
Cloud-based Testbed
for Simulation of Cyber Attacks

Daniel Kouřil, Tomáš Rebok, Tomáš Jirsı́k, Jakub Čegan, Martin Drašar, Martin Vizváry, Jan Vykopal
Masaryk University, Institute of Computer Science

Botanická 68a, 602 00 Brno, Czech Republic
{lastname}@ics.muni.cz

Abstract—Cyber attacks have become ubiquitous and in order
to face current threats it is important to understand them.
Studying attacks in a real environment however, is not viable
and therefore it is necessary to find other methods how to
examine the nature of attacks. Gaining detailed knowledge about
them facilitates designing of new detection methods as well as
understanding their impact. In this paper we present a testbed
framework to simulate attacks that enables to study a wide range
of security scenarios. The framework provides a notion of real-
world arrangements, yet it retains full control over all the activi-
ties performed within the simulated infrastructures. Utilizing the
sandbox environment, it is possible to simulate various security
attacks and evaluate their impacts on real infrastructures. The
design of the framework benefits from IaaS clouds. Therefore its
deployment does not require dedicated facilities and the testbed
can be deployed over miscellaneous contemporary clouds. The
viability of the testbed has been verified by a simulation of
particular DDoS attack.

I. INTRODUCTION

In order to be able to face the threats posed by contempo-
rary attackers, it is crucial to continually develop techniques
and methods for detection and prevention of attacks. Also,
the nature of cyber attacks is evolving, so is the focus of
attackers. This volatile character of computer attacks makes
it challenging to catch up with current trends in the area.
The situation is also complicated by the closed nature of
the domain, where attackers naturally do not reveal details
about their techniques, which often need to be found out only
during real security incidents. In order to efficiently confront
contemporary attacks it is inevitable to understand their nature
and to develop mechanisms for their detection.

A viable option to study attacks is their simulation. Simu-
lating an attack in a controlled environment makes it possible
to understand the impact of the attack on individual services
in the infrastructure, the way how the attack is spreading,
what is the role of all peers, etc. Such deep comprehension of
attacks then significantly contributes to design and operation
of services that are more resilient to contemporary attacks and
threats. For instance, during the last two years we have been
witnessing an increase of various types of distributed denial-
of-service (DDoS) attacks ([1], [2]). For deployed services it
is important to estimate the size of the attack they are able
to withstand, which can be verified by simulation of DDoS
attacks of different volumes.

Besides being able to design proper protection, one also
needs to recognize attacks reliably and soon enough. How-
ever, crafting proper detection tools and methods is a tedious

process, especially when it comes to decreasing the number
of false positive alarms. Development of the tools and their
verification can be significantly streamlined with a suitable
testbed where various attack scenarios can be pursued. In order
for such a testing environment to be helpful, it needs to be able
to simulate real-world attacks and enable studying them.

The need for an environment where attacks can be sim-
ulated and studied poses questions about feasibility of sim-
ulation of cyber attacks. First, it is necessary to answer the
question whether it is even possible to build an artificial
environment that resembles as much as possible the real world,
yet it provides sufficient isolation and control over all activities
performed within it. Second, can we find the right balance
between flexibility and usability of the environment, i.e. can
we hide unnecessary configuration details without losing the
possibility to support any configuration of networks and hosts?
And, third, given such an environment exists, is it possible to
describe an arbitrary attack and model it in the environment
so it can be studied properly?

In this paper, we propose a novel framework that we have
developed to establish a testbed for simulation of various cyber
attacks. The framework is designed for, and built upon an
existing cloud infrastructure where different virtual appliances
can be easily deployed, which provides a flexible layer for
additional configurations. In-depth monitoring is an inherent
part of the testbed. It allows testbed users to transparently
observe network communication among individual network
nodes as well as to obtain details about nodes performance. By
utilizing the testbed it is possible to execute various security
experiments to simulate cyber attacks and study them.

II. CLOUD-BASED SECURITY TESTBED

There are many testbed solutions intended to support
security-related simulations in various manners. Some of them,
namely DETER [3] and TWISC [4], employ the generic and
publicly available Emulab/Netbed [5] infrastructure solution,
which provides them with basic functionality for virtual appli-
ances’ deployment, flexible network topologies configuration,
various network characteristics emulation, etc. While Emulab
simplifies many tasks related to deploying and building vari-
ous network topologies for the experiments, it brings several
restrictions on both the infrastructure as well as its features—
these include simulated topology restrictions (e.g., just IPv4
is supported) as well as restrictions related to building the
infrastructure itself (e.g., several OS and HW restrictions have
to be met).

In contrast, several security-related testbeds require their
own infrastructure solution to be established, which cannot
be used for other purposes. For example, ViSe [6], LVC [7],
and V-NetLab [8] testbeds employ the VMware virtualization,
while the hypervisor-based security testbed [9] requires a
KVM-based infrastructure. All these cases require to purchase
and establish a dedicated infrastructure, which brings both
strengths and weaknesses by itself—while the full control over
the infrastructure can lead to easier deployment of testbed’s
features, it also leads to high initial costs and limited growth-
flexibility.

A. Requirements for the intended testbed

Considering the purpose and foreseen use of the intended
testbed infrastructure we have identified a set of requirements
that the testbed must fulfill to meet our needs. For the sake
of clarity, we divide these requirements into five categories—
network-related, hosts-related, monitoring, testbed control, and
deployment requirements.

Regarding the network-related requirements, the testbed’s
ability to define and run any network topology is obviously
necessary, whether it is a single node or several interconnected
networks. The testbed has to allow users to have complete
control over the network Layer 3 arrangement. This feature,
which is not available in most of the existing security-related
testbed solutions that we studied, is required to use an arbitrary
L3 protocol and/or an addressing schema, including public IP
addresses (within a sandboxed environment).

In order to approach real-world arrangements, additional
network characteristics should be supported. To simulate vari-
ous networking types, like ADSL modems or mobile devices,
the testbed should provide ability to emulate various network
properties, such as limited bandwidth, delays, packet drop rate,
or link failures. While we foresee an isolated environment
is used for most simulations, the testbed must also support
scenarios which require connections to real Internet servers. An
example of such a scenario is an examination of the protocol
between an infected computer and a real malicious server. Such
traffic must be filtered properly using firewall rules.

The hosts-related requirements concern the possibilities
to support various hosts configurations. To provide sufficient
flexibility, the testbed has to be able to establish nodes running
common operating systems and architectures.

To provide monitoring features, the testbed is required to
monitor network links between any two nodes in the defined
virtual topology and collect monitoring data about network
flows or even packet dumps of the entire communication
passed over the emulated wires. Besides network-based probes,
host-based probes (e.g., CPU and memory usage monitoring)
should also be provided. Naturally, all the monitoring func-
tionality has to be performed transparently, so it cannot be
detected or even results could not be distorted.

The testbed control requirements basically include possibil-
ities to orchestrate the testbed and to control all its components
easily. The testbed has to expose a user interface that is
general enough yet easy to use for users so that they do not
need to cope with internal configuration details. The testbed
should further give an option to perform a defined set of

operations in real time, allowing for an interactive intervention
to and/or control of running attacks. Similarly, attack scenarios
themselves should also be easy to set-up, deploy and execute.
The testbed should support repetitions of the same experiments
multiple times, which is required, for instance, when tuning
and evaluating a particular detection mechanism.

Concerning the deployment requirements, the testbed must
expect just widely-used middleware for testbed operations so
that one is able to deploy it over an existing cloud-based
infrastructure providing supported interfaces.

Given the features we require from such a security-related
testbed, capabilities of the existing solutions, as well as benefits
of the cloud-based infrastructures, we decided to propose
a new testbed employing cloud infrastructures providing an
infrastructure as a service (IaaS clouds).When using well-
known cloud interfaces, the testbed need not rely on a par-
ticular cloud provider but can be easily adapted to any of
them, assuring reasonable costs and providing flexibility when
necessary. Unlike to other solutions, we provide a general
framework to build own testbeds, which can deployed in
different environments. This approach has its limitation, with
the main one being the configuration of networks. Solely using
widely-used networking mechanisms, we introduce a novel
approach to building flexible virtualized networks.

B. Proposed solution

The proposed framework is built on top of a cloud,
which provides an abstract layer hiding the issues related
to the maintenance of virtual appliances, and which allows
the desired growth-flexibility. Every simulation is provided
with a sandbox where attacks can be safely executed. The
whole sandbox environment is instantiated in a cloud and
comprises solely of virtual machines. In addition to the control
of the cloud layer, the framework also provides means to
define descriptions of security experiments and to monitor and
control their executions. Given the resemblance with similar
environments from other areas (such as warfare) we call the
framework Cybernetic Proving Ground (CPG in short).

CPG allows users to configure multiple virtual environ-
ments for simultaneous run of multiple simulations. Every en-
vironment is provided with a dedicated service node (Scenario
Management Node) that is used to operate the established
virtual environment. The node also provides the entry point
to the virtual environment and hosts auxiliary services like a
collector for monitoring data, etc.

The nodes within the environment are connected by a
virtual network. Building such a framework on top of a
cloud providing limited networking flexibility (in terms of
topologies, L3 addressing, L3 protocol, etc.) brought sev-
eral challenges we had to cope with. Not to depend on a
particular cloud implementation/infrastructure, we decided to
avoid running any CPG service tools within the underlying
cloud layer—thus, we had to ensure defined data paths (to
allow flows monitoring within virtual appliances) as well as
L3 layer flexibility, all of which using common networking
mechanisms provided by common cloud implementations.
To overcome these limitations and to satisfy the prescribed
network-related requirements, we introduce a concept of so-
called LAN management nodes (LMNs) providing an abstrac-

Data
 Processing

Scenario
Management LMN 1

LM
N 2

LMN n

Scenario Management
 node

LAN 1

LAN 2

LAN n

Management & Measurement channel

Database

Routing
 Node

Network traffic

Scenario
Configuration

Fig. 1. A schema of a simulation environment

tion of a LAN within the Cybernetic Proving Ground. These
nodes, running as common virtual machines within the cloud,
play a role of virtual switches invisible to users—they run
a common OS with an implementation of a virtual switch
(Open vSwitch [10] in our current prototype) and are equipped
with a number of network interfaces. Using standard cloud
services, each network interface is then interconnected with
a single node of the particular virtual LAN or with a routing
node (see Fig. 1)—the interconnection is provided by common
L2 services (VLANs), representing an illusion of a virtual
cable established between every node of the user’s LAN and a
virtual switch. Every interconnection has to be equipped with
a VLAN tag1 that is unique throughout the CPG infrastructure,
thus establishing a separate VLAN network and ensuring the
necessary isolation among different virtual links. As all the
data processing operates on L2, the employed L3 protocols as
well as addressing schema employed for the internal LANs are
thus kept in the hands of CPG users.

The usage of LMNs provides further benefits besides those
already mentioned—since all the data sent within the internal
user’s LAN(s) has to traverse through the LMNs, these nodes
also serve for transparent network monitoring, transparent
emulation of networking properties (e.g., limited bandwidth,
link failures, packet delay, packet loss) using standard Linux
kernel’s tools like netem and traffic control. As depicted in
the Fig. 2, the LMNs may be further equipped with other
useful services—for example, a DHCP server for the LAN,
or a firewall filtering the data passing between different user’s
LANs or from/to external WAN.

To allow multiple virtual LANs within an environment
as well as communication among them, the Routing Node
is employed. Besides routing and optional filtering on the

1To cope with the limited number of VLAN tags, the stacked VLANs (IEEE
802.1QinQ [11]) can be employed.

data network, the node also allows to monitor data flows
passing among the LANs. Additionally to the data network,
a management network is used for delivering control and
measurement information among the LMNs, Routing Node,
and the Scenario Management Node. For now, we decided not
to equip the user virtual nodes with an interface to the control
network, so that an attack trying to deploy itself through all
the accessible interfaces cannot perform actions out of control.
Rather, we employ common cloud remote-access interfaces to
allow the user to access the virtual nodes’ console.

To fulfill the requirements for the testbed monitoring, a
very dense monitoring infrastructure is deployed. Since we
need to monitor both network communication and nodes
performance, we deploy a network monitoring infrastructure
and host monitoring infrastructure transparently in each testbed
created.

The network monitoring infrastructure is a set of probes,
data processing unit and a database. The probe is a unit
which runs the metering and exporting processes. It gathers
information about traffic from the network. To enrich infor-
mation acquired, we have developed various import plugins
enabling application layer monitoring (e.g., HTTP [12], geolo-
cation [13]). The probe is also capable of dumping the whole
network traffic, not only the packet headers. The Cybernetic
Proving Ground makes available various types of probes (e.g.,
FlowMon or nProbe) that can be selected for an experiment
execution.

The probes are deployed at specific observation points. In
order to reach high-level visibility, we make the observation
points an integral part of the LAN management node of each
LAN (see Fig. 2). The probes are connected to the network
via the mirror port (SPAN) of the virtual switch. This kind
of probe deployment gives the possibility to monitor traffic
within the specific LAN as well as traffic among LANs. The
acquired data is sent to the data processing unit located in

the Scenario Management Node via the management network.
Several formats for the data representation are supported,
namely NetFlow [14] and IPFIX [15].

The core of the data processing unit is a collector. The
collector is a device dedicated for processing and storing data
sent by probes. It further aggregates, preprocesses and stores
the data. The Cybernetic Proving Ground supports multiple
types of the collector, in particular NFDUMP and IPFIX-
col. Additional scripts compute basic statistics and employ
anomaly and attack detection methods (e. g., RdpMonitor [16],
SSHCure [17]). The statistics and results of methods are sent
to an external database for further processing and visualization.

The host monitoring infrastructure retrieves information
about the node performance. It is capable of monitoring CPU
and memory utilization, number of open connections, interface
statistics and other host-based characteristics.

The Cybernetic Proving Ground exposes a command suite
to establish and control the environment. The command suite
has been designed to hide all the internal complexities of the
environment so that the operator can focus solely on prepa-
ration of an attack simulation. For instance, the framework
provides a small set of commands to establish a LAN inside
the testbed, which encompasses provisioning of all auxiliary
nodes, configuration of network links, setup of network probes,
etc. The prototype implementation of the Cybernetic Proving
Ground was developed for clouds managed by the OpenNeb-
ula [18] toolkit and the CPG framework is implemented using
its command-line utilities.

The Cybernetic Proving Ground was designed to be as
independent as possible on the underlying layer. Since the
framework is implemented on top of a common cloud system,
it can be easily moved to another IaaS cloud installation or
even a standalone computer. In order for CPG to be deployed
it is necessary that the cloud infrastructure gives sufficient
control over the Layer 2, which is feasible with many cloud
providers (especially in the research field).

A pilot of CPG was implemented in a cloud operated by
Masaryk University and CESNET, the Czech National Re-
search and Education Network. At the moment, the Cybernetic
Proving Ground utilizes several hardware nodes of the infras-
tructure, which makes it possible to simulate environments
composed of several LANs, each comprising a dozen of nodes.
If a need for additional resources arises, the testbed can be
easily enlarged, benefiting nicely from the cloud nature.

The Cybernetic Proving Ground enables users to create
virtual environments that can be used for many activities like
detailed forensics analysis of malware or security hands-on
trainings. In the rest of paper, however, we describe how the
environment can be used for attack simulations.

III. MODELING SECURITY SCENARIOS

An experiment is completely described by a scenario and
process of its realization. The scenario is defined as a group of
nodes, logical and network topologies, monitoring rules, and
a description of three phases of an attack simulation. Each of
these parts has many available configuration parameters which
determine the network environment. Node is a machine which
is a member of the logical infrastructure and it is connected

DHCP

Open vSwitch

M
gm

t
W

AN

firewall netem/tc

Network traffic Measured data

probe

Fig. 2. Schema of LAN Management Node

to the network infrastructure via its configurable interface. It
is possible to define node’s hardware (CPUs and RAM), its
operating system, and application software. Network topology
describes interconnections between all nodes in a scenario. In
order to simulate various networking arrangements, such as
ADSL modems or mobile devices, this topology is also config-
urable in several parameters such as packet loss and bandwidth.
Logical topology describes the role (reflector, attacker, victim,
etc.) of each node and network in the scenario. Once the
scenario is completely defined, the Scenario Management
node can execute the first of three phases (initialization, run,
evaluation) of the attack simulation.

In the first phase, the initialization, network and logical
topologies of the environment are established and parameters
of the attack are set. This initialization is controlled by scenario
management which instantiates the testbed in the Cybernetic
Proving Ground. The testbed provides the network topology
defined in the scenario with all requested monitoring rules
applied.

In the second phase, the scenario run, the actual experiment
is done. The attack is executed according to the scenario. Both
network and host monitoring infrastructures capture data such
as NetFlow, IPFIX and host information from selected nodes
and networks. The collector captures received data and pass
it to the Scenario Management Node for storage and further
analysis. All data and characteristics are continuously trans-
ferred from the Scenario Management node to a visualization
infrastructure where they are displayed in accordance with
requirements specified by the scenario. A further description
of visualization is out of the scope of this paper.

The third phase, the evaluation, serves for an analysis of
the experiment. Captured data is stored for later work, scenario
modifications and its re-run. The experiment can also be
replayed by the visualization management in different speeds.
It is especially useful in case of a security training, where it
is possible to use this functionality for detail debriefing of the
exercise.

IV. PROOF OF CONCEPT

To verify our concept, we prepared a scenario of an
application DDoS attack deployed in the infrastructure of the
Cybernetic Proving Ground. According to the scenario, we
deployed the testbed, simulated the attack and measured all

outcomes of the simulation. We chose to orchestrate a Low
& Slow attack against a web server as DDoS attacks are
ubiquitous nowadays. The attack depletes web server’s re-
sources by opening many connections and sending incomplete
HTTP requests. We chose to run two experiments to show
the CPG functionality. In the first experiment the web server
is equipped with a module to mitigate the attack, while in
the second experiment we targeted the web server without
the module. This section describes in detail the realization of
the scenario and is divided into three parts according to the
scenario description in Section III.

Botnet controlAttack traffic

#irc

www

Master

Internet Corporate Network

Bot

Bot

Fig. 3. Logical topology of the scenario of Low&Slow attack.

A. Initialization

The scenario is composed of four types of nodes, depicted
in Fig. 3, to preserve authenticity of a real attack. The first
type of a node is a victim. In our scenario, the victim is a
Linux based operating system with the Apache web server. The
second type is a bot. This node is the source of attack traffic
against the victim. The third type is the attacker represented
by the master node. This node gives commands to the botnet
through the IRC server, which is the last node. The nodes
were divided into two networks, one simulating the Internet
with the attackers and another one hosting the victim web
server (Corporate Network). The attack was performed with
the slowhttptest [19] tool.

An instrumentation of the monitoring infrastructure is a
part of the first phase. Considering the logical topology, the
location of an observation point was selected on the edge of the
corporate network. This allocation reflects typical deployment
of the monitoring devices. Considering the monitoring facili-
ties, we requested to use a flow-based probe FlowMon in the
LAN Management Node on the ingress/egress interface. Thus
we were able to monitor the incoming and outgoing traffic
from/to the Corporate Network. Neither inside communication
nor the communication between the master node and bots
were monitored as it would only generate useless noise in this
experiment. Moreover, we asked for a probe equipped with
an additional input plugin retrieving information from HTTP
headers [12]. An IPFIX collector was used to capture and store
the data for further analysis.

B. Experiment Run

The run started by the IRC server that sent commands
which made the bot launch the attack against the web server
using the slowhttptest tool. The aim was to open 500 connec-
tions to the server in total at the rate of 20 connections per

TABLE I. EXAMPLES OF CAPTURED FLOWS: # 1 - REGULAR TRAFFIC;
2 - ATTACK AGAINST WEB SERVER WITH enabled MODULE FOR

MITIGATION OF THE ATTACK; # 3 - ATTACK AGAINST WEB SERVER WITH
disabled MODULE FOR MITIGATION OF THE ATTACK; REQ = REQUEST,

RESP = RESPONSE

Type Duration Packets Bytes HTTP Code

1 REQ 0.002 7 612 -
RESP 0.001 5 4203 200

2 REQ 75.050 12 959 -
RESP 60.050 8 930 400

3 REQ 600.950 36 3034 -
RESP 600.950 34 2282 400

second and sent incomplete GET requests. Every 20 seconds
another part of the requests was sent with the maximum size
of 24 bytes. Moreover, every 5 seconds a probing GET request
was sent to check the web server availability. The duration of
both experiments was set to 600 seconds.

In the first experiment, we attacked the web server with a
Low & Slow attack mitigation module enabled. The module
rejects all established connections that do not complete their
request in the predefined timeout and returns HTTP error code
400 (Bad request). In the second experiment, we targeted
the web server without the module enabled. The attack was
successful in both cases, resources of the server were depleted
and it became unavailable.

C. Experiment Evaluation

The third phase is the evaluation of the data captured by the
monitoring infrastructure. Neither master, bots nor web server
CPU or memory utilization measurement showed extraordinary
peaks during the experiments. However, we observed a high
number of established connections on the server side. This
behavior corresponds to the nature of the Low & Slow attack.
Examples of captured flows representing these connections are
shown in Table I.

During the first experiment the server became unavailable
after 14 seconds of the attack. However, as soon as the duration
of the connection reached the timeout set by the mitigation
module, the connection was terminated and the server re-
turned HTTP code 400 . This experiment is represented by
the flows # 2 in Table I. As the connections were terminated,
the server become again available in 60 seconds. This time is
consistent with the mitigation module timeout settings.

In the second experiment the server became unavailable
after 14 seconds and remained in this state for next 586 seconds
until the attack ended. As no mitigation module was activated,
the slowhttptest tool kept all possible connections open and
occupied. So the duration of the flows # 3 in Table I is equal to
the experiment duration. We can observe that slowhttptest sent
32 attacking packets which is consistent with the experiment
settings. The remaining 4 packets were used for connection
establishment and termination.

D. Summary

In this section we presented an example of using the
Cybernetic Proving Ground. After the selection of the attack

and choosing parameters, CPG deployed a web server and
hosts and handled the network settings. Based on the chosen
parameters of the experiment, it also successfully orchestrated
the attack and captured the outcomes represented by IPFIX
flow measurements. Using the measurements we were able to
evaluate the attack. The simulation of the attacks verified that
the mitigation techniques successfully prevent from this class
of attacks. The established testbed can also be used to check
resistance of real web servers that can be instantiated in the
testbed instead of the artificial web server we used for the
experiment.

V. CONCLUSIONS

In this paper we have presented a testbed for simulation of
cyber attacks. The testbed provides a generic way to simulate
and study a wide range of cyber attacks, and facilitates an es-
tablishment of isolated virtual environments that researches can
use to pursue controlled analysis of attacks. The paper proves
the feasibility of the solution, especially it answers the three
questions raised in the introduction (real-world environment,
flexibility vs. usability and authentic attack modeling).

Using virtualization and clouds we managed to provide
an environment where it is possible to configure any common
network configuration and therefore we are able to fulfill needs
of many kinds of security scenarios. The testbed transparently
monitors all components and provides its users with detailed
information about activities performed inside the environments
as requested by them.

The user can use the Cybernetic Proving Ground to set
up isolated environments very quickly without the necessity
to know details about how to configure networking or de-
ploy auxiliary services like monitoring infrastructure. Instead,
users can concentrate solely on the work with the established
environment. Being based on a common cloud solution, the
framework to establish the environments can be deployed
on a wide range of contemporary clouds. The underlying
technology also provides sufficient scalability.

We also introduced a concept of security scenarios, which
provides a generic way to describe an attack and enables to
run its simulation executed in a controlled manner.

Finally, the viability of the solution was demonstrated by
a simulation and monitoring of a particular DDoS attack.

Acknowledgements

This work has been supported by the project “Cybernetic
Proving Ground” (VG20132015103) funded by the Ministry
of the Interior of the Czech Republic.

We appreciate the access to computing facilities (a) owned
by parties and projects contributing to the National Grid
Infrastructure MetaCentrum, provided under the programme
“Projects of Large Infrastructure for Research, Development,
and Innovations” (LM2010005), and (b) provided under the
programme Center CERIT Scientific Cloud, part of the Oper-
ational Program Research and Development for Innovations,
reg. no. CZ. 1.05/3.2.00/08.0144.

REFERENCES

[1] “Prolexic Quarterly Global DDoS Attack Report Q2 2013,” Prolexic
Technologies. Accessed on 6 Sep 2013. [Online]. Available: http://
www.prolexic.com/knowledge-center-ddos-attack-report-2013-q2.html

[2] “Worldwide Infrastructure Security Report,” Arbor Networks. Volume
VII, 2012. Accessed on 6 Sep 2013. [Online]. Available: http:
//pages.arbornetworks.com/rs/arbor/images/WISR2012 EN.pdf

[3] T. Benzel, R. Braden, D. Kim, and C. Neuman, “Experiences With
DETER: A Testbed for Security Research,” in Proceedings of the
2nd IEEE Conference on Testbeds and Research Infrastructure for the
Development of Networks and Communities (TridentCom), 2006.

[4] L. Chen, “Construction of the New Generation Network Security
Testbed-Testbed@ TWISC: Integration and Implementation on Software
Aspect,” 2008, Institute of Computer & Communication, National
Cheng Kung University, Tainan, Taiwan.

[5] B. White, J. Lepreau, L. Stoller, R. Ricci, S. Guruprasad, M. Newbold,
M. Hibler, C. Barb, and A. Joglekar, “An Integrated Experimental
Environment for Distributed Systems and Networks,” Boston, MA, Dec.
2002, pp. 255–270.

[6] A. Arnes, P. Haas, G. Vigna, and R. A. Kemmerer, “Using a virtual se-
curity testbed for digital forensic reconstruction.” Journal in Computer
Virology, vol. 2, no. 4, pp. 275–289, 2007.

[7] B. Van Leeuwen, V. Urias, J. Eldridge, C. Villamarin, and R. Olsberg,
“Performing cyber security analysis using a live, virtual, and construc-
tive (LVC) testbed,” in Military Communications Conference 2010 -
MILCOM 2010, 2010, pp. 1806–1811.

[8] K. Krishna, W. Sun, P. Rana, T. Li, and R. Sekar, “V-NetLab: a cost-
effective platform to support course projects in computer security,”
in Proceedings of 9th Colloquium for Information Systems Security
Education, 2005.

[9] D. Duchamp and G. De Angelis, “A hypervisor based security testbed,”
in Proceedings of the DETER Community Workshop on Cyber Security
Experimentation and Test on DETER Community Workshop on Cyber
Security Experimentation and Test 2007, ser. DETER. Berkeley, CA,
USA: USENIX Association, 2007.

[10] Open vSwitch, “Open vSwitch: An Open Virtual Switch,” accessed on
30 August 2013. [Online]. Available: http://openvswitch.org/

[11] A. Jeffree, P. Congdon, S. Haddock et al., “Media Access Control
(MAC) Bridges and Virtual Bridge Local Area Networks,” IEEE Std
802.1QTM2011, August 2011.

[12] P. Velan, T. Jirsik, and P. Čeleda, “Design and Evaluation of HTTP
Protocol Parsers for IPFIX Measurement,” in Advances in Commu-
nication Networking, Lecture Notes in Computer Science, Vol. 8115,
T. Bauschert, Ed. Heidelberg: Springer Berlin / Heidelberg, 2013, pp.
136–147.

[13] P. Čeleda, P. Velan, M. Rabek, R. Hofstede, and A. Pras, “Large-Scale
Geolocation for NetFlow,” in IFIP/IEEE International Symposium on
Integrated Network Management (IM 2013). Ghent, Belgium: IEEE
Xplore Digital Library, 2013, pp. 1015–1020.

[14] B. Claise, “Cisco Systems NetFlow Services Export Version 9,” RFC
3954 (Informational), Internet Engineering Task Force, 2004.

[15] ——, “Specification of the IP Flow Information Export (IPFIX) Pro-
tocol for the Exchange of IP Traffic Flow Information,” RFC 5101
(Proposed Standard), Internet Engineering Task Force, 2008.

[16] M. Vizváry and J. Vykopal, “RdpMonitor - RDP authentication attack
detection plugin,” Masaryk University, 2012, accessed on 6 Sep
2013. [Online]. Available: http://www.muni.cz/ics/services/csirt/tools/
rdpmonitor

[17] L. Hellemons, L. Hendriks, R. Hofstede, A. Sperotto, R. Sadre, and
A. Pras, “SSHCure: A Flow-Based SSH Intrusion Detection System,”
in Dependable Networks and Services, ser. Lecture Notes in Computer
Science, R. Sadre, J. Novotný, P. Čeleda, M. Waldburger, and B. Stiller,
Eds. Springer Berlin Heidelberg, 2012, vol. 7279, pp. 86–97.

[18] R. Moreno-Vozmediano, R. S. Montero, and I. M. Llorente, “IaaS
Cloud Architecture: From Virtualized Datacenters to Federated Cloud
Infrastructures,” Computer, vol. 45, no. 12, pp. 65–72, 2012.

[19] S. Shekyan, “slowhttptest - Application Layer DoS attack simulator,”
accessed on 8 August 2013. [Online]. Available: http://code.google.
com/p/slowhttptest/

