8]. 

In YAGO, a class is a sublclass of another one, if the first’s set 

of synonyms is a hyponym of the second’s. YAGO allows 

very specific classifications – such as American people in 

Japan – it contains 149,162 classes, and 143,210 subClassOf 
declarations. In contrast, the DBpedia Ontology classification 

scheme consists of 170 classes that form a shallow 

subsumption hierarchy. 

 

2) Ontology Mapping 

Ontology Mapping tools commonly use lexical similarity, 

graph comparison, or a combination of these techniques to 

produce matches and mappings. The S-Match [9] tool, for 

example, treats the ontologies to be matched as labeled graphs. 

It uses background information such as WordNet to remove 

ambiguities such as homonyms and synonyms from the 

graphs’ labels. The semantic meaning of the nodes is inferred 

by first looking at the meaning of their labels (without 

considering context) and then refining this meaning by 

considering the node’s position in the schema tree. Once 

semantic meaning for each node in each graph has been 

evaluated and refined, matching the nodes in each tree can be 

solved as a standard Boolean satisfiability problem. 

S-Match is capable of finding the relationships: equivalence 

(≡), less general (⊑), more general (⊒) and disjointness (≢), 

between the concepts in the ontologies. This is common of 

most ontology alignment tools – in general they map concepts 

based on their rdf:type attribute, with equivalence being the 

most common type of mapping. Due to the differing ways that 

ontologies are modeled this may always not provide a suitably 

expressive method for describing alignments, and more 

complicated forms of mappings may be necessary. For 

example these relationships cannot accurately model the 

relationship o1:NetworkSwitch|o1:hasSNMPAgent=x →  
o2:ManagedNetworkSwitch, as described in section 1. 

These types of complex mappings are called Correspondence 

Patterns in [4]. They cover a wide range of cases, including 

not only the more standard relationships such as equivalence 

and subsumption, but also Conditional and Transformation 

patterns. Conditional patterns are used when the scope of one 

                                                           
2 http://wikipedia.org 



 

entity in an ontology needs to be narrowed to match the scope 

of an entity in the other ontology, as in the network switch 

example presented in section 1. Possible conditions include 

constraints on the value of an attribute, its type, or simply its 

occurrence. Transformation correspondences include cases 

where elements must be altered in some way. For example this 

could include concatenating a first and second name together, 

or converting from one currency to another. 

Current research in the area of Correspondence Patterns is 

focused on identifying and cataloging the different forms of 

pattern that exist. The EDOAL language [10] provides a 

method for describing complex forms of alignments. EDOAL 

uses an OWL-like syntax, though it is more rule orientated, 

allowing variables in expressions which can be used to 

describe constraints and transformations. It also contains 

additional constructs for expressing data transformations. 

There are few matchers capable of generating the complex 

mappings that EDOAL allows, and support for the language in 

the Alignment API is still under development [10]. Ritze et. al.  

[11] describe a first attempt at a process for detecting complex 

mappings. It requires a set of input mappings which it refines 

using pattern matching at the schema level. A more machine 

learning approach is outlined in [12], which describes how the 

mapping task can be reformulated as an Inductive Logic 

Programming problem. They note however that there are many 

issues that must be resolved before this can provide a robust 

solution, issues such as incompleteness, inconsistency and 

uncertainty.  

As stated previously, most ontology alignment techniques 

focus on analyzing schema. Typically they are intended to be 

used with well defined ontologies. Linked Data sources are not 

always as well defined, which may hamper schema based   

approaches. In [13] it was demonstrated that real world RDF 

vocabularies are often either over or under specified. 

Overspecification occurs when a class has many properties 

specified in the schema, yet real-world instances of the class 

rarely use these properties. A class is underspecified if 

instances of the class have many properties that were not 

specified in the schema. As real-world data may not adhere to 

its schema, this is something that we may wish to take into 

account when selecting appropriate correspondence patterns. If 

for example there is a choice of two patterns that are 

semantically equivalent it would be preferable to select the one 

that uses the more reliably set attributes in the instance data. 

In summary, while the use of description languages such as 

RDF and OWL have made data sources more understandable, 

the diversity in the way they describe their data is still a 

challenge to federation. Even when they cover over-lapping 

domains, real world data sources often use very different 

schemata, as can be seen in YAGO and DBpedia. Current 

semantic mapping tools focus on describing simple 

relationships such as equivalence, but often we need more 

complicated relationships with rules or conditions. These more 

complicated mappings are still in their infancy, and most work 

has concentrated on providing methods for describing and 

sharing the mappings. Current initial attempts at automatically 

identifying complex mappings concentrate on pattern 

matching at the schema level. Real world semantic web data 

has been demonstrated to often deviate from its schema, so an 

approach that considers instance data may be of benefit when 

deciding on how best to specify a complex mapping.  

 

III. PROBLEM STATEMENT 

Differing conceptual models used in ontologies mean that 

simple class-class mappings are not always sufficient to 

describe the relationship between the elements of the 

ontologies. Some relationships are best described using a 

correspondence pattern that places some condition on an 

attribute of the instances of the class being mapped. Finding 

which condition should be used is a challenge. Schema 

information does not always tell us enough to make this 

choice, so instead we look to using instance level data. 

Given a source ontology Os and a target ontology Ot, a 

subsumption mapping between classes Cs and Ct – with Cs ∈ 
Os and Ct ∈ Ot – and a set of instances, I, that exist in both Os 

and Ot that each are members of both Cs and Ct, we wish to 

use the information we learn from I to refine the mapping from 

a subsumption relationship: 

 

   ⊑     

 

to a Conditional Class Correspondence pattern of the form: 

 

   ≡          
 

That is, all instances of class Cs with attribute a
*
 set to some 

value v are instances of class Ct. In addition to considering a
* 

equal to a specific value of v, we can also consider a
*
 set to 

any value, or type(a
*
) = t, for some type t. 

IV. APPROACH 

Our approach relies on analyzing a user supplied sample of 

mapped instances to refine our understanding of the 

relationship between the classes of the instances found in two 

ontologies. In the scope of this paper, we make no attempt to 

infer any information from class labels or the structure of the 

ontologies taxonomies. Our process instead considers the 

structure as used by the instance data. There are several 

advantages to this approach, in that it allows us to consider 

attributes other than rdf:type contributing to an instance’s 

classification. It does not require the schema to provide 

information such as the domain and range of attributes  that 

would be necessary for a pattern matching based approach, as 

described in [11]. The main disadvantage of this approach 

however, is that it does require a set of pre-matched instances 

of the classes in the mapping to be refined. 

To refine the subsumption mapping Ct ⊑ Cs where Ct is a class 

in our target ontology and is more specific than Cs the class in 

our source ontology it has been mapped to, we wish to find an 

attribute of the instances of class Cs which we can use to test if 

that instance is also a member of class Ct. We use the 

following process (as illustrated in fig. 1): 



 

The user decides on the mapping to be refined Ct ⊑ Cs 

1. Using a set of pre-matched instances of our source 

and target ontologies, the user selects a sample of 

instances that have type Ct, and a set of instances that 

have type Cs, but not type Ct 

2. These sets are combined to create our training sample 

and passed to the Attribute Ranker 

3. The Attribute Ranker searches the source ontology to 

find all attributes the instances with type Ct in the 

training sample have been assigned. 

4. Each of these attributes is ranked using a scoring 

function which evaluates the attributes ability to 

differentiate instances of types Ct and Cs 

Constructing a suitable training set attribute selection is 

complicated by the fact that it is possible for each instnace to 

have multiple values for each attribute. Therefore, for each 

instance we must construct a bit vector, with one bit for each 

attribute and value combination. As this can lead to an 

extremely large number of attribute/value pairs to test, our 

method requires the user to manually pick which attributes to 

test. The scoring function can then evaluate which value of 

which attribute provides the best condition for refining the 

mapping. Future implementations will need methods for 

narrowing down the range of values considered for each 

attribute.  

To refine the mapping Ct ⊑ Cs, we require that our training set 

contain two kinds of instances, one set of positive matches I
+
 

⊂ Ct ∩Cs, which are identified to have both class Ct and Cs 
and a set of negative matches, I- ⊂ Cs \ Ct. Using this 

information, we can detect the existence of two kinds of 

Correspondence pattern, Class by Attribute Value – where our 

mapping is conditioned on a specific value of an attribute – 

and Class by Attribute Existence – where the specific value of 

the attribute does not matter, we only care if it has been set or 

not. 

To evaluate Class by Attribute Value, the attribute to be tested, 

a
*
 must be specified. We then enumerate all possible values of 

a
*
 for the elements of I

+
 and which we label v1..n We then 

construct indicator vectors for each element of I
+
 ∪ I- where 

each vector has its ith element set to 1 if its corresponding 
instance has a*

= vi and 0 otherwise. Having constructed the 

indicator vectors we rank v1..n using their  information gain 

score to find the most suitable value for the given attribute to 

condition the correspondence pattern on. 

The Class by Attribute Existence pattern follows a similar 

procedure. Again, we use the sets I
+
 and I

- 
defined as above, 

but no attribute to be tested is specified. In this case we 

enumerate all possible attributes that the instances of I
+
 can 

have, and label them a1..n. Our indicator vectors are 

constructed so that each vector has its i
th

 element set to 1 if the 

corresponding instance has ai set to any value, and 0 

otherwise. Again these are ranked to find the most suitable 

attribute, regardless of its specific value, to condition the 

correspondence pattern on. 

There are several different metrics that could be used to 

provide our attribute rankings. One of the most common 

functions to use is an entropy measure based score known as 

Information Gain (IG) [14], which we have elected to use. The 

χ-squared function was also considered, but this function can 

behave erratically for small sample sizes or low expected 

counts for individual classes. For each attribute, A, 

Information Gain measures the average decrease in the 

number of bits required to describe the class, C, of an instance 

if the value of A is known. It is defined as follows: 

 

                        
 

Where H(C) is the entropy of C – the number of bits, on 

average, required to transmit a stream of values drawn from 

C’s distribution: 

 

                     

 

 

 

And H(C|A) is the conditional entropy of C given A 

 

                     

 

 

 
Fig. 1: The sequence for selecting an appropriate attribute to condition 

a correspondence pattern on. First the user creates a list of test 

instances, then the Attribute Ranker evaluates which attributes these 

instances may have, and how those attributes contribute to classifying 
the instances. 



 

       

 

                  

 

  

 

Using the standard implementation of IG as our scoring 

function requires us to make a closed world assumption – that 

any statement that is not explicitly said to be true is false. This 

is in contrast to the open world assumption used in the 

semantic web, which requires statements to be considered as 

simply unknown if they are not explicitly said to be true or 

false. In addition, most implementations of IG expect each 

attribute to only have one value per instance. Because of this 

we need to perform an evaluation to test the suitability of IG 

as an attribute scoring function. 

V. EVALUATION 

This section describes an experiment to evaluate the 

hypothesis that the Information Gain measure is an appropriate 

scoring function for selecting a correspondence pattern to 

refine a given semantic mapping. To evaluate this, the measure 

was used to select appropriate correspondence patterns for a 

set of initial semantic mappings. For each initial mapping we 

measured the information gain score for all possible 

correspondence patterns that can exist between the classes in 

the mappings. This was repeated for 100 randomly chosen 

training sets to test the mean and variance of the IG score for 

each attribute as well as the stability of the ranking, given 

different training sets. Ranking stability was measured by both 

the percentage of times a gold standard correspondence pattern 

was ranked first and the percentage of times it appears in the 

top five rankings.  

We use the following process to establish these values: 

1. For each mapping, Mi, we randomly generate 100 

training sets. 

2. For each training set, we record the IG score for all 

possible correspondence patterns for Mi.  

3. We then rank the correspondence patterns and record 

if the gold standard pattern was the highest ranked or 

if it was in the top five. 

Four initial mappings were used, based on YAGO and 

DBpedia. For each mapping a gold standard correspondence 

pattern was created, consisting of a condition on an attribute of 

the DBpedia class which narrows its scope to the more 

specific YAGO class. Searching the entire space of attributes 

and their possible values would be too great a challenge for 

this initial experiment, so the search was narrowed to three 

types of correspondence pattern:  

 Class by Attribute Value correspondences 

conditioned on values of the rdf:type attribute 

 Class by Attribute Value correspondences 

conditioned on values of the dbpedia-
owl:occupation attribute,  

 Class by Attribute Existence correspondences 

conditioned on the existence of any attribute. 

The following initial mappings were considered. 

M1: yago:Actor ⊑ dbpedia-owl:Person 

M2: yago:Director ⊑ dbpedia-owl:Person 

M3: yago:Musician ⊑ dbpedia-owl:Person 

M4: yago:Politician ⊑ dbpedia-owl:Person 

These particular relationships were selected as they allow us to 

easily select an appropriate gold standard correspondence 

pattern and they provide sufficient instances to allow us to 

create random sets of instance mappings which can be used to 

evaluate the IG scores of the correspondence patterns. When 

selecting the gold standards, preference was given to patterns 

conditioned on rdf:type if a suitable type was available. If not, 

occupation was chosen if this was reliably set in the instance 

data. If not an attribute existence pattern was used instead as 

the gold standard.  

For Mapping 1, the condition that a person instance with 

rdf:type set to dbpedia-owl:Actor was selected as the gold 

standard. Mapping 2 is more problematic than that for actors, 

as there is no class in the dbpedia schema that corresponds to 

yago:Director. Instead the choice is to either select instances 

that have their dbpedia-owl:occupation set to 

dbpedia:Film_director or select instances that have been 

identified to have directed a film using the dbpedia-
owl:director attribute. As the dbpedia-owl:occupation is set 

incorrectly for many instances, we elected to use the dbpedia-
owl:director existence condition as our gold standard. For 

mapping 3 the condition rdf:type = dbpedia:MusicalArtist 
was used, and for Mapping 4 the condition dbpedia-
owl:occupation  =  dbpedia-owl:Politician was used. 

These patterns, expressed as conditions on attributes were as 

follows: 

p1: rdf:type  = dbpedia-owl:Actor 

p2: 
dbpedia-owl: 

director 
= [any value] 

p3: rdf:type = dbpedia:MusicalArtist 

p4: 
dbpedia-owl: 

occupation 
= dbpedia:Politician 

 

Testing the variance of the IG scores depending on the training 

set used, and the subsequent effect this has on the 

correspondence patterns’ rankings required us to automatically 

generate sample training sets. We created these sets to have 30 

examples instance mappings with the assumption that it in a 

real-world situation could be possible to manually discover 

this many examples. To create the these samples we used a 

TABLE I.   THE NUMBER OF TIMES THE GOLD STANDARD WAS 

RANKED FIRST, AND IN THE TOP 5. 

Mapping Gold Standard 

rank = 1
st 

Gold Standard 

ranked  > 5
th 

M1 99 100 

M2 72 99 

M3 14 98 

M4: 44 89 

 



 

SPARQL SELECT query to retrieve all instances of the 

YAGO type being evaluated, then sampled randomly from this 

list. 

 

Results: 

Running the test for each of the mappings showed good results 

for mappings M1 and M2, ranking the gold standard 

correspondence pattern in first place, 99% and 72% of the time 

respectively. Correspondence pattern selection for M3 and M4 

was less satisfactory with the gold standard correspondence 

pattern only being selected in first position 14% and 44% of 

the time respectively. Still, even for the mappings that our 

selection process performed  poorly on, the correct 

correspondence pattern was reliably able to select the correct 

correspondence in the top five – 89% of the time for the worst 

case, M3. These results are summarized in table 1, and are 

discussed in more depth below. 

Mapping M1: The correspondence pattern for this mapping is 

very straight forward, as dbpedia:Actor and yago:Actor are 

semantically similar. As such we would expect this 

correspondence pattern to be easy to detect. The mean and 

standard deviation information gain scores for the top five 

correspondence patterns refining mapping M1 are displayed in 

fig. 2, where rdf:type = dbpedia-owl:Actor can be seen to 

score much higher than the other attribute/value pairs. 

Mapping M2: The correspondence pattern for this mapping is 

more difficult as there is no class in DBpedia that corresponds 

to yago:Director. While this did have the highest mean IG 

score, the pattern rdf:type = dbpedia-owl:Actor also scored 

highly, which can be explained by the fact that many directors 

are also actors.  

Mapping M3: Our selection process performed poorly on this 

mapping, only returning the best correspondence pattern in 

first place 14% of the time. The pattern dbpedia-
owl:occupation = dbpedia:Musician scored higher on 

average. While not our gold standard, on review this is could 

be seen as an acceptable pattern. 

Mapping M4: Our selection process performed also performed 

poorly on this mapping. As can be seen in figure 3, there was 

very little separating the mean IG scores for the top 5 ranked 

correspondences in this case. This case was difficult for the 

selection process because the attribute dbpedia-
owl:occupation was set to  dbpedia:Politician in relatively 

few instances, and there was in fact no attribute that could be 

used to reliably select politicians. 

This demonstrates that for a relatively small training set of 

instance mappings, we can use the information gain measure 

to find good correspondence patterns. Even though the process 

does not always rank the best correspondence pattern the 

highest, it was shown to be capable of reliably ranking the best 

correspondence pattern within the top five. 

VI. CONCLUSIONS 

This paper proposes a method for discovering correspondence 

patterns that can be used to refine basic subsumption mappings 

between classes in independent ontologies.  Our evaluation 

demonstrates that the Information Gain measure is a suitable 

scoring function for selecting correspondence patterns, 

provided a suitable training set of matched instances can be 

provided. This function allowed us to reliably select the best 

correspondence pattern as our top result in two of the four 

 
Fig. 3 Top 5 ranked conditions for refining yago:Politician ⊑ 
dbpedia-owl:Person 

 

 
Fig 2. Top 5 ranked conditions for refining yago:Actor ⊑ dbpedia-
owl:Person. 

 



 

mappings tested, and reliably returns the best correspondence 

pattern in the top five results for all four test cases. In one of 

the cases where the search algorithm did not return the best 

correspondence pattern as the top result (mapping M3), this 

was because there were several patterns that could be 

considered valid and selecting the “best” among these was 

difficult. For the other case (mapping M4) the attribute used in 

the best correspondence pattern was unreliably set in the 

instance data. 

Our evaluation used training sets that were of a consistent size 

and quality. Further research will be required to address the 

question of how much training data and other background 

knowledge is required by our algorithm. Similarly, further 

evaluation will be required to establish how robust our 

approach is to errors in the training data such as misclassified 

instances. Our evaluation only considered selection 

correspondence patterns for four mappings, further evaluations 

will need to consider more mappings to allow us to more 

reliable recall and precision rates for our selection method. 

In our evaluation, we limited our search to certain attributes, 

as we consider the full range of values for each attribute in our 

search. Before we can offer a general solution, we still need to 

address the question of how we can limit the range of values 

considered for each attribute, to make the search space 

tractable. 

Our attribute selection method shows a promising start, but we 

do not see it as a stand-alone mapping solution. Our attribute 

selection process is intended to be used to refine mappings that 

have been discovered using existing semantic matching and 

mapping tools. Further work will be required to demonstrate 

its use in an overall mapping framework or process. 
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