
PMSR - Poor Man’s Segment Routing,
a minimalistic approach to Segment Routing

and a Traffic Engineering use case
Stefano Salsano(1), Luca Veltri(2), Luca Davoli(3), Pier Luigi Ventre(1), Giuseppe Siracusano(1)

(1) Univ. of Rome Tor Vergata - (2) Univ. of Parma - (3) Univ. of Parma / Consortium GARR
September 2015 – Paper accepted to the Mini-conference track of NOMS 2016

Abstract – The current specification of the Segment Routing
(SR) architecture requires enhancements to the intra-
domain routing protocols (e.g. OSPF and IS-IS) so that the
nodes can advertise the Segment Identifiers (SIDs). We
propose a simpler solution called PMSR (Poor Man’s
Segment Routing), that does not require any enhancement to
routing protocol. We compare the procedures of PMSR with
traditional SR, showing that PMSR can reduce the operation
and management complexity. We analyze the set of use cases
in the current SR drafts and we claim that PMSR can
support the large majority of them. Thanks to the drastic
simplification of the Control Plane, we have been able to
develop an Open Source prototype of PMSR. In the second
part of the paper, we consider a Traffic Engineering use
case, starting from a traditional flow assignment
optimization problem which allocates hop-by-hop paths to
flows. We propose a SR path assignment algorithm and
prove that it is optimal with respect to the number of
segments allocated to a flow.

Keywords – Segment Routing, Network Architecture, Traffic
Engineering, Software Defined Networking, Open Source.

I. INTRODUCTION

The Segment Routing (SR) architecture [1] is based on
the source routing approach: border nodes can control the
edge-to-edge routing of packets at the level of single
flows by adding proper information in packet headers.
This way, it offers advanced traffic steering capabilities in
IP networks maintaining scalability both in the Data and
Control Planes. In fact, internal nodes do not need to store
any per-flow state and the traffic steering decisions have a
configuration impact only on border nodes.

Segment Routing lends itself to support different
applications: Virtual Private Networks (VPNs),
protection/restoration, Traffic Engineering (TE), Service
Function Chaining (SFC), Operation And Management
(OAM). The standardization activity on the Segment
Routing architecture is relatively recent. The status of the
draft is mature and different independent implementations
are now available. Real world deployments are ongoing,
as Segment Routing has captured the interest of network
providers and of “Over the Top” Providers.

On the Data Plane, the Segment Routing architecture
can be implemented in different ways; in particular MPLS
and IPv6 are the two Data Plane technologies that have
been considered in the standardization.

Let us consider the Control Plane. In its current
specification, the Segment Routing architecture [1]
(section II) requires enhancements to routing protocols
(e.g. [2][3]) in order to distribute the Segment Identifiers
(SIDs). In section III we propose a minimalistic approach

that does not need to explicitly distribute information
among nodes and hence does not require enhancements to
the routing protocols. We refer to this solution as “Poor
Man’s Segment Routing” (PMSR), but we claim that it
can efficiently support the large majority of the use cases
of traditional Segment Routing. In section III.B, we
identify a set of use cases among the ones described in
[4][5][6] which can be supported by the proposed
solution.

In general the computation of the source routed paths
and the configuration of the border nodes can be realized
either in a distributed or in a centralized way. In the
former case, the control logic of border nodes needs to be
further enhanced. In the latter case, the Software Defined
Networking (SDN) architecture [7] represents a perfect
fit: a SDN approach can be used to properly configure the
SR services in the border nodes, with minimal or no
increase of the complexity of the border node. The PMSR
approach is in line with the SDN philosophy of removing
complexity from the forwarding nodes.

To the best of our knowledge, currently there are no
Open Source implementations of the IP Control Plane
extensions needed to support the traditional full-fledged
SR architecture (i.e., the routing protocol enhancements).
On the other hand, we have been able to fully implement
the Control Plane and the Data Plane of PMSR starting
from open source tools with rather limited effort [8].

In the second part of this work we focus on Traffic
Engineering aspects. We start from a traditional flow
assignment optimization procedure which allocates hop-
by-hop paths to flows (section IV). Then in section V we
propose a SR path assignment algorithm both for the
traditional SR architecture and for the proposed PMSR.
We prove that, starting from an arbitrary hop-by-hop path,
it can evaluate the optimal SR path (i.e., the one with the
minimum number of segments). We describe a simple
experimental evaluation (section VI) of the algorithm,
showing that its execution time is much smaller than the
execution time of the flow assignment procedure.

II. CURRENT SEGMENT ROUTING ARCHITECTURE

In the Segment Routing architecture [1] the route of a
packet is enforced through an ordered list of
processing/forwarding functions, called segments, that is
inserted in the packet header by a border node. A segment
may consist in a logical or physical element, for example
a network node, a network link, or a packet filter. Each
segment is identified by a Segment ID (SID). The scope
of a SID can be global or local. Global SIDs are defined
globally in a SR domain and are recognized by all

network nodes of the domain. Instead, Local SIDs are
defined locally within a node. The use of local SIDs by
other nodes requires an explicit distribution mechanism or
some form of centralized coordination.

Among the different types of segments described in
[1], we consider Prefix segments, Node segments and IGP
Adjacency segments (IGP stands for Interior Gateway
Protocol). Their corresponding Segments IDs are denoted
as Prefix-SIDs, Node-SIDs and Adj-SIDs.

The Prefix-SIDs represent IGP prefixes, i.e. blocks of
IP addresses that are advertised, by the routing protocol,
through the nodes composing the network. The routing
algorithm (Shortest Path First) is used by each node to
evaluate the shortest path towards the prefix and to add a
corresponding entry in its routing table. With SR, a node
can associate a Prefix-SID to its attached prefix and
advertise it. To clarify with an example in the MPLS
architecture (with absolute SIDs), a node that has the
network 10.10.1.0/24 attached can associate the MPLS
label 10001 as Prefix-SID and advertise this association
using the routing protocol. All nodes will forward the
MPLS label 10001 using the routing information available
for the network 10.0.1.0/24.

A particular case of Prefix-SID is the Node-SID,
which considers a /32 prefix, i.e. a single node. “From
anywhere in the network, a Node-SID enforces the
ECMP-aware shortest-path forwarding of the packet
towards the related node.” ([1]). In particular, the
“loopback interface” address that is used to univocally
refer to a router is associated to a Node-SID and
advertised by each router. Even if a Node-SID is a
particular type of Prefix-SID, from now on we will denote
as Prefix-SIDs only the SIDs that are not Node-SIDs, i.e.
those that effectively represent a range of IP addresses
with a netmask different from /32.

The Node-SIDs, corresponding to the loopback
interface of a node, are advertised by the node itself, while
the Prefix-SIDs are advertised by the nodes that inject the
routes into the IGP domain. The SID values cannot be
arbitrarily chosen by the nodes, but a global coordination
is needed. In fact, a SID (e.g., a MPLS label) cannot
correspond to different prefixes or nodes. Quoting from
[1]: “A Prefix-SID/Node-SID is allocated […] according
to a process similar to IP address allocation. Typically
the Prefix-SID/Node-SID is allocated by policy by the
operator (or Network Management System) and the SID
very rarely changes.”. The global coordination procedure
needs: i) to contact all nodes that can advertise the SIDs;
ii) to configure the mapping of prefixes and loopback
interface addresses to SIDs in a coordinated manner. The
logical scalability of this management procedure is
O(ρ+η), where ρ is the number of prefixes and η is the
number of nodes that will advertise their loopback
interface. Note that the routing protocol extensions are
used to automatically disseminate the mapping between
SIDs and prefixes/nodes, otherwise the scalability of the
configuration would become O(η·(ρ+η)).

The third type of segment defined in [1] is the
Adjacency segment. It corresponds to a unidirectional
adjacency of the routing protocol, that is a specific

outgoing link from a source node towards a destination
node. The Adjacency segments are represented by Adj-
SIDs and, usually, they are local SIDs, that can be
processed only by the node that has advertised it. For
example, assume that node n advertises its global Node-
SID GNn and one local Adj-SID LAnm for the outgoing
interface from node n to node m. A packet carrying the list
of segments {GNn, LAnm} will be forwarded first to node
n, then by the node n towards the node m. The local Adj-
SID needs to be advertised by the node n to all the other
nodes, so that the ingress border node that evaluates SR
path can include it in the segment list, but this has no
impact on the routing state of the crossed nodes. It is also
possible to advertise an Adjacency segment as a global
segment, in the example above a global Adj-SID GAnm
can be advertised by node n. The segment list to obtain
the same behavior will be reduced to a single segment
{GA nm}, but the routing state of all nodes of the network
should be dynamically updated following the distribution
of the global Adj-SID. In fact, all network nodes should
be capable to process the SID GAnm, by forwarding the
packet towards node n, while the node n will be the only
one that will forward the packet on its outgoing interface
toward m. Global Adj-SIDs greatly increase the amount of
routing state that needs to be maintained by nodes.

The Adj-SIDs are interesting for Traffic Engineering
purposes because they allow to map an arbitrary path,
composed by a sequence of links, into a list of segments.
Using only Node-SIDs in SR paths, it is not possible to
use links that are not chosen by the IGP protocol, such as
a backup link with high assigned cost. In fact, Node-SIDs
always forward packets on paths selected by the IGP
protocol.

In the MPLS SR Data Plane the use of indexes has
been proposed for SIDs: the MPLS label, that represents a
segment is generated by combining the index value with
the information related to the sets of MPLS labels made
available by a given node for SR (called Segment Routing
Global Block - SRGB). This approach requires the
distribution of the SRGB information through extensions
to the routing protocols. As mentioned in [5] “Several
operators have indicated that they would deploy the SR
technology in this way: with a single consistent SRGB
across all the nodes. They motivated their choice based on
operational simplicity...”. We also rule out the possibility
of having different SRGBs advertised by the nodes and
we only use “absolute” SIDs.

III. POOR MAN’S SEGMENT ROUTING (PMSR)

In PMSR, we want to avoid the distribution of SIDs
(Segment IDs) by the SR nodes, as it implies significant
extensions to the routing protocols and to the routing
daemons implementing the protocols. For this reason, we
only use global segments types whose SIDs can be
automatically generated by each node in a distributed
fashion, with no need of explicit advertising (and no
extensions to routing protocols). The automatic generation
avoids the need of node management procedures for SID
assignment. We advocate that a significant coverage of

the SR use cases can be achieved by only using global
segments that can be automatically generated.

In case of Node-SIDs, it is relatively easy to define an
automatic mapping between the IP addresses of the node
loopback interface and the SID. For the IPv6 SR
architecture, the mapping is just the identity function: the
global IPv6 address of the loopback interface of a node
correspond to the SID of the node itself. For the MPLS
SR architecture, a deterministic mapping from the IP
address of the loopback interface used as router ID into a
subset of the MPLS label space is needed. Assuming that
the IP addresses of the loopback interfaces of the nodes
belong to a contiguous range of IP addresses, this
mapping is typically as simple as extracting the N
rightmost bits of the IP address and then offsetting the
resulting value in a specifically allocated portion of the
MPLS label space (e.g., N=16, if we want to allow for
65536 different nodes in the IGP routing domain, while
the whole available MPLS label space is of 20 bits).

Mapping arbitrary prefixes into SIDs with an
automatic procedure is not so easy. Therefore, we simply
consider not to use Prefix-SIDs in our simplified
architecture. We will show that we do not lose too much
functionality with this choice. On the other hand, we
cannot get rid of Adj-SIDs, for the reasons explained in
the previous section. Hence, in order to avoid the use of
local Adj-SIDs, we propose the introduction of a new type
of global segment called direct-link segment. A direct-link
segment identifies a target destination node to be reached
(this is similar to a Node segment). If a node has a direct
link toward the destination node, the direct-link segment
forces the node to use the direct link rather than the
shortest path dictated by the routing protocol. Conversely,
if a node does not have a direct link toward the target
node, it will process the segment in the same way it
processes a Node segment toward the same destination
node. We define a class of SIDs with global significance
and corresponding to the direct-link segments, called
direct-link SID or DL-SID. A DL-SID needs to identify
the target node, like the Node-SID, and to carry further
information that identifies it as direct-link SID. When
using MPLS as Data Plane, the DL-SID can be obtained
by the Node-SID adding a bit to distinguish between DL-
SID and Node-SID. When using IPv6 as Data Plane, DL-
SIDs are IPv6 addresses globally valid in the network
domain. They need to be derived in a deterministic way
from the loopback interfaces addresses used as Node-
SIDs. As an example, Node-SIDs can be restricted to have
an odd numbered Device address part of the IPv6 address,
so that the DL-SIDs will be even numbered, obtained by
adding one to the Device address part of the IPv6 address
of the localhost interface.

A limitation of the proposed DL-SID approach is that
it does not allow the handling of multiple parallel links
between two routers at layer 3, i.e. with different IP
addresses. If present, such multi-links must be handled at
layer 2 and seen at IP level as a single link. Having
multiple parallel links bonded at layer 2 is anyway a
typical solution for operators, so we believe that it is not a
critical limitation.

There are advantages in using the automatically
generated global DL-SIDs rather than the local Adj-SIDs
or the global Adj-SID. Consider the strict source routing
case, that is enforcing a path through a set of links. Using
local Adj-SIDs, the segment list will have a length equal
to the double of the number of links. In fact, for each link
to be crossed, first the source node needs to be addressed,
then the local segment will indicate the outgoing link.
Using global Adj-SIDs, the list will be equal to the
number of links, but the global Adj-SIDs needs to be
advertised and one entry for each advertised Adj-SIDs
needs to be added in the routing state of all nodes. In
PMSR, with automatically generated global DL-SIDs the
length of a segment list to enforce a path through a set of
links also equals the number of links (like with the global
Adj-SID), but there is no need to advertise SIDs, and in
each node it is only needed to add an additional entry for
each node instead that for each link.

Let η be the number of nodes and k be the number of
unidirectional links; in the worst case, k=O(η2).

Traditional Segment Routing PMSR

Need to configure nodes with SIDs
Yes, O(η) nodes No

Local
Adj-SID

Global
Adj-SID

Autom. generated
global DL-SIDs

Need to advertise SIDs
Yes Yes No

Routing state
O(η) O(η+k), O(η+ η2) O(2η)

SR path length for a path of λ links
L1 ≤ 2λ L2 ≤ λ L3 ≤ L1

Table 1 – Traditional SR vs. PMSR

Note that, in case of strict source routing, a list of local
Adj-SIDs corresponding to the number of the links would
actually be enough. However, we do not consider this
solution for two reasons. First, because it is critical in case
of failures of nodes/links in the path: intermediate nodes
cannot reroute the packets and protection should be
enforced edge-to-edge. Second, we are interested to the
case of loose source routing (i.e. the segment list only
includes a subset of the nodes in the path), because we
want to use a small number of segments to create paths in
SR. If loose source routing is used, we will see that in
some cases a DL-SID could be not enough to uniquely
identify a specific path and a couple of Node-SID + DL-
SID will be needed. Table 1 summarizes the comparison
between using PMSR (with global DL-SIDs) and the
traditional SR with Local and Global Adj-SIDs.

A. Node tables update procedures

The SR-capable forwarding nodes need to populate
their forwarding tables with entries related to the SIDs. In
the traditional SR architecture, besides the Control Plane
enhancements to distribute the SIDs, proper mechanisms
to insert/update the forwarding table entries are needed.
As an example, when receiving an announcement for a
prefix-SID, the node will add an entry for the SID. If the
forwarding architecture of the node allows it, the entry

will be a “pointer” to the existing routing entry for the
prefix. In this way, the routing toward the prefix can
change, but the entry for the SID does not need to be
updated. If it is not possible to add the “pointer”, the entry
for the SID needs to explicitly specify the next
hop/outgoing interface and, in this case, it needs to be
updated later if the routing towards the prefix will change.
In the MPLS-based architecture, the SID is a MPLS label,
therefore an entry will be added to the label forwarding
tables, either specifying a logical link between the label
and the IP forwarding information of the prefix or
providing the indication of the next hop/output interface.

In the proposed PMSR architecture, the procedures for
populating the forwarding tables are very simple and they
do not rely on the processing of extensions to routing
protocols. The entries for Node-SIDs and DL-SIDs are
added following the routing information for the loopback
addresses of the network nodes in the domain. For each
entry related to a node loopback address there will be one
entry for the corresponding Node-SID and one for the
corresponding DL-SID. As discussed above, if it is
possible to have a “pointer” to the routing entry for the
remote loopback address, the entry will not need to be
updated later on, otherwise the entry will contain the next
hop/outgoing interface towards the remote loopback
address and it will need to be updated if the routing
changes.

For each remote loopback address to be added, the
following steps are needed: 1) evaluate the Node-SID and
the DL-SID for the remote node IP loopback address; 2)
add(update) the entry for the Node-SID, pointing to the
routing entry or extracting the next hop/outgoing interface
from the routing entry; 3) if the node does not have a
direct link toward the remote node, add(update) the entry
for the DL-SID in the same way as described in step 2) for
the Node-SID; if the node has a direct link toward the
remote node, add the entry for the DL-SID pointing to the
direct outgoing link, irrespective of the routing
information. The evaluation of the Node-SID and DL-SID
for the remote node depends on the Data Plane
technology: for MPLS a label will be evaluated, for IPv6
an IP address will be considered. The addition of the
entries will be performed in the label forwarding tables for
MPLS or in the IP forwarding tables for IPv6.

B. Analysis of the use cases

In the following table we report which use cases,
among those presented in [4] [5] [6], are supported by the
PMSR architecture. In general, all use cases which do not
require the Prefix segments are well supported.

Use case Support
IGP-based MPLS Tunneling [4] [5] OK
Fast Reroute [4] [5] [6] (Management free local
protection and Managed local protection)

OK

Path Protection [6] OK
Load balancing among non-parallel links [5] NO(1)
Capacity Planning Process [4] [5] OK
SDN/SR use case [4] [5] OK
Service Chaining [5] Easy(2)
OAM [5] OK

Interoperability with non-Spring nodes [4] OK
Disjointness in dual-plane networks [4] [5] OK(3)
CoS-based Traffic Engineering [5] OK(3)
Egress Peering Traffic Engineering [4] [5] (4)

Distributed CSPF-based Traffic Engineering [5] OK
Deterministic non-ECMP Path [5] OK

(1) This use case requires the advertising of a special adjacency
segment that represents multiple outgoing links. In PMSR, this
could be solved with workarounds based on SDN approach.
(2) In order to support Service Chaining new locally scoped SIDs
have to be introduced. This can be easily introduced in PMSR
with a SDN approach that avoids the need for advertising the
local SIDs using routing protocols.
(3) These use cases include Anycast segments. There is no
substantial difference between these segments and the Node
segments used in PMSR.
(4) This use case includes BGP peering segments, which are
local segments distributed using BGP protocol. PMSR behaves
exactly like traditional SR here: it can support this use case, but
it does not avoid the need of distributing information with BGP.

Table 2 – Use cases

From the analysis of the use cases, we realized that
most of the use cases only require the Node-SIDs. In these
cases, PMSR directly applies bringing the clear advantage
of automatic generation of SIDs with no need to enhance
routing protocols. Some TE related use cases require the
use of Adj-SID, which in PMSR are mapped into DL-
SIDs. Therefore, in the rest of the paper we identify a TE
use case that requires Adj-SID in the traditional SR
architecture, and analyze the implications of using DL-
SIDs in the PMSR architecture.

IV. TRAFFIC ENGINEERING USE CASE

The flow assignment problem consists in assigning a path
to a set of flows. In a Segment Routing context, two types
of flow assignment problems can be addressed: 1) ECMP-
aware SR path assignment; 2) traditional hop-by-hop path
assignment. The former is based on the identification of a
set of nodes to be crossed, assuming that the flow will be
evenly spread between the set of equal-cost paths towards
the next segment by each node in the path. Under this
assumption of even load distribution, it is still possible to
evaluate the resulting load on each link, given the
bandwidth requirement of the flow and the routing tables
of all nodes. The traditional hop-by-hop path assignment
does not rely on load sharing performed by nodes,
because a single path for a flow is deterministically
assigned. The resulting load on each crossed link simply
corresponds to the bandwidth requirement of the flow.

In general, the capacity of exploiting Traffic
Engineering based on the ECMP-aware path assignment is
one key advantage of Segment Routing, with respect to
traditional TE architectures (e.g., based on MPLS) that are
only capable of working with hop-by-hop paths. Anyway,
there can be use cases that advocate the use of
deterministic hop-by-hop paths. As an example scenario,
consider flows corresponding to single TCP connections.
The ECMP output link selection is performed hashing the
TCP ports and it will deterministically select a single
output link for each crossed node. The assumption of even

load sharing across the different ECMP paths is not
verified in this case, leading to a mismatch between the
planned and the actual resource allocation. Another
scenario that calls for deterministic hop-by-hop paths is
that of network topologies which do not present enough
multiple equal-cost paths among source and destination
nodes. Considering these scenarios, we think that the
traditional hop-by-hop flow assignment problem
represents a Traffic Engineering use case worth
considering in a SR architecture. In section IV.A we
present the TE problem along with a known formulation
and heuristic resolution taken from the literature. In
section IV.B we introduce the issue of mapping the hop-
by-hop path into a list of segments. Section V describes
the proposed SR path allocation mechanism and proves its
optimality. In section VI some evaluation results are
discussed. The analysis, proposals and results presented in
these sections are not limited to PMSR but are fully
applicable to traditional SR architecture.

A. Hop-by-hop flow assignment: problem definition and
heuristic resolution

Let F be a set of unidirectional flows fi(si,di,ri), where s is
the source node, d the destination node and r the nominal
bandwidth requirement (b/s); let T(N,E) be a directed
graph representing the topology, N is the set of nodes and
E is the set of directed edges. An edge ej can be
represented as ej(uj,vj,cj), where uj is the source node, vj
the destination node and cj the edge capacity (b/s). An
edge can also be denoted simply as e(u,v), where u is the
source and v the destination. Each flow fi needs to be
mapped into an hop-by-hop path Pi that can be
represented as the set of intermediate nodes from source s
to destination d (denoted as Pni), or equivalently by the
set of links (Pei):
Pni = { ni0=s, ni1, ni2, .. , niN-1, niN=d }
Pei = { ei1, ei2, .. , eiN-1, eiN } where
ei1=e(s, ni1), ei2=e(ni1, ni2),… eiN=e(niN-1, d)

The traditional hop-by-hop path assignment consists in
finding an “optimal” set of paths {Pi}, i.e. a set chosen
according to an optimality criterion. Let us define the flow
mapping variables aij, which tells if flow fi is mapped over
link ej: aij=1 if ej ∈ Pei, aij=0 if ej ∉ Pei. In our
formulation we also include a feasibility check: the sum of
the nominal flow rates of the flows crossing a link needs
to be smaller than the link capacity. In symbols:

∀ link j: ∑
i
 aij · rj < cj

For our experiments we reused (with few changes) the
definition of the flow assignment problem and the
heuristic for its resolution originally proposed in [10] and
[11] (further details are given in [9]). The problem
formulation is very effective in equalizing the load of the
links in the network and avoiding critical bottleneck. In
addition, the heuristic provides a good trade-off between
computation time and optimality of results. Anyway, in
this paper we are not interested in the quality of the
heuristic or in the details of the TE optimization. We just
take as input the set of hop-by-hop path allocated by the
TE algorithm and consider their mapping into SR paths.

B. Mapping hop-by-hop paths into SR paths

A Segment Routing path (SR path) will be denoted as Si
and represented as a sequence of SIDs Sni:
Sni = {ni0=s, ni1, ni2, .. , niN-1, niN=d}
In PMSR, each SID can be a Node-SID or a DL-SID (in
the traditional SR architecture, a SID can also be a local
or global Adj-SID, corresponding to an outgoing
adjacency). A Node-SID is simply represented by the
node name n1, while the corresponding DL-SID is
represented as n1

*. In both cases, the SID corresponds to a
node that needs to be crossed before reaching the
destination node.
Two consecutive nodes in a SR path Sni do not need to be
adjacent as it is for Pni. When two consecutive nodes are
not adjacent, the links that will be crossed depend on the
underlying IP routing. If all the shortest paths from a
given node toward the next node in the SR path insist on
the same output link, then the output link is univocally
determined. If there are multiple shortest paths and they
insist on different output links, then the output link is not
univocally determined. In this case, two options are
possible, depending on the configuration of the router. If
ECMP is enabled, all the “candidate” output links that are
part of a shortest path towards the next node in the SR
path are considered (typically they are selected based on a
hash function over the port numbers of the transport
protocol, in order to balance the traffic). If ECMP is not
enabled, one of the candidate output links is arbitrarily
selected by the node. In both cases, such type of segment
is not applicable to the classical TE approach, in which
the network operator wants to deterministically route a
flow over a given path.
A SR path is congruent to a hop-by-hop path if the route
enforced by the SR path is deterministically equivalent to
the one enforced by the hop-by-hop path. To provide
examples of hop-by-hop paths, of congruent SR paths, and
of the use of DL-SIDs, let us consider the network
topology depicted in Figure 1 and the two hop-by-hop
paths P1 and P2 that are represented using Pn notation as:
Pn1 = { n1, n3, n5, n7 }; Pn2 = { n1, n2, n3, n4, n5, n6, n7 }

3

1 1

6

71

1

3

2

2

1

1

1 1

4

5

3

1 1

6

71

1

3

2

2

1

1

1 1

4

5
3

1 1

6

71

1

3

2

2

1

1

1 1

4

5

P
1

P
2

Figure 1 – A network topology and two hop-by-hop paths

The only SR path congruent to the hop-by-hop path P1 is
Sn1 = { n1, n3, n5

*, n7
* }

in which three segments are needed, and the direct-link
segment IDs n5

* and n7
* are respectively used to select the

links 3→5 and 5→7.
There are multiple SR paths that are congruent to the hop-
by-hop path P2; a subset of them is listed hereafter (they
only contain Node SIDs):
Sn2-a = { n1, n2, n4, n7 }
Sn2-b = { n1, n2, n3, n4, n7 }

Sn2-c = { n1, n2, n3, n4, n5, n6, n7 }
Among them, Sn2-a is the optimal SR path, in the sense
that it has the minimum number of segments.

V. OPTIMAL SR ASSIGNMENT PROCEDURE

In the SR assignment problem, given a hop-by-hop
path P, we want to find a congruent SR path S composed
of the minimum number of segments. In this section we
propose an efficient algorithm for the SR assignment, both
for traditional SR and for the proposed PMSR. We prove
that the algorithm finds the optimal solution, i.e. the
shortest list of SIDs that allows the packets to follow the
assigned hop-by-hop path, according to the default IP
routing tables of the nodes. Let us define the following
notation.

• f: a single traffic flow from node s to node d,
characterized by its hop-by-hop path Pn:
Pn = { n0=s, n1, n2, .. , nN-1, nN=d };

• tep(x,y): portion of the hop-by-hop path starting from
node x and ending with node y. As particular case,
tep(s,d) is the complete hop-by-hop path from s to d;

• SPN(x,y): the number of equal-cost shortest paths from
x to y, based on the current routing tables that are
considered to be already set-up by a link-state routing
protocol (e.g. OSPF), using Shortest Path First
algorithm;

• sp(x,y): the set of the shortest paths from x to y; if
SPN(x,y) ≡ 1, it is the shortest path from x to y;

• prec(p,x): the preceding node of x along a path p;
• succ(p,x): the succeeding node of x along a path p;
• srp: the SR path containing the list of assigned SIDs;
• sp*(x,y*): the set of direct-links biased shortest paths

from x to y* ; a direct-links biased shortest path is built
heading from x to y on a shortest path, unless there is a
direct link from an intermediate node to y, which is
always followed;

• SPN*(x,y*): number of direct-links biased shortest
paths sp*(x,y*).
A pseudo-code representation of the SR assignment

algorithm for the traditional SR architecture is reported in
Figure 2 (T_SRP stands for Traditional SR Path). The
algorithm takes as input the topology and the assigned
hop-by-hop path, and returns as output a congruent
“optimal” SR path. At each step, a hop-by-hop sub-path
between two nodes x and y is compared with the shortest
path between the same pair of nodes. At the beginning
x=s and y=d. If there is only one shortest path and it
matches the hop-by-hop sub-path, y is added to the SR
path. Otherwise (i.e., if there is more than one shortest
path or the shortest path does not match the hop-by-hop
sub-path), if the sub-path tep(x,y) between x and y is just
one link, then it means that there is a direct link between x
and y different from the shortest path; in this case the Adj-
SID corresponding to the link e(x,y) is added to the SR
path. If tep(x,y) is more than one link, the procedure
repeats with y set to the node that precedes the old y. If a
segment has been added, it is checked if y≡d, in which
case the procedure ends and the SR path is returned;

otherwise, if y≠d, the algorithm considers the remaining
part of the path, from y to d. For each direct link different
from the shortest path, this algorithm will add two
segments in the SR path: the preceding node and the Adj-
SID representing the outgoing link.

function T_SRP: (tep(s, d)) → srp
 x = s; y = d; srp = {}
 START:
 p = tep(x, y);
 // check if the sub-path p is the only shortest path
 if ((SPN(x, y) == 1) AND (sp(x, y) == p)) then
 ADD y to srp; goto ADDED:
 else
 // check if the sub-path p is just one link
 if (prec(p, y) == x) then
 ADD Adj-SID of e(x,y) to srp; goto ADDED:
 else
 // no segment added, try with a shorter path
 // (from x to the node that precedes y)
 y = prec(p, y); goto START:
 ADDED:
 if (y != d) then
 // consider the remaining part of the path
 x = y ;y = d; goto START:
 return srp;

Figure 2 – Pseudo-code of SR path assignment for traditional SR

function DL_SRP: srp → dlsrp
 dlsrp = {}
 for (i = 0; i < srp.length; i++)
 if (srp[i] is an Adj-SID) then
 d = destination of srp[i];
 ADD d* to dlsrp;
 else
 if (srp[i+1] is not an Adj-SID) then
 ADD srp[i] to dlsrp;
 else
 if (SPN*(srp[i-1],srp[i+1]) > 1 OR
 sp*(srp[i-1],srp[i+1]*) != tep(srp[i-1],srp[i+1]))
 then
 ADD srp[i] to dlsrp;
 return dlsrp;

Figure 3 – Replacement of adjacency SIDs with direct-link SID

The DL_SRP algorithm reported in Figure 3 takes as
input the SR path (that includes Adj-SIDs) computed by
T_SRP and returns, as output, a SR path that includes only
Node-SIDs and DL-SIDs. When possible, it replaces a
couple of Node-SID + Adj-SID with a single DL-SID.
When a single DL-SID is not enough to enforce the
required hop-by-hop path, the algorithm will leave a
couple Node-SID + DL-SID. The algorithm inspects step-
by-step the SR path and replaces any Adj-SID with the
corresponding DL-SID. The Node-SID that precedes the
Adj-SID is kept only when required, that is when there is
more than one direct-links biased shortest path from the
node that precedes the current Node-SID and the
successive DL-SID, or if such a direct-links biased
shortest path differs from the hop-by-hop path.

A. Optimality of the SR path assignment

In order to demonstrate the optimality of the SR path
assignment, we need the following Lemmas.

Lemma 1: if there is a unique shortest path from s to d,
then there is a unique shortest path from s towards all
intermediate links in the path from s to d (it can be easily
proven by contradiction).

Lemma 2: if it does not exist a unique shortest path
from y to d, then it does not exist a unique shortest path
from a node x to d that passes through y (it can be easily
proven by contradiction).

We start by focusing on the T_SRP algorithm. Let us
consider the hop-by-hop path Pn = {n0=s, n1, n2, .. , nN-1,
nN=d}. Assume that the directed edge from nk-1 to nk is not
the shortest path from nk-1 to nk (or it is one of a set of
equal-cost shortest paths), then an Adj-SID is needed to
enforce the use of the link e(nk-1,nk). Under this
hypothesis, starting from s the T_SRP algorithm can find
one or more segments up to nk-1 (the last segment being
nk-1 itself), but then it will identify the link that requires
the Adj-SID (the first check “if the sub-path p is the only
shortest path” fails and the second check “if the sub-path
p is just one link” is verified) and add it. This happens for
all the links that are not the shortest path between their
source and destination. In the end, the SR path will be
composed at least by all the Adj-SIDs, needed in order to
route the packets on links that are, by definition, off the
shortest path dictated by the routing protocol. Each Adj-
SID will be preceded in the SR path by the Node-SID of
the node that originates the link that requires the Adj-SID.
Now we need to demonstrate that the number of
segments, selected by the algorithms in any portion of the
hop-by-hop path that does not need to include Adj-SIDs,
is the minimum possible. Assume from now on that we
are in a portion of the hop-by-hop that does not need to
include Adj-SIDs (i.e. all links correspond to the only
shortest path between source and destination of the link).
The T_SRP algorithm starts from the source s and tries to
find the longest portion of the hop-by-hop path P=tep(s,d)
that corresponds to a shortest path. If it arrives to the
destination d, then the solution is optimal. If it stops at an
intermediate node x, this means that tep(s,x) is a unique
shortest path, while tep(s,succ(P,x)) is not a unique
shortest path. The algorithm tries to find segments from x
to d. If there is a unique shortest path from x to d, then the
algorithm has found a SR path with two segments:
{ s,x,d}. This is optimal, as a solution with one segment
does not exist (we know that tep(s,succ(P,x)) is not a
unique shortest path and, by Lemma 1, there cannot be a
unique shortest path from s to d). If the algorithm finds
that an intermediate node y is needed from x to d, then we
have a three segments solution: {s,x,y,d}, and we prove
that we cannot find a two segments solution {s,z,d} for
any z in P. In fact, the segment z cannot be after x by
construction. It cannot be before x because by Lemma 2
there cannot be a unique shortest path from z to d passing
through x. This reasoning can be extended to any number
of segments: each time that the algorithm introduces a
segment, it is not possible to find a solution with a smaller
number of segments.

It is easy to prove that the DL_SRP algorithm is
optimal as well. In fact, it includes one DL-SID for each
Adj-SID (they correspond to the minimum number of
segments). In each portion of the path without Adj-SID,
the algorithm verifies if it is possible to reduce the
segments eliminating the last Node-SID and using only
the DL-SID.

VI. IMPLEMENTATION AND EVALUATION

The PMSR solution and TE algorithms have been
implemented, further details (referring to a simpler, earlier
version) are described in [8][9]. The source code is
available at [13], including the Java implementation of the
flow assignment and SR path assignment algorithms. A
ready-to-go virtual machine is available ([12]).

Hereafter we report a simple experimental evaluation
of the processing time of the proposed DL-SID-based SR
assignment algorithm. We considered a relatively large
scale topology (Figure 4) with 153 nodes and 354
unidirectional links, the “Colt Telecom” topology which
is included in the Topology zoo dataset [14], assuming
that all links have the same capacity. We generated a
random set of traffic demands as follows. We randomly
selected 40% of the nodes to be PE (e.g., ingress/egress),
then we randomly selected 20% of the PE couples to be
active source/destination of traffic flows. For each active
couple of PEs, in each direction we have an average of 3.5
flows (the number of flows has a geometrical distribution)
with the sum of the flow rates equals to 10% of the
capacity of a link and the size of each flow that has a
negative exponential distribution. With these parameters,
we generated a list of 2460 flows along their bit rate. This
demand largely overcomes the network capacity, so that
only 940 flows can be allocated using the implemented
algorithms. We selected only the accepted flows,
obtaining a traffic demand that closely matches the full
network capacity, being able to have hop-by-hop paths
that diverge from the shortest path, but keeping the
acceptance ratio of the flow close to 1.

Figure 4 – Colt Telecom (08/2010) topology from Topology Zoo (each

link in the picture corresponds to two unidirectional links)

Figure 5 reports the time spent for the computation of
TE paths (flow assignment heuristic) and of SR paths (SR
assignment algorithm). We use a PC with an Intel Core i7
2Ghz and 6GB RAM. Note that processing time of the
flow assignment heuristic has a step-wise dependence on
the number of iterations of the heuristic optimization
cycle, which tends to increase with the number of flows.
Therefore a set of seemingly parallel lines can be
appreciated in the figure (each one corresponds to a given
number of cycles). As it is possible to see from the figure,
the processing time of the SR assignment algorithm is
negligible with respect to the flow assignment heuristic. In
the considered range (up to 900 admitted flows) it was
possible to run both algorithms and allocate the flows in
less than 8 seconds. This performance seems adequate for
periodic (e.g., nightly) reallocation procedures that aim to
evenly redistribute the load on the network links.

Figure 5 – Execution time of the algorithms

VII. STATE OF THE ART AND RELATED PROJECTS

The Segment Routing architecture is being standardized
within the IETF by the SPRING working group [17]. In
sections I and II we have introduced SR technology and
provided references to the active draft specifications.
SR-IPv6 [18] provides an Open Source implementation of
IPv6 Data Plane for SR. Control Plane and Traffic
Engineering aspects are not covered in [18].

The SPRING-OPEN project [19] is an ONOS [20] use
case, which provides an SDN-based implementation of
SR. Its architecture is based on a logically centralized
Control Plane, built on top of ONOS, and it drastically
eliminates the IP/MPLS Control Plane from the network.
Compared to SPRING-OPEN, our solution still considers
a traditional IP Control Plane (e.g., based on routing
protocols like OSPF or IS-IS).

In both [21] and [22] the authors deal with SR-based
ECMP-aware Traffic Engineering, proposing solutions for
the optimal allocation of traffic demands using an ECMP-
aware approach. Our TE problem is different, as we start
from hop-by-hop paths and try to optimize their mapping
into SR paths, keeping the constraint of the fixed routing
over the given hop-by-hop path.

In [23] two SR testbeds are described, one based on a
SDN scenario and another one based on a PCE scenario.
Both testbeds share a common SR Path computation
engine, that performs the hop-by-hop path computation
and SR path assignment. The proposed SR path
assignment algorithm provides the shortest segment list,
but the solution only considers global Node-SID,
therefore it cannot be applied to topologies with arbitrary
IGP link costs. In [24] a rather general TE algorithm for
SR is considered. It evaluates an optimal path for a flow,
according to an IGP metric and taking into account
bandwidth and delay constraints; then it minimizes (or
enforces a bound on) the number of segments. It considers
ECMP forwarding by default, but can also introduce
constraints to support a deterministic hop-by-hop path.
The solution is not able to support arbitrary hop-by-hop
paths when arbitrary IGP link costs are used.

VIII. CONCLUSIONS

In this paper we presented PMSR, a Segment Routing
solution that does not require enhancements to routing
protocols. PMSR is based on the use of global segment
identifiers that can be automatically generated by nodes.
We discussed the advantages of PMSR (in terms of
simplification of management and reduction of node
complexity) and advocated the suitability of PMSR to
support the typical SR use cases. As the PMSR requires

the introduction of Direct Link Segments to replace
traditional SR Adjacency Segments, we considered a
Traffic Engineering use case that requires the Adjacency
Segments. We proposed an algorithm for the SR path
allocation, useful for both traditional SR with Adjacency
Segments and for PMSR with direct-link Segments. We
proved that it is optimal in terms of the number of
allocated segments and empirically verified that the
execution time is small compared with the TE heuristic
preliminarily needed to allocate the hop-by-hop path.

ACKNOWLEDGMENTS

This work builds on the results of DREAMER project,
partly funded by the EU as one of the beneficiary projects
of the GÉANT Open Call research initiative.

REFERENCES
[1] C. Filsfils, S. Previdi (Eds.) et al. “Segment Routing Architecture”,

IETF draft-ietf-spring-segment-routing-04, July 2015
[2] P. Psenak, S. Previdi (Eds.) et al. “OSPF Extensions for Segment

Routing”, IETF draft-ietf-ospf-segment-routing-extensions-05,
June 2015

[3] S. Previdi (Ed.) et al. “IS-IS Extensions for Segment Routing”,
IETF draft-ietf-isis-segment-routing-extensions-05, June 2015

[4] S. Previdi, C. Filsfils (Eds.), “SPRING Problem Statement and
Requirements”, draft-ietf-spring-problem-statement-04

[5] C. Filsfils, P. Francois (Eds.), et al. “Segment Routing Use Cases”,
IETF draft-filsfils-spring-segment-routing-use-cases-01, October
2014

[6] P. Francois, C. Filsfils, B. Decraene, R. Shakir, “Use-cases for
Resiliency in SPRING”, IETF draft-ietf-spring-resiliency-use-
cases-01, March, 2015

[7] “Software-Defined Networking: The New Norm for Networks”,
ONF White Paper, April 13, 2012

[8] L. Davoli, L. Veltri, P. L. Ventre, G. Siracusano, S. Salsano,
“Traffic Engineering with Segment Routing: SDN-based
Architectural Design and Open Source Implementation”, EWSDN
2015, 30 September – 2 October 2015, Bilbao, Spain

[9] L. Davoli, L. Veltri, P. L. Ventre, G. Siracusano, S. Salsano,
“Traffic Engineering with Segment Routing: SDN-based
Architectural Design and Open Source Implementation”, extended
version of poster presented at EWSDN 2015, available at
https://arxiv.org/abs/1506.05941

[10] L. Fratta, M. Gerla, L. Kleinrock, The flow deviation method: an
approach to store-and-forward communication network design,
Network, 3(2):97-133, 1973, John Wiley & Sons

[11] M. Gerla, L. Kleinrock, On the topological design of distributed
computer networks, IEEE Transactions on Communications,
25(1):48-60, 1977

[12] OSHI homepage http://netgroup.uniroma2.it/OSHI
[13] https://github.com/netgroup/SDN-TE-SR
[14] S. Knight et al. “The Internet Topology Zoo”, IEEE Journal on

Selected Areas in Communications, Vol. 29, No. 9, October 2011
[15] S. Salsano et al. "OSHI-Open Source Hybrid IP/SDN networking

and Mantoo-a set of management tools for controlling SDN/NFV
experiments." arXiv preprint arXiv:1505.03579 (2015).

[16] C. Filsfils et al., “Segment Routing with MPLS data plane”, IETF
draft-ietf-spring-segment-routing-mpls-00, November 2014.

[17] Spring homepage - https://tools.ietf.org/wg/spring/.
[18] SR-IPv6 homepage - http://www.segment-routing.org/.
[19] SPRING-OPEN homepage -

https://wiki.onosproject.org/display/ONOS10/Segment+Routing
[20] ONOS homepage - http://onosproject.org/
[21] R, Hartert,, et al. “Solving the General Segment Routing Problem

with Constraint Programming Techniques”
[22] R. Bhatia, et al. “Optimized network traffic engineering using

segment routing”, IEEE INFOCOM 2015
[23] A. Sgambelluri, et al. “Experimental Demonstration of Segment

Routing”, Journal of Lightwave Technology, Vol: PP , Issue: 99
[24] F. Lazzeri, et al., “Efficient label encoding in segment-routing

enabled optical networks”, ONDM 2015

