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Abstract—BGP/MPLS IP VPN and VPLS services are consid-
ered to be widely used in IP/MPLS networks for connecting
customers’ remote sites. However, service providers struggle
with many challenges to provide these services. Management
complexity, equipment costs, and last but not least, scalability
issues emerging as the customers increase in number, are just
some of these problems. Software-defined networking (SDN) is
an emerging paradigm that can solve aforementioned issues using
a logically centralized controller for network devices. In this
paper, we propose a SDN-based solution called SDxVPN which
considerably lowers the complexity of VPN service definition
and management. Our method eliminates complex and costly
device interactions that used to be done through several control
plane protocols and enables customers to determine their service
specifications, define restriction policies and even interconnect
with other customers automatically without operator’s interven-
tion. We describe our prototype implementation of SDxVPN and
its scalability evaluations under several representative scenarios.
The results indicate the effectiveness of the proposed solution for
deployment to provide large scale VPN services.

I. INTRODUCTION

Virtual private network (VPN) services are among the im-
portant services of carrier-grade service providers (SP). These
services are provided for many customers and aim to connect
customers’ geographically distributed sites. Since IP/MPLS is
dominant in the core of carrier class networks, VPN services
are realized using MPLS. While layer 3 VPNs between
customers’ sites are usually provided through ”BGP/MPLS IP
VPN” (Also called MPLS VPN) services, ”VPLS” is the most
famous service for providing layer 2 VPNs through the MPLS
network. In this architecture, the service provider network is
divided into two parts: the core region and the edge. On the
edge, the provider network is connected to the customer’s
network via their provider edge (PE) devices. PE devices are
connected to each other by the core network. In general, the
core network consists of routers using MPLS technology in
order to forward traffic among the PEs, and customer’s sites
are connected to the provider’s network through customer edge
(CE) devices [12].

We have been observing the workflow regarding provision-
ing and maintenance of MPLS VPN and VPLS services in
Iran’s Telecommunication Infrastructure Company1 for over
a year and discovered major issues, also mentioned in some
other related works. These issues are as follows:

1http://www.tic.ir

(1) Management Complexity: MPLS VPN and VPLS ser-
vices impose some serious management difficulties on
service providers. The distributed architecture of control
plane causes complexity in configuration of the network
done in a device by device manner. As a result, SP op-
erators must learn the complicated and time-consuming
VPN configuration process in order to provision and
maintain VPN services for many customers [2][5][17].
These problems are intensified in a multi-vendor en-
vironment. Currently, some network management sys-
tems and configuration automation solutions such as
[6][8][3][5] and even some OSS/BSS solutions have
been engaged in order to facilitate the management of
these services. However, they are still tied to vendor
specific commands and suffer from lots of complexity
in their underlying configuration engines components.

(2) Expensive devices: Since in the current architecture
the control and data planes are vertically integrated,
a considerable number of control functions must be
implemented in PE devices (e.g. MP-BGP, LDP, IS-IS).
In addition, customers’ numerous IP prefixes (in MPLS
VPN) and MAC addresses (in VPLS) must be main-
tained by PE devices. As a consequence, the network
demands expensive and high-performance routers (e.g.
Cisco 7600 series). Using many of these devices is not
a cost effective solution for service providers regarding
the growing number of customers and their excessive
need for PE devices.

(3) Scalability: Currently providers of MPLS VPN and
VPLS services face some serious scalability concerns;
for instance, PE devices provide a limited amount of
memory for storage of MAC addresses and IP prefixes of
numerous customers. Besides, running control functions
(such as MP-BGP for MPLS VPN and maintaining full
mesh of pseudowires among PEs for VPLS) puts a heavy
load on PE devices, especially when the number of
PE devices increase according to growth of services.
Although there has been some attempts to solve the
scalability problems of MPLS VPN and VPLS services
so far [15][19][25], they are just revamping existing
architecture and not solving the fundamental issue.

We believe that software-defined networking (SDN) can
solve these issues. SDN is an emerging network architec-
ture that promises better network management by decoupling978-1-5090-0223-8/16/$31.00 c© 2016 IEEE
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Fig. 1: Design perspective of SDxVPN.

control and data planes. According to this architecture, the
data plane turns into a simple forwarder device consisting of
flow tables to be filled by a logically centralized controller
which runs network applications on top of itself [13]. Data
and control planes communicate through standard protocols
among which OpenFlow [18] is the most widely adopted one.

In this paper, we introduce our software-defined approach
called ”SDxVPN’ by which the SPs can provide MPLS VPN
and VPLS services. We show that our approach can solve
the aforementioned triple issues. First, by using SDxVPN
each customer has a dedicated network application and can
simply provision and maintain VPN services by himself. In
other words, the service provisioning/maintaining processes,
which impose lots of problems on SP’s operators, can be
fulfilled by the customer in a much easier way. Second, by
separating control and data planes, PE devices become simple
forwarders which do not cost as much as current devices do.
As a result, while SPs can use their existing devices, they are
not obligated to buy expensive PE devices for scaling their
networks. Third, we show that our solution is scalable enough
for handling numerous customers’ services and it is not suffer
form scalability issues which has been emerged due to the
running of distributed control plane protocols on PEs.

Figure 1 illustrates the design perspective of SDxVPN with
a hypothetical carrier class network providing VPN services.
Two different customers exist (distinguished by colors) each
having different sites in different locations. The CE devices
of these sites are connected to PE devices so as to have a
VPN network realized by VPLS or MPLS VPN services. PE
routers are changed to software-defined switches controlled by
our logically centralized SDxVPN controller via OpenFlow.
As a result, PE to PE control plane protocols like MP-
BGP and their required attributes such as Route Distinguisher
(RD) and Route Target (RT) will be eliminated. Moreover,
each customer (C1 and C2 in the Figure) has a dedicated
software-defined application, which operates on top of the
SDxVPN runtime, for provisioning and managing his services.
To achieve a practical solution, there are important challenges
that need to be addressed:

• Network Virtualization and Abstraction: By providing
each customer with an abstract network slice, they can
have control over their services. We propose a method

to slice SP network for every customer, thereby equip-
ping them with dedicated applications which are able to
provide new features (such as restrictive policies) that
legacy MPLS VPN and VPLS offered with difficulty.
These features can be configured by the customer himself
without the interference of service provider’s operators.
(Section II)

• Hybrid Networking: Applying SDN to a SP network is
preferably done in a gradual manner which results in a
hybrid network consisting of SDN and non-SDN regions.
In Section III, we show how SDxVPN forms a hybrid
network that enables software-defined PEs to interoperate
with the MPLS core network.

• Scalability: Scalability has always been an important
concern for carrier-grade service providers due to their
large number of customers. Using SDN itself also has
some scalability issues that should be considered. In
Section IV, we elaborate on our architecture and clarify
how our design copes with such issues.

In the remaining sections, we describe a prototype of
SDxVPN and evaluate its scalability in terms of flow table
size (Section V). Finally, we present related works in Section
VI and conclude our work in Section VII.

II. NETWORK VIRTUALIZATION AND ABSTRACTION

Customers prefer to have a flexible control over the VPN
services they are purchasing. Independent management can
be realized if customers are given their own virtual slice of
the network to configure. Slicing the network in the current
architecture is difficult due to the fact that data and control
planes are integrated. Employing software-defined networking
can facilitate network virtualization since virtualizing simple
SDN switches can be done easier [7].

To enable customers to configure and modify their virtual
networks, we have designed a network virtualization method
on the SDxVPN control plane. As illustrated in Figure 1, a
separate application for each customer is installed on top of
the SDxVPN runtime. These applications work on an abstract
network which operates on a slice of the provider’s network.
For a customer who demands MPLS VPN service, SDxVPN
runtime offers a virtual router. On the other hand, SDxVPN
proposes a virtual switch for VPLS services. Each port on
these virtual devices represents a real port of a PE device
connected to the customer’s CE device. Indeed, a virtual device
with its ports give the customer an abstract view of the entire
SP network. The customer application has several features that
will be elaborated in the following subsections.

A. Service Specification

SDxVPN enables customers to define VPN services in
detail. Customers are able to define the services they wish
in terms of a virtual router/switch operating on the ports they
have ordered. Figure 2 demonstrates network slices for two
hypothetical customers, C1 and C2.



(a) A Virtual Router realizes MPLS VPN. (b) A Virtual Switch realizes VPLS.

Fig. 2: Each service operates on its own virtual slice of the service provider network.

1) MPLS VPN: In Figure 2(a), a virtual router with
basic routing functions and four virtual ports is presented.
For determining MPLS VPN service specifications, customer
c1 should first assign an IP-address to each virtual port
based on the IP-address range of the CE interface connected
to it. Secondly, the customer should determine the routing
mechanism. For example, in a simple scenario like this, c1
can adopt static routing which requires specifying prefixes
manually for each site. Based on this specification, a routing
table will be constructed. This routing table will then be
translated into OpenFlow rules by SDxVPN runtime and will
be installed on the PE devices mapped to the virtual ports.
Following the example, packets destined for prefixes p1, p2
and p3 must be forwarded to VP3. Consequently, SDxVPN
runtime configures the respected PE devices by the proper
rules to perform the expected forwarding action. In MPLS
VPN services, since customers might prefer running their own
desired routing protocol to advertise prefixes from one site to
another, an implementation of common routing protocols on
SDxVPN is necessary. To achieve this, we have employed
Quagga [10] as our route engine in the virtual router. Using
this engine, virtual routers will be enabled to co-operate with
CE routers via various routing protocols like OSPF and BGP.
We have designed an OpenFlow adapter for virtual routers that
enables Quagga to exchange routing control messages with CE
devices via OpenFlow enabled PEs (explained in Section IV).

2) VPLS: In Figure 2(b), the virtual switch manifests the
realization of a VPLS service. Customer c2 can set each
virtual switch port to operate on specific VLANs. For example,
VP5 is adjusted to operate on VLANs #1, #2 and #3 since
site z operates on these VLANs. On the other hand, VP6
operates on all VLANs (trunk) because the customer needs his
connected sites to receive traffic from all VLANs. The table
presented on the left side of Figure 2(b) shows ports bound to
VLANs. After this binding, the virtual switch must maintain a
forwarding table (like a real switch) in order to forward traffic
to the appropriate sites. For each virtual switch, we employed
a learning mechanism to remember source MAC address
and its associated ingress virtual port. Finally, like MPLS
VPN, forwarding decisions will be dynamically translated to
OpenFlow rules and will be set on the data plane by SDxVPN

runtime. To clarify, after each site in a VPLS domain sends
traffic to a PE device, if no rule corresponds to the sent frame,
it will broadcast across all other customer’s sites operating in
the frame VLAN. Meanwhile, a copy of the frame will be sent
to the controller for MAC-learning. Subsequently, in order to
mitigate broadcasting the virtual switch installs proper rules
on the PEs to determine the exact path to reach the learnt
MAC address.

On the right side of Figure 2(b) a forwarding table for
the virtual switch is illustrated. For instance, since the MAC
address m2 has already been learned by the virtual switch, the
frame destined for m2 will be forwarded to site w. As another
example, consider a broadcast frame (like an ARP request) or a
frame destined for a MAC address unknown to the forwarding
table, sent from a host within site z having VLAN tag #1.
The frame will broadcast across all sites except w because
vp8 is not bound to VLAN #1. Additionally, according to the
learning mechanism, the source MAC address of the frame
will be added to the forwarding table of the virtual switch.

B. Policy Specification

In SDxVPN, customers can enhance their applications with
policies to restrict VPN domains communications. Restrictions
that would have been applied through configuration of several
CE devices, now can be centrally defined within customer
application. We have provided a simple xml-based language
by virtue of which customers can define policies to limit
traffic entering the virtual switch/router. The structure of this
language is as follows:
<p o l i c y>

<match name=”{ h e a d e r F i l e d−name}”
v a l u e =”{ f i e l d−v a l u e }” />

<apply>
<v i r t u a l p o r t name=”{ vPor t−name}”

d i r e c t i o n =”{ i n / o u t }” />
< / apply>

< / p o l i c y>

In this language, each policy can be applied to the traffic
flowing in or out of the specified virtual ports and matched
against defined packet header fields. Regarding Figure 2(a),
customer c1 can restrict access to a server with IP address
192.168.10.1 inside site F from all sites except site D :



<p o l i c y>
<match name=” d e s t i n a t i o n I P ”

v a l u e =” 1 9 2 . 1 6 8 . 1 0 . 1 ” />
<apply>

<v i r t u a l p o r t name=” vp1 ” d i r e c t i o n =” i n ” />
<v i r t u a l p o r t name=” vp2 ” d i r e c t i o n =” i n ” />

< / apply>
< / p o l i c y>

Policies of all customer applications will be accumulated
and translated into OpenFlow rules with top priority and will
be installed on the PEs’ flow tables.

C. Multi-customer VPN

Customers sometimes use a secure tunnel between one
another’s sites over Internet for special applications such as
inter-banking transactions; However, already established VPN
services of multiple customers could be extended for con-
necting their sites together in a more secure and economical
fashion. One of the interesting features of SDxVPN is ”Multi-
Customer VPN” by which multiple customers can create
a private network and share their sites among each other
without the SP’s operator intervention. In other words, a Multi-
customer VPN involves VPN domains that belong to different
customers. Introducing such compelling feature to the current
MPLS VPN and VPLS services is very difficult. For example,
sharing VPN domains among multiple customers in MPLS
VPN services makes the designing of Import & Export RT
values quite challenging for SP’s operators.

In SDxVPN we realize Multi-customer VPN by introducing
another abstraction over the SP’s network for both MPLS
VPN and VPLS services. The Shared Virtual Switch (SVS)
and Shared Virtual Router (SVR) are provided for customers
who want to form a private network altogether through VPLS
and MPLS-VPN services respectively. The functionality of
SVS and SVR is the same as the functionality of the virtual
switch and router. The only difference is that the ports of these
virtual devices belong to multiple customers and each of these
customers have control over only the ports they own. We note
that policies defined in the previous section can also be applied
to SVS and SVR ports for defining further restrictions.

III. HYBRID NETWORKING

Changing the entire SP network into a software-defined
architecture may cause some problems. For example human
resistance may happen because of the sudden changes in role
and power [13]. Accordingly, adoption of SDN should be
performed in an evolutionary manner emerging as a hybrid
network consisting of a SDN edge co-operating with the non-
SDN core network (See Figure 1). Because of this matter,
Label Distribution Protocol (LDP) [14] must be implemented
on SDxVPN to enable PE devices to send appropriate labeled
traffic to the core network. Each PE device has its own instance
of ”Core-Mediator” component in the SDxVPN control plane
consisting of LDP and Quagga route engine subcomponents.

A Quagga route engine is also required in this step. Since
LDP depends on the routing information base (RIB) provided

by an IGP protocol (usually OSPF or IS-IS) that operates
among the core network and PE devices. Quagga sets an IP
address for each interface connected to a core device and a
router-id for the PE device itself, then establishes adjacency
with the core routers to exchange prefixes. The best route to
all PEs are calculated and the next hop (a core router) is stored
in the forwarding information base (FIB).

The SDxVPN LDP engine operates similar to a legacy
router’s LDP engine. It uses router-id determined by Quagga
to communicate with adjacent routers. Initially, a LDP session
is established with the adjacent routers, and a local label is
assigned to the router-id. The locally generated label will be
sent via label mapping massages to enable core routers to
send traffic to the PE with the expected label. Simultaneously,
label mapping massages will be received from adjacent core
routers containing expected labels to forward traffic to other
PEs. The received labels gradually fill out the local information
base (LIB). In order to reach a target PE, the LIB identifies
a specific outgoing label for every distinguished next hop.
Applying the FIB on the LIB results in a Label Forwarding
Information Base (LFIB) table in which each entry specifies
the next hop and its respected label which determines the Label
Switch Path (LSP) to reach a PE destination.

IV. ARCHITECTURE DESIGN

Applying SDN to a service provider network, as the size of
the network increases, raises three important scalability issues:

(1) The control plane is potentially a bottleneck if the data
plane can not make forwarding decisions and imposes
a heavy load on the controller by sending major part of
traffic to it. [13][26].

(2) The process of flow setup requires interaction between
the data plane (which consists of geographically dis-
tributed PEs) and the controller. This results in forward-
ing latency and degradation of QoS [13][26].

(3) Data plane resource limitation due to the huge number
of flow rules installed on devices [26].

We have considered these scalability issues in the SDxVPN
architecture design. In order to tackle the first and the second
challenges, we adopted a mechanism to install flow rules
proactively. To put it differently, instead of sending the first
packet of each flow to the controller to make forwarding
decision, the controller supplies the data plane with proper
rules to make forwarding decisions earlier. Once the customer
application determines service specifications, appropriate rules
will be installed on PE devices to make forwarding decisions
nearly independent of the controller. This method not only
reduces the load on the controller, but also minimizes the effect
of flow setup latency on QoS. To handle the third challenge,
we employed a data plane efficiency strategy by means of
which flow tables are divided into multiple stages and provide
a dedicated table for each services. Using this mechanism, we
made the rule table size of each service manageable and even
reduced the number of flow entries in some cases.

We now describe the overall architecture of both control
and data planes in SDxVPN.



Fig. 3: SDxVPN Controller Architecture.

A. Control plane

In the control plane, we adopted a combination of
component-based and layered architecture, a common ap-
proach in software-defined networking to manage complexity
[13]. SDxVPN architecture is represented in the Figure 3
where Customer and Core-Mediator applications are imple-
mented independent of the data plane protocol, running in
parallel on top of the SDxVPN Runtime, and communicate
with the lower layer using Restful APIs. SDxVPN runtime has
three main responsibilities: slicing the network for higher-level
applications, discovering the topology and providing each ap-
plication with proper adapters for data plane communication.

In a typical scenario, each customer passes the service
specification to his dedicated application in which the ap-
propriate forwarding tables of the virtual devices will be
constructed. Afterwards, the forwarding tables will be passed
to the OpenFlow adapters which are in charge of handling
inter-communication between network applications and the
OpenFlow PE switches. Therefore, using our method, cus-
tomers will have direct control over their services and the
intervention of SP’s operators will be minimized.

The short description of the main components of SDxVPN
architecture are as follows:

Network Slicer & Discovery. The slicer component coop-
erates with ”Network Discovery” module which is in charge
of discovering software-defined PEs. The discovery can be
done dynamically (through a protocol like LLDP) or manually
(described through XML specification). After gaining topology
of the network, the slicer component can determine the ports of
PEs connected to core routers to exchange the control traffic
(routing and LDP related traffic) between core routers and
core-mediator applications. The slicer also has a database of

PE ports with unique hash-keys assigned to them. Customers
who have purchased a port are given the hash-key to use it in
virtual devices within their application.

Customer Application. Customers define the specification
of their services in the form of an XML-based language em-
bedded within their applications. This simple language enables
customers to describe the features and attributes of the Virtual
Routers, Virtual Switches and Restriction Policies (explained
in Section II) according to their service specification.

Core-Mediator. As described in Section III, the Core-
Mediator component is implemented to realize the commu-
nication between SDxVPN and the MPLS core routers. It
consists of LDP and Quagga route engine subcomponents for
generating proper labels and constructing LSPs among PEs.

OpenFlow Adapters. The OpenFlow adapter is designed
for several reasons: first, to provide the proper abstraction
and transparency of data plane complexity for applications
defined on top of SDxVPN runtime. Second, to satisfy the
need for a thin coordinator to handle communication between
OpenFlow switches and applications. In the current state we
have considered four OpenFlow adapters:

(1) Core-Mediator Adapter: The core-mediator adapter is
responsible for relaying LDP and routing related traffic
from the ”Core-Mediator” application to core routers
and vice versa.

(2) Virtual Router Adapter: The virtual router adaptor
has three main functionalities: 1) Exchanging ARP re-
quest/response between CEs and ARP handler subcom-
ponent within the virtual router. 2) Passing the routing
related traffic between the ”Quagga Route Engine” and
the CEs. 3) Updating flow rules based on the FIB formed
in the ”Routing-Table” subcomponent.

(3) Virtual Switch Adapter: It has two responsibilities: 1)
Sending frames with unknown source MAC address to
the ”MAC Address Table” subcomponent for learning
purposes. 2) Updating flow rules based on the ”MAC
Address Table” and the ”Port To VLAN Binding”.

(4) Policy Adapter: This adapter must convert policies
that customers have defined in their applications to
OpenFlow rules with the highest priority so that they
can be applied to the traffic earlier than default rules.

B. Data plane

The SDxVPN data plane has two key properties: First, a
separate table is allocated for each customer. Isolating cus-
tomer specific forwarding rules makes them more manageable.
It also avoids problems that might occur due to the limitation
of flow table size by specifying a fixed table size for each
service. Second, the adopted MPLS labelling strategy is quite
similar to the traditional approach. Customers’ traffic needs
two labels in order to be delivered properly through the carrier
network: the inner and the outer labels. The inner label also
known as the ”service delimiter tag” distinguishes the traffic
of each service from the others to avoid address overlapping.
The outer label, assigned by LDP module, is used to forward
traffic through the MPLS core to the desired egress PE.



Fig. 4: The Flowchart of SDxVPN Data Plane.

Figure 4 demonstrates the whole process which goes
through the data plane of SDxVPN in a flowchart. Dim big
rectangles in the background represent flow tables which are
distinguished in three different colors: The yellow tables,
namely Ingress-Matcher, Service-Redirector and Next-Hop-
Resolver, handle general routines used for all services; VPLS-
Forwarder and VPLS-MAC-Learner are colored in green and
are VPLS specific tables; and finally, the sole blue table is the
MPLS-VPN-Forwarder and is dedicated to implement routing
for the MPLS VPN service. Decision symbols (diamonds) rep-
resent a match and the small rectangles represent an instruction
(an action list), when the rectangle has a double border-line
this indicates the final state of the pipeline. An arrow line
pointing to another table means a ”goto table” instruction.
In addition, we have added two new symbols to the chart:
the cross symbol means no action (drop packet) and the plus
symbol indicates that a separate copy of the packet flows
through each exiting arrow.

In Ingress-Matcher, the incoming packet will be matched
to an ingress port. If it is coming from customer-side ports,
it will be labelled with the service delimiter tag and the
least significant bit of metadata (LSMD) of the OpenFlow
packet will be set to zero (CU) and forwarded to the Service-
Redirector. But if the ingress port corresponds to core-side
ports, there are two different possibilities: 1) the packet
corresponds to LDP or routing messages, so it will be sent
to the controller immediately. Or, 2) the packet comes from
other sites, therefore its outer-label will be popped and the
LSMD flag will be set to one (CO) and passed to the Service-
Redirector.

The Service-Redirector has the responsibility to redirect
traffic to the service specific table based on the service
delimiter tag. For MPLS VPN, the traffic will be redirected
to the MPLS-VPN-Forwarder table. For VPLS, in a more
complicated scenario the packet will be duplicated and one
copy will be sent to the VPLS-MAC-Learner and the other to

the VPLS-Forwarder.
In MPLS-VPN-Forwarder, the rules are classified in three

categories with different priorities. The category with the
highest priority matches the routing messages coming from
CEs to send them to the controller. The policy matching cate-
gory comes next; it drops packets according to the restriction
rules defined by the customer. The least priority belongs to
forwarding logic, which matches packets against destination
IP prefixes calculated by the virtual router of customer appli-
cation. If the destination belongs to the sites connected directly
to the switch, The inner label will be popped and it will be
forwarded to the appropriate port. Otherwise, an outer-label
corresponding to the target PE will be assigned to the packet.
Thereafter, this packet will be sent to the Next-Hop-Resolver.

In the VPLS-Forwarder, there are categories with different
priorities too. The policy matching category applies and filters
undesired traffic, first. The next priority belongs to the MAC
address aware forwarding, which matches packets against
VLAN and destination MAC addresses and determines the
destination. Obviously, for destination sites directly connected
to the switch, we simply pop the inner-label and steer the
packet towards the proper port. For external sites, on the other
hand, it requires to push the outer-label and send it to the
Next-Hop-Resolver. Finally, the least priority happens in the
condition where either the traffic is a broadcast or fails to
match with MAC address aware forwarding rules. In such
cases, several copies of the frame must be created and sent
to the appropriate sites operating in the frame VLAN. For
both directly connected and external sites, same action as
previously explained above will take place. Notice that by
using the LSMD flag we set earlier, which indicates whether
the traffic has come from core-side ports or not, we apply the
split horizon principle to avoid loops [12] (prevent sending
traffic back to core network).

To minimize broadcasting, virtual switches need a learning
mechanism to install proper flow rules on the VPLS-Forwarder



table. A simple implementation of the learning process would
be sending the source MAC address and ingress port of the
incoming frames to the SDN controller, but in our case we
cannot afford this type of load. In order to handle this, we have
designed a VPLS-MAC-Learner table to make the learning
process more efficient and reduce the traffic that causes heavy
load on the controller. When the controller learns a MAC
address, it registers the source MAC address to this table.
Incoming frames will be matched to this table, so the datapath
does not forward frames with already known MAC addresses
to the controller. As a result, only unknown frames (the first
frame in each traffic burst) will be sent to the controller and
the load on the controller will be minimized.

Overall, we proactively set up rules on the PE devices to
make forwarding decisions as independent as possible from
the controller. The packets redirected to the control plane are
limited to LDP/routing messages and unknown source MAC
addresses. Furthermore, the pipelining strategy used in the data
plane results in a lower number of rules [13]. Besides, by
virtue of separate service tables, more manageable flow tables
are achieved; the number of flow rules for each service can
be restricted separately to prevent Flow-table explosion in the
case of PE devices with limited memory. Thus, we believe
that scalability concerns (discussed at the beginning of this
section) are properly addressed in SDxVPN.

V. IMPLEMENTATION AND EVALUATION

We have implemented a prototype of SDxVPN using Flood-
light [20] and tested it via Mininet [1]. Floodlight is an
enterprise-class Java-based OpenFlow controller that supports
OpenFlow 1.3. It suits our needs for MPLS labelling and
matching. In our implementation, we have worked under two
major assumptions:

(1) We have eliminated the core part of the network and
instead directly linked each pair of PEs, for two rea-
sons: The first reason is that the current version of
OpenVSwitch2 does not support pushing more than one
MPLS label. This problem is also mentioned in [12]
where they have used a VLAN tag as the outer label.
We cannot use this strategy either, since SDxVPN at the
same time supports VPLS service in which customer
VLANs must remain unchanged. The second reason
is that communicating with core devices through LDP
and Quagga engine does not have much effect on our
evaluation which is based on rule table size because
these features do not add many rules to the PE devices.

(2) In order to emulate VPN domains in the Mininet bed,
instead of using real devices for CEs, we used simple
Mininet hosts with several virtual network adapters. The
primary adapter of the host is connected to the PE, and
the secondary adapters represent hosts inside a site.

As for testing and verification of SDxVPN, we defined
several MPLS VPN and VPLS services that have overlapping
addresses. After OpenVSwitches connected to the controller,

2OpenVSwitch 2.3.2 as of Aug 20th 2015

TABLE I: Different scales of a hypothetical service provider.

Scale Number of PEs Number of Services Average Number
of sites per service

1 4 40 6

2 8 70 10

3 10 100 15

4 12 200 20

5 16 300 30

proper rules to realize virtual devices functionalities were
successfully installed on the datapath assuring OpenFlow
Adapters worked as expected. We checked accessibility of
customers’ sites within each service, and also the isolation of
both VPLS and MPLS VPN services to make sure the Slicer
component partitioned the network for each service correctly.
For VPLS services, broadcast packets like ARP successfully
transferred through PE devices. To verify the functionality
of the VPLS-MAC-Learner we generated random traffic
between hosts at a fixed rate and observed packet count
of broadcast rules. We observed after a short while that
the packet count remained unchanged which illustrated the
correctness of the VPLS-MAC-Learner. In order to test multi-
customer VPNs we put sites of different services together in
the form of a multi-customer VPN. Finally we tested the policy
feature by adding restrictive rules for packets (e.g Rejecting
FTP traffic destined to a specific site).

A. Evaluation

There are three major scalability issues which need to be
addressed in our SDN solution: load management on the
controller, latency, and table explosion. Regarding the first and
the second issues, as we explained earlier in section IV, we
have proactively installed proper rules on the PE devices to
make forwarding decisions as independent as possible from the
controller. The only packets redirected to the control plane are
LDP/routing messages and unknown source MAC addresses
which seldom occur.

With regard to the third issue, we conducted an experiment
and presented a numerical evaluation of the flow table size
in various conditions. Table 1 shows hypothetical service
providers in five different scales. For example, the first row
which is the smallest scale represents a service provider with
4 PEs; there are 40 VPN services running each connecting
6 sites on average. In our experiment we assumed that the
number of VPLS and MPLS VPN services are equal. There
are conditions for each site like number of prefixes for MPLS
VPN and number of MAC addresses within each site for VPLS
that might affect the number of rules as well. Based on these
conditions, we investigated three different scenarios: 1) Each
site contains 4 IP prefixes or 30 MAC addresses. 2) Each
site contains 6 IP prefixes or 40 MAC addresses. 3) Each site
contains 8 IP prefixes or 60 MAC Addresses.

In addition to the previous assumptions, we hypothesized
that each customer has specified 5 restriction policies for
each site. Also, we presumed within each VPLS service



Fig. 5: Maximum flow table size among PEs for a hypothetical
service provider in different scales and in various scenarios.

there are 30 different VLANs. In addition, due to the bursty
nature of traffic in the network we generated traffic between
CEs such that hosts fluctuated between active and passive
states. Consequently, ”VPLS-Forwarder” and ”VPLS-MAC-
Learner” tables kept approximately half of the MAC addresses
corresponding to each service in every time frame (Because
of the soft timeout of the flow rules).

To benchmark our method in a difficult situation we con-
nected a forth of the sites for each service to a single PE device
to have a device with the largest number of rules. We ran our
prototype for every scale under each mentioned scenario which
resulted in 15 trials. Figure 5 illustrates the flow table size
with maximum entries among all PEs within each trial. In the
worst case scenario, the bottleneck PE device reached 195K
rules which is considerably less than the capacity of some
currently manufactured OpenFlow devices like NoviFlow [21]
which supports up to 1 million flow entries. Note that the
capacity of flow-tables of OpenFlow devices are increasing
at a fast pace [13]. Furthermore, in realistic deployments an
extra management strategy can be applied to limit the number
of flow rules to a fixed number for each service.

VI. RELATED WORKS

In spite of the eagerness for SDN, there have been few
efforts to apply it in MPLS networks and associated VPN
services. In [4] the authors have mentioned some of the
issues regarding MPLS networks and briefly described their
experience using SDN for MPLS traffic engineering. In [24]
they added the MPLS VPN feature to their previous work.
However, lack of details and ignoring layer 2 VPN services
such as VPLS are some of the drawbacks of their work.
In addition, another group has tried to use SDN in MPLS
networks and MPLS VPN services [17][16]. In particular,
they provide an XML-based language for specification of
customer VPN services and then setup OpenFlow enabled
PE and P devices with appropriate rules. Despite providing
more details in comparison with the previously mentioned
works, there are still downsides to this work. The absence of
network virtualization and abstraction in the control plane for
facilitating network management, disregarding VPLS service
and skipping the needs for routing protocols (for co-operating
with CE devices) are some of these weaknesses.

There has been several efforts trying to gain a hybrid net-
work consisting of both SDN and non-SDN portions working
together, like our solution. In [23] the authors have designed
an IP/SDN architecture called Open Source Hybrid IP/SDN
(OSHI) and proposed a node which can provide VPN services
in a hybrid network. The major difference between this work
and ours is that the main focus of OSHI is on the details of
the IP/SDN data plane rather than the control plane and net-
work management aspects. In [11] another OpenFlow enabled
node is represented that uses Quagga and LDP protocol to
perform MPLS labeling. However, their control plane is still
integrated to the data plane and is not extracted from the device
according to the standard SDN architecture. There are two
other significant works which are not directly related to MPLS
networks and VPN services but inspired us to propose a hybrid
solution. Routeflow [22] proposes virtual routers (mirror of
physical OF devices) on top of the controller in order to
provide routing functions in hybrid networks. A remarkable
deployment of hybrid networking in large-scale networks has
been done in Google B4 [9]. They migrated their backend
network to SDN architecture and accordingly decreased their
costs and simplified traffic engineering in their network.

VII. CONCLUSION

SDxVPN is a software-defined networking solution for
service providers offering MPLS VPN and VPLS services. It
eases management complexity, cuts expenses imposed by tra-
ditional non-SDN devices, and promises to solve the scalabil-
ity issues that service providers have to deal with. In SDxVPN,
customers are equipped with a dedicated network application
through which they can express service specification, define
restriction rules and share their sites with other customers
without SP operator’s effort. SDxVPN is a hybrid network
solution that enables OpenFlow edge devices to co-operate
with the non-SDN core portion, and allows service providers
to migrate to a software-defined architecture gradually. We
addressed scalability concerns in the design of both control
and data planes and prepared a prototype of our solution then
evaluated it in terms of rule table size. The results indicated
that SDxVPN is scalable enough for even large-size service
providers.

In future works, we intend to add some other services
like Multicast VPN and also redesign SDxVPN to work as a
distributed controller to support service providers that expand
over more than one country. In addition, we are interested to
extend our solution to core-routers and propose a Software-
defined solution for the entire service provider network to
simplify MPLS traffic engineering in the core of the network.
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