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Abstract – The current specification of the Segment Routing 
(SR) architecture requires enhancements to the intra-
domain routing protocols (e.g. OSPF and IS-IS) so that the 
nodes can advertise the Segment Identifiers (SIDs). We 
propose a simpler solution called PMSR (Poor Man’s 
Segment Routing), that does not require any enhancement to 
routing protocol. We compare the procedures of PMSR with 
traditional SR, showing that PMSR can reduce the operation 
and management complexity. We analyze the set of use cases 
in the current SR drafts and we claim that PMSR can 
support the large majority of them. Thanks to the drastic 
simplification of the Control Plane, we have been able to 
develop an Open Source prototype of PMSR. In the second 
part of the paper, we consider a Traffic Engineering use 
case, starting from a traditional flow assignment 
optimization problem which allocates hop-by-hop paths to 
flows. We propose a SR path assignment algorithm and 
prove that it is optimal with respect to the number of 
segments allocated to a flow.  
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I. INTRODUCTION 

The Segment Routing (SR) architecture [1] is based on 
the source routing approach: border nodes can control the 
edge-to-edge routing of packets at the level of single 
flows by adding proper information in packet headers. 
This way, it offers advanced traffic steering capabilities in 
IP networks maintaining scalability both in the Data and 
Control Planes. In fact, internal nodes do not need to store 
any per-flow state and the traffic steering decisions have a 
configuration impact only on border nodes. 

Segment Routing lends itself to support different 
applications: Virtual Private Networks (VPNs), 
protection/restoration, Traffic Engineering (TE), Service 
Function Chaining (SFC), Operation And Management 
(OAM). The standardization activity on the Segment 
Routing architecture is relatively recent. The status of the 
draft is mature and different independent implementations 
are now available. Real world deployments are ongoing, 
as Segment Routing has captured the interest of network 
providers and of “Over the Top” Providers. 

On the Data Plane, the Segment Routing architecture 
can be implemented in different ways; in particular MPLS 
and IPv6 are the two Data Plane technologies that have 
been considered in the standardization. 

Let us consider the Control Plane. In its current 
specification, the Segment Routing architecture [1] 
(section II) requires enhancements to routing protocols 
(e.g. [2][3]) in order to distribute the Segment Identifiers 
(SIDs). In section III we propose a minimalistic approach 

that does not need to explicitly distribute information 
among nodes and hence does not require enhancements to 
the routing protocols. We refer to this solution as “Poor 
Man’s Segment Routing” (PMSR), but we claim that it 
can efficiently support the large majority of the use cases 
of traditional Segment Routing. In section III.B, we 
identify a set of use cases among the ones described in 
[4][5][6] which can be supported by the proposed 
solution. 

In general the computation of the source routed paths 
and the configuration of the border nodes can be realized 
either in a distributed or in a centralized way. In the 
former case, the control logic of border nodes needs to be 
further enhanced. In the latter case, the Software Defined 
Networking (SDN) architecture [7] represents a perfect 
fit: a SDN approach can be used to properly configure the 
SR services in the border nodes, with minimal or no 
increase of the complexity of the border node. The PMSR 
approach is in line with the SDN philosophy of removing 
complexity from the forwarding nodes. 

To the best of our knowledge, currently there are no 
Open Source implementations of the IP Control Plane 
extensions needed to support the traditional full-fledged 
SR architecture (i.e., the routing protocol enhancements). 
On the other hand, we have been able to fully implement 
the Control Plane and the Data Plane of PMSR starting 
from open source tools with rather limited effort [8]. 

In the second part of this work we focus on Traffic 
Engineering aspects. We start from a traditional flow 
assignment optimization procedure which allocates hop-
by-hop paths to flows (section IV). Then in section V we 
propose a SR path assignment algorithm both for the 
traditional SR architecture and for the proposed PMSR. 
We prove that, starting from an arbitrary hop-by-hop path, 
it can evaluate the optimal SR path (i.e., the one with the 
minimum number of segments). We describe a simple 
experimental evaluation (section VI) of the algorithm, 
showing that its execution time is much smaller than the 
execution time of the flow assignment procedure.  

II. CURRENT SEGMENT ROUTING ARCHITECTURE 

In the Segment Routing architecture [1] the route of a 
packet is enforced through an ordered list of 
processing/forwarding functions, called segments, that is 
inserted in the packet header by a border node. A segment 
may consist in a logical or physical element, for example 
a network node, a network link, or a packet filter. Each 
segment is identified by a Segment ID (SID). The scope 
of a SID can be global or local. Global SIDs are defined 
globally in a SR domain and are recognized by all 



network nodes of the domain. Instead, Local SIDs are 
defined locally within a node. The use of local SIDs by 
other nodes requires an explicit distribution mechanism or 
some form of centralized coordination. 

Among the different types of segments described in 
[1], we consider Prefix segments, Node segments and IGP 
Adjacency segments (IGP stands for Interior Gateway 
Protocol). Their corresponding Segments IDs are denoted 
as Prefix-SIDs, Node-SIDs and Adj-SIDs. 

The Prefix-SIDs represent IGP prefixes, i.e. blocks of 
IP addresses that are advertised, by the routing protocol, 
through the nodes composing the network. The routing 
algorithm (Shortest Path First) is used by each node to 
evaluate the shortest path towards the prefix and to add a 
corresponding entry in its routing table. With SR, a node 
can associate a Prefix-SID to its attached prefix and 
advertise it. To clarify with an example in the MPLS 
architecture (with absolute SIDs), a node that has the 
network 10.10.1.0/24 attached can associate the MPLS 
label 10001 as Prefix-SID and advertise this association 
using the routing protocol. All nodes will forward the 
MPLS label 10001 using the routing information available 
for the network 10.0.1.0/24. 

A particular case of Prefix-SID is the Node-SID, 
which considers a /32 prefix, i.e. a single node. “From 
anywhere in the network, a Node-SID enforces the 
ECMP-aware shortest-path forwarding of the packet 
towards the related node.” ([1]). In particular, the 
“loopback interface” address that is used to univocally 
refer to a router is associated to a Node-SID and 
advertised by each router. Even if a Node-SID is a 
particular type of Prefix-SID, from now on we will denote 
as Prefix-SIDs only the SIDs that are not Node-SIDs, i.e. 
those that effectively represent a range of IP addresses 
with a netmask different from /32.  

The Node-SIDs, corresponding to the loopback 
interface of a node, are advertised by the node itself, while 
the Prefix-SIDs are advertised by the nodes that inject the 
routes into the IGP domain. The SID values cannot be 
arbitrarily chosen by the nodes, but a global coordination 
is needed. In fact, a SID (e.g., a MPLS label) cannot 
correspond to different prefixes or nodes. Quoting from 
[1]: “A Prefix-SID/Node-SID is allocated […] according 
to a process similar to IP address allocation. Typically 
the Prefix-SID/Node-SID is allocated by policy by the 
operator (or Network Management System) and the SID 
very rarely changes.”. The global coordination procedure 
needs: i) to contact all nodes that can advertise the SIDs; 
ii) to configure the mapping of prefixes and loopback 
interface addresses to SIDs in a coordinated manner. The 
logical scalability of this management procedure is 
O(ρ+η), where ρ is the number of prefixes and η is the 
number of nodes that will advertise their loopback 
interface. Note that the routing protocol extensions are 
used to automatically disseminate the mapping between 
SIDs and prefixes/nodes, otherwise the scalability of the 
configuration would become O(η·(ρ+η)). 

The third type of segment defined in [1] is the 
Adjacency segment. It corresponds to a unidirectional 
adjacency of the routing protocol, that is a specific 

outgoing link from a source node towards a destination 
node. The Adjacency segments are represented by Adj-
SIDs and, usually, they are local SIDs, that can be 
processed only by the node that has advertised it. For 
example, assume that node n advertises its global Node-
SID GNn and one local Adj-SID LAnm for the outgoing 
interface from node n to node m. A packet carrying the list 
of segments {GNn, LAnm} will be forwarded first to node 
n, then by the node n towards the node m. The local Adj-
SID needs to be advertised by the node n to all the other 
nodes, so that the ingress border node that evaluates SR 
path can include it in the segment list, but this has no 
impact on the routing state of the crossed nodes. It is also 
possible to advertise an Adjacency segment as a global 
segment, in the example above a global Adj-SID GAnm 
can be advertised by node n. The segment list to obtain 
the same behavior will be reduced to a single segment 
{GA nm}, but the routing state of all nodes of the network 
should be dynamically updated following the distribution 
of the global Adj-SID. In fact, all network nodes should 
be capable to process the SID GAnm, by forwarding the 
packet towards node n, while the node n will be the only 
one that will forward the packet on its outgoing interface 
toward m. Global Adj-SIDs greatly increase the amount of 
routing state that needs to be maintained by nodes. 

The Adj-SIDs are interesting for Traffic Engineering 
purposes because they allow to map an arbitrary path, 
composed by a sequence of links, into a list of segments. 
Using only Node-SIDs in SR paths, it is not possible to 
use links that are not chosen by the IGP protocol, such as 
a backup link with high assigned cost. In fact, Node-SIDs 
always forward packets on paths selected by the IGP 
protocol. 

In the MPLS SR Data Plane the use of indexes has 
been proposed for SIDs: the MPLS label, that represents a 
segment is generated by combining the index value with 
the information related to the sets of MPLS labels made 
available by a given node for SR (called Segment Routing 
Global Block - SRGB). This approach requires the 
distribution of the SRGB information through extensions 
to the routing protocols. As mentioned in [5] “Several 
operators have indicated that they would deploy the SR 
technology in this way: with a single consistent SRGB 
across all the nodes. They motivated their choice based on 
operational simplicity...”. We also rule out the possibility 
of having different SRGBs advertised by the nodes and 
we only use “absolute” SIDs. 

III.  POOR MAN’S SEGMENT ROUTING (PMSR) 

In PMSR, we want to avoid the distribution of SIDs 
(Segment IDs) by the SR nodes, as it implies significant 
extensions to the routing protocols and to the routing 
daemons implementing the protocols. For this reason, we 
only use global segments types whose SIDs can be 
automatically generated by each node in a distributed 
fashion, with no need of explicit advertising (and no 
extensions to routing protocols). The automatic generation 
avoids the need of node management procedures for SID 
assignment. We advocate that a significant coverage of 



the SR use cases can be achieved by only using global 
segments that can be automatically generated. 

In case of Node-SIDs, it is relatively easy to define an 
automatic mapping between the IP addresses of the node 
loopback interface and the SID. For the IPv6 SR 
architecture, the mapping is just the identity function: the 
global IPv6 address of the loopback interface of a node 
correspond to the SID of the node itself. For the MPLS 
SR architecture, a deterministic mapping from the IP 
address of the loopback interface used as router ID into a 
subset of the MPLS label space is needed. Assuming that 
the IP addresses of the loopback interfaces of the nodes 
belong to a contiguous range of IP addresses, this 
mapping is typically as simple as extracting the N 
rightmost bits of the IP address and then offsetting the 
resulting value in a specifically allocated portion of the 
MPLS label space (e.g., N=16, if we want to allow for 
65536 different nodes in the IGP routing domain, while 
the whole available MPLS label space is of 20 bits). 

Mapping arbitrary prefixes into SIDs with an 
automatic procedure is not so easy. Therefore, we simply 
consider not to use Prefix-SIDs in our simplified 
architecture. We will show that we do not lose too much 
functionality with this choice. On the other hand, we 
cannot get rid of Adj-SIDs, for the reasons explained in 
the previous section. Hence, in order to avoid the use of 
local Adj-SIDs, we propose the introduction of a new type 
of global segment called direct-link segment. A direct-link 
segment identifies a target destination node to be reached 
(this is similar to a Node segment). If a node has a direct 
link toward the destination node, the direct-link segment 
forces the node to use the direct link rather than the 
shortest path dictated by the routing protocol. Conversely, 
if a node does not have a direct link toward the target 
node, it will process the segment in the same way it 
processes a Node segment toward the same destination 
node. We define a class of SIDs with global significance 
and corresponding to the direct-link segments, called 
direct-link SID or DL-SID. A DL-SID needs to identify 
the target node, like the Node-SID, and to carry further 
information that identifies it as direct-link SID. When 
using MPLS as Data Plane, the DL-SID can be obtained 
by the Node-SID adding a bit to distinguish between DL-
SID and Node-SID. When using IPv6 as Data Plane, DL-
SIDs are IPv6 addresses globally valid in the network 
domain. They need to be derived in a deterministic way 
from the loopback interfaces addresses used as Node-
SIDs. As an example, Node-SIDs can be restricted to have 
an odd numbered Device address part of the IPv6 address, 
so that the DL-SIDs will be even numbered, obtained by 
adding one to the Device address part of the IPv6 address 
of the localhost interface. 

A limitation of the proposed DL-SID approach is that 
it does not allow the handling of multiple parallel links 
between two routers at layer 3, i.e. with different IP 
addresses. If present, such multi-links must be handled at 
layer 2 and seen at IP level as a single link. Having 
multiple parallel links bonded at layer 2 is anyway a 
typical solution for operators, so we believe that it is not a 
critical limitation. 

There are advantages in using the automatically 
generated global DL-SIDs rather than the local Adj-SIDs 
or the global Adj-SID. Consider the strict source routing 
case, that is enforcing a path through a set of links. Using 
local Adj-SIDs, the segment list will have a length equal 
to the double of the number of links. In fact, for each link 
to be crossed, first the source node needs to be addressed, 
then the local segment will indicate the outgoing link. 
Using global Adj-SIDs, the list will be equal to the 
number of links, but the global Adj-SIDs needs to be 
advertised and one entry for each advertised Adj-SIDs 
needs to be added in the routing state of all nodes. In 
PMSR, with automatically generated global DL-SIDs the 
length of a segment list to enforce a path through a set of 
links also equals the number of links (like with the global 
Adj-SID), but there is no need to advertise SIDs, and in 
each node it is only needed to add an additional entry for 
each node instead that for each link. 

Let η be the number of nodes and k be the number of 
unidirectional links; in the worst case, k=O(η2). 

 
Traditional Segment Routing PMSR 

Need to configure nodes with SIDs 
Yes, O(η) nodes No  

Local 
Adj-SID 

Global 
Adj-SID 

Autom. generated 
global DL-SIDs 

Need to advertise SIDs 
Yes Yes No  

Routing state 
O(η) O(η+k), O(η+  η2) O(2η) 

SR path length for a path of λ links 
L1 ≤ 2λ L2 ≤ λ L3 ≤ L1 

Table 1 – Traditional SR vs. PMSR 

Note that, in case of strict source routing, a list of local 
Adj-SIDs corresponding to the number of the links would 
actually be enough. However, we do not consider this 
solution for two reasons. First, because it is critical in case 
of failures of nodes/links in the path: intermediate nodes 
cannot reroute the packets and protection should be 
enforced edge-to-edge. Second, we are interested to the 
case of loose source routing (i.e. the segment list only 
includes a subset of the nodes in the path), because we 
want to use a small number of segments to create paths in 
SR. If loose source routing is used, we will see that in 
some cases a DL-SID could be not enough to uniquely 
identify a specific path and a couple of Node-SID + DL-
SID will be needed. Table 1 summarizes the comparison 
between using PMSR (with global DL-SIDs) and the 
traditional SR with Local and Global Adj-SIDs. 

A. Node tables update procedures 

The SR-capable forwarding nodes need to populate 
their forwarding tables with entries related to the SIDs. In 
the traditional SR architecture, besides the Control Plane 
enhancements to distribute the SIDs, proper mechanisms 
to insert/update the forwarding table entries are needed. 
As an example, when receiving an announcement for a 
prefix-SID, the node will add an entry for the SID. If the 
forwarding architecture of the node allows it, the entry 



will be a “pointer” to the existing routing entry for the 
prefix. In this way, the routing toward the prefix can 
change, but the entry for the SID does not need to be 
updated. If it is not possible to add the “pointer”, the entry 
for the SID needs to explicitly specify the next 
hop/outgoing interface and, in this case, it needs to be 
updated later if the routing towards the prefix will change. 
In the MPLS-based architecture, the SID is a MPLS label, 
therefore an entry will be added to the label forwarding 
tables, either specifying a logical link between the label 
and the IP forwarding information of the prefix or 
providing the indication of the next hop/output interface. 

In the proposed PMSR architecture, the procedures for 
populating the forwarding tables are very simple and they 
do not rely on the processing of extensions to routing 
protocols. The entries for Node-SIDs and DL-SIDs are 
added following the routing information for the loopback 
addresses of the network nodes in the domain. For each 
entry related to a node loopback address there will be one 
entry for the corresponding Node-SID and one for the 
corresponding DL-SID. As discussed above, if it is 
possible to have a “pointer” to the routing entry for the 
remote loopback address, the entry will not need to be 
updated later on, otherwise the entry will contain the next 
hop/outgoing interface towards the remote loopback 
address and it will need to be updated if the routing 
changes.  

For each remote loopback address to be added, the 
following steps are needed: 1) evaluate the Node-SID and 
the DL-SID for the remote node IP loopback address; 2) 
add(update) the entry for the Node-SID, pointing to the 
routing entry or extracting the next hop/outgoing interface 
from the routing entry; 3) if the node does not have a 
direct link toward the remote node, add(update) the entry 
for the DL-SID in the same way as described in step 2) for 
the Node-SID; if the node has a direct link toward the 
remote node, add the entry for the DL-SID pointing to the 
direct outgoing link, irrespective of the routing 
information. The evaluation of the Node-SID and DL-SID 
for the remote node depends on the Data Plane 
technology: for MPLS a label will be evaluated, for IPv6 
an IP address will be considered. The addition of the 
entries will be performed in the label forwarding tables for 
MPLS or in the IP forwarding tables for IPv6. 

B. Analysis of the use cases 

In the following table we report which use cases, 
among those presented in [4] [5] [6], are supported by the 
PMSR architecture. In general, all use cases which do not 
require the Prefix segments are well supported.  

Use case Support 
IGP-based MPLS Tunneling [4] [5] OK 
Fast Reroute [4] [5] [6] (Management free local 
protection and Managed local protection) 

OK 

Path Protection [6] OK 
Load balancing among non-parallel links [5] NO(1) 
Capacity Planning Process [4] [5] OK 
SDN/SR use case [4] [5] OK 
Service Chaining [5] Easy(2) 
OAM [5] OK 

Interoperability with non-Spring nodes [4] OK 
Disjointness in dual-plane networks [4] [5] OK(3) 
CoS-based Traffic Engineering [5] OK(3) 
Egress Peering Traffic Engineering [4] [5] (4) 

Distributed CSPF-based Traffic Engineering [5] OK 
Deterministic non-ECMP Path [5] OK 

(1) This use case requires the advertising of a special adjacency 
segment that represents multiple outgoing links. In PMSR, this 
could be solved with workarounds based on SDN approach. 
(2) In order to support Service Chaining new locally scoped SIDs 
have to be introduced. This can be easily introduced in PMSR 
with a SDN approach that avoids the need for advertising the 
local SIDs using routing protocols. 
(3) These use cases include Anycast segments. There is no 
substantial difference between these segments and the Node 
segments used in PMSR. 
(4) This use case includes BGP peering segments, which are 
local segments distributed using BGP protocol. PMSR behaves 
exactly like traditional SR here: it can support this use case, but 
it does not avoid the need of distributing information with BGP. 

Table 2 – Use cases 

From the analysis of the use cases, we realized that 
most of the use cases only require the Node-SIDs. In these 
cases, PMSR directly applies bringing the clear advantage 
of automatic generation of SIDs with no need to enhance 
routing protocols. Some TE related use cases require the 
use of Adj-SID, which in PMSR are mapped into DL-
SIDs. Therefore, in the rest of the paper we identify a TE 
use case that requires Adj-SID in the traditional SR 
architecture, and analyze the implications of using DL-
SIDs in the PMSR architecture.  

IV.  TRAFFIC ENGINEERING USE CASE 

The flow assignment problem consists in assigning a path 
to a set of flows. In a Segment Routing context, two types 
of flow assignment problems can be addressed: 1) ECMP-
aware SR path assignment; 2) traditional hop-by-hop path 
assignment. The former is based on the identification of a 
set of nodes to be crossed, assuming that the flow will be 
evenly spread between the set of equal-cost paths towards 
the next segment by each node in the path. Under this 
assumption of even load distribution, it is still possible to 
evaluate the resulting load on each link, given the 
bandwidth requirement of the flow and the routing tables 
of all nodes. The traditional hop-by-hop path assignment 
does not rely on load sharing performed by nodes, 
because a single path for a flow is deterministically 
assigned. The resulting load on each crossed link simply 
corresponds to the bandwidth requirement of the flow. 

In general, the capacity of exploiting Traffic 
Engineering based on the ECMP-aware path assignment is 
one key advantage of Segment Routing, with respect to 
traditional TE architectures (e.g., based on MPLS) that are 
only capable of working with hop-by-hop paths. Anyway, 
there can be use cases that advocate the use of 
deterministic hop-by-hop paths. As an example scenario, 
consider flows corresponding to single TCP connections. 
The ECMP output link selection is performed hashing the 
TCP ports and it will deterministically select a single 
output link for each crossed node. The assumption of even 



load sharing across the different ECMP paths is not 
verified in this case, leading to a mismatch between the 
planned and the actual resource allocation. Another 
scenario that calls for deterministic hop-by-hop paths is 
that of network topologies which do not present enough 
multiple equal-cost paths among source and destination 
nodes. Considering these scenarios, we think that the 
traditional hop-by-hop flow assignment problem 
represents a Traffic Engineering use case worth 
considering in a SR architecture. In section IV.A we 
present the TE problem along with a known formulation 
and heuristic resolution taken from the literature. In 
section IV.B we introduce the issue of mapping the hop-
by-hop path into a list of segments. Section V describes 
the proposed SR path allocation mechanism and proves its 
optimality. In section VI some evaluation results are 
discussed. The analysis, proposals and results presented in 
these sections are not limited to PMSR but are fully 
applicable to traditional SR architecture. 

A. Hop-by-hop flow assignment: problem definition and 
heuristic resolution 

Let F be a set of unidirectional flows fi(si,di,ri), where s is 
the source node, d the destination node and r the nominal 
bandwidth requirement (b/s); let T(N,E) be a directed 
graph representing the topology, N is the set of nodes and 
E is the set of directed edges. An edge ej can be 
represented as ej(uj,vj,cj), where uj is the source node, vj 
the destination node and cj the edge capacity (b/s). An 
edge can also be denoted simply as e(u,v), where u is the 
source and v the destination. Each flow fi needs to be 
mapped into an hop-by-hop path Pi that can be 
represented as the set of intermediate nodes from source s 
to destination d (denoted as Pni), or equivalently by the 
set of links (Pei): 
Pni = { ni0=s, ni1, ni2, .. , niN-1, niN=d } 
Pei = { ei1, ei2, .. , eiN-1, eiN } where 
ei1=e(s, ni1), ei2=e(ni1, ni2),… eiN=e(niN-1, d) 

The traditional hop-by-hop path assignment consists in 
finding an “optimal” set of paths {Pi}, i.e. a set chosen 
according to an optimality criterion. Let us define the flow 
mapping variables aij, which tells if flow fi is mapped over 
link ej: aij=1 if ej ∈ Pei, aij=0 if ej ∉ Pei. In our 
formulation we also include a feasibility check: the sum of 
the nominal flow rates of the flows crossing a link needs 
to be smaller than the link capacity. In symbols: 

∀ link j: ∑
i
 aij · rj < cj 

For our experiments we reused (with few changes) the 
definition of the flow assignment problem and the 
heuristic for its resolution originally proposed in [10] and 
[11] (further details are given in [9]). The problem 
formulation is very effective in equalizing the load of the 
links in the network and avoiding critical bottleneck. In 
addition, the heuristic provides a good trade-off between 
computation time and optimality of results. Anyway, in 
this paper we are not interested in the quality of the 
heuristic or in the details of the TE optimization. We just 
take as input the set of hop-by-hop path allocated by the 
TE algorithm and consider their mapping into SR paths. 

B. Mapping hop-by-hop paths into SR paths 

A Segment Routing path (SR path) will be denoted as Si 
and represented as a sequence of SIDs Sni:  
Sni = {ni0=s, ni1, ni2, .. , niN-1, niN=d} 
In PMSR, each SID can be a Node-SID or a DL-SID (in 
the traditional SR architecture, a SID can also be a local 
or global Adj-SID, corresponding to an outgoing 
adjacency). A Node-SID is simply represented by the 
node name n1, while the corresponding DL-SID is 
represented as n1

*. In both cases, the SID corresponds to a 
node that needs to be crossed before reaching the 
destination node. 
Two consecutive nodes in a SR path Sni do not need to be 
adjacent as it is for Pni. When two consecutive nodes are 
not adjacent, the links that will be crossed depend on the 
underlying IP routing. If all the shortest paths from a 
given node toward the next node in the SR path insist on 
the same output link, then the output link is univocally 
determined. If there are multiple shortest paths and they 
insist on different output links, then the output link is not 
univocally determined. In this case, two options are 
possible, depending on the configuration of the router. If 
ECMP is enabled, all the “candidate” output links that are 
part of a shortest path towards the next node in the SR 
path are considered (typically they are selected based on a 
hash function over the port numbers of the transport 
protocol, in order to balance the traffic). If ECMP is not 
enabled, one of the candidate output links is arbitrarily 
selected by the node. In both cases, such type of segment 
is not applicable to the classical TE approach, in which 
the network operator wants to deterministically route a 
flow over a given path.  
A SR path is congruent to a hop-by-hop path if the route 
enforced by the SR path is deterministically equivalent to 
the one enforced by the hop-by-hop path. To provide 
examples of hop-by-hop paths, of congruent SR paths, and 
of the use of DL-SIDs, let us consider the network 
topology depicted in Figure 1 and the two hop-by-hop 
paths P1 and P2 that are represented using Pn notation as: 
Pn1 = { n1, n3, n5, n7 }; Pn2 = { n1, n2, n3, n4, n5, n6, n7 } 
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Figure 1 – A network topology and two hop-by-hop paths 

The only SR path congruent to the hop-by-hop path P1 is 
Sn1 = { n1, n3, n5

*, n7
* } 

in which three segments are needed, and the direct-link 
segment IDs n5

*  and n7
* are respectively used to select the 

links 3→5 and 5→7. 
There are multiple SR paths that are congruent to the hop-
by-hop path P2; a subset of them is listed hereafter (they 
only contain Node SIDs): 
Sn2-a = { n1, n2, n4, n7 } 
Sn2-b = { n1, n2, n3, n4, n7 } 



Sn2-c = { n1, n2, n3, n4, n5, n6, n7 } 
Among them, Sn2-a is the optimal SR path, in the sense 
that it has the minimum number of segments. 

V. OPTIMAL SR ASSIGNMENT PROCEDURE 

In the SR assignment problem, given a hop-by-hop 
path P, we want to find a congruent SR path S composed 
of the minimum number of segments. In this section we 
propose an efficient algorithm for the SR assignment, both 
for traditional SR and for the proposed PMSR. We prove 
that the algorithm finds the optimal solution, i.e. the 
shortest list of SIDs that allows the packets to follow the 
assigned hop-by-hop path, according to the default IP 
routing tables of the nodes. Let us define the following 
notation. 

• f: a single traffic flow from node s to node d, 
characterized by its hop-by-hop path Pn: 
Pn = { n0=s, n1, n2, .. , nN-1, nN=d }; 

• tep(x,y): portion of the hop-by-hop path starting from 
node x and ending with node y. As particular case, 
tep(s,d) is the complete hop-by-hop path from s to d; 

• SPN(x,y): the number of equal-cost shortest paths from 
x to y, based on the current routing tables that are 
considered to be already set-up by a link-state routing 
protocol (e.g. OSPF), using Shortest Path First 
algorithm; 

• sp(x,y): the set of the shortest paths from x to y; if 
SPN(x,y) ≡ 1, it is the shortest path from x to y; 

• prec(p,x): the preceding node of x along a path p; 
• succ(p,x): the succeeding node of x along a path p; 
• srp: the SR path containing the list of assigned SIDs; 
• sp*(x,y*): the set of direct-links biased shortest paths 

from x to y* ; a direct-links biased shortest path is built 
heading from x to y on a shortest path, unless there is a 
direct link from an intermediate node to y, which is 
always followed; 

• SPN*(x,y*): number of direct-links biased shortest 
paths sp*(x,y*). 
A pseudo-code representation of the SR assignment 

algorithm for the traditional SR architecture is reported in 
Figure 2 (T_SRP stands for Traditional SR Path). The 
algorithm takes as input the topology and the assigned 
hop-by-hop path, and returns as output a congruent 
“optimal” SR path. At each step, a hop-by-hop sub-path 
between two nodes x and y is compared with the shortest 
path between the same pair of nodes. At the beginning 
x=s and y=d. If there is only one shortest path and it 
matches the hop-by-hop sub-path, y is added to the SR 
path. Otherwise (i.e., if there is more than one shortest 
path or the shortest path does not match the hop-by-hop 
sub-path), if the sub-path tep(x,y) between x and y is just 
one link, then it means that there is a direct link between x 
and y different from the shortest path; in this case the Adj-
SID corresponding to the link e(x,y) is added to the SR 
path. If tep(x,y) is more than one link, the procedure 
repeats with y set to the node that precedes the old y. If a 
segment has been added, it is checked if y≡d, in which 
case the procedure ends and the SR path is returned; 

otherwise, if y≠d, the algorithm considers the remaining 
part of the path, from y to d. For each direct link different 
from the shortest path, this algorithm will add two 
segments in the SR path: the preceding node and the Adj-
SID representing the outgoing link. 

function T_SRP: (tep(s, d)) → srp  
 x = s; y = d;  srp = {} 
 START: 
 p = tep(x, y); 
 // check if the sub-path p is the only shortest path 
 if  ((SPN(x, y) == 1) AND (sp(x, y) == p)) then 
  ADD y to srp; goto ADDED: 
 else 
  // check if the sub-path p is just one link 
  if (prec(p, y) == x) then 
   ADD Adj-SID of e(x,y) to srp; goto ADDED: 
  else 
   // no segment added, try with a shorter path 
   // (from x to the node that precedes y)  
   y = prec(p, y); goto START: 
 ADDED: 
 if  (y != d) then 
  // consider the remaining part of the path 
  x = y ;y = d; goto START: 
 return  srp; 

Figure 2 – Pseudo-code of SR path assignment for traditional SR 

function DL_SRP: srp → dlsrp 
 dlsrp = {} 
 for  (i = 0; i < srp.length; i++) 
  if  (srp[i] is an Adj-SID) then 
   d = destination of srp[i];  
   ADD d* to dlsrp; 
  else  
   if  (srp[i+1] is not an Adj-SID) then 
    ADD srp[i] to dlsrp; 
   else  
    if  (SPN*(srp[i-1],srp[i+1]) > 1 OR 
    sp*(srp[i-1],srp[i+1]*) != tep(srp[i-1],srp[i+1])) 
    then 
     ADD srp[i] to dlsrp; 
 return  dlsrp; 

Figure 3 – Replacement of adjacency SIDs with direct-link SID 

The DL_SRP algorithm reported in Figure 3 takes as 
input the SR path (that includes Adj-SIDs) computed by 
T_SRP and returns, as output, a SR path that includes only 
Node-SIDs and DL-SIDs. When possible, it replaces a 
couple of Node-SID + Adj-SID with a single DL-SID. 
When a single DL-SID is not enough to enforce the 
required hop-by-hop path, the algorithm will leave a 
couple Node-SID + DL-SID. The algorithm inspects step-
by-step the SR path and replaces any Adj-SID with the 
corresponding DL-SID. The Node-SID that precedes the 
Adj-SID is kept only when required, that is when there is 
more than one direct-links biased shortest path from the 
node that precedes the current Node-SID and the 
successive DL-SID, or if such a direct-links biased 
shortest path differs from the hop-by-hop path. 

A. Optimality of the SR path assignment 

In order to demonstrate the optimality of the SR path 
assignment, we need the following Lemmas. 

Lemma 1: if there is a unique shortest path from s to d, 
then there is a unique shortest path from s towards all 
intermediate links in the path from s to d (it can be easily 
proven by contradiction). 



Lemma 2: if it does not exist a unique shortest path 
from y to d, then it does not exist a unique shortest path 
from a node x to d that passes through y (it can be easily 
proven by contradiction). 

We start by focusing on the T_SRP algorithm. Let us 
consider the hop-by-hop path Pn = {n0=s, n1, n2, .. , nN-1, 
nN=d}. Assume that the directed edge from nk-1 to nk is not 
the shortest path from nk-1 to nk (or it is one of a set of 
equal-cost shortest paths), then an Adj-SID is needed to 
enforce the use of the link e(nk-1,nk). Under this 
hypothesis, starting from s the T_SRP algorithm can find 
one or more segments up to nk-1 (the last segment being 
nk-1 itself), but then it will identify the link that requires 
the Adj-SID (the first check “if the sub-path p is the only 
shortest path” fails and the second check “if the sub-path 
p is just one link” is verified) and add it. This happens for 
all the links that are not the shortest path between their 
source and destination. In the end, the SR path will be 
composed at least by all the Adj-SIDs, needed in order to 
route the packets on links that are, by definition, off the 
shortest path dictated by the routing protocol. Each Adj-
SID will be preceded in the SR path by the Node-SID of 
the node that originates the link that requires the Adj-SID. 
Now we need to demonstrate that the number of 
segments, selected by the algorithms in any portion of the 
hop-by-hop path that does not need to include Adj-SIDs, 
is the minimum possible. Assume from now on that we 
are in a portion of the hop-by-hop that does not need to 
include Adj-SIDs (i.e. all links correspond to the only 
shortest path between source and destination of the link). 
The T_SRP algorithm starts from the source s and tries to 
find the longest portion of the hop-by-hop path P=tep(s,d) 
that corresponds to a shortest path. If it arrives to the 
destination d, then the solution is optimal. If it stops at an 
intermediate node x, this means that tep(s,x) is a unique 
shortest path, while tep(s,succ(P,x)) is not a unique 
shortest path. The algorithm tries to find segments from x 
to d. If there is a unique shortest path from x to d, then the 
algorithm has found a SR path with two segments: 
{ s,x,d}. This is optimal, as a solution with one segment 
does not exist (we know that tep(s,succ(P,x)) is not a 
unique shortest path and, by Lemma 1, there cannot be a 
unique shortest path from s to d). If the algorithm finds 
that an intermediate node y is needed from x to d, then we 
have a three segments solution: {s,x,y,d}, and we prove 
that we cannot find a two segments solution {s,z,d} for 
any z in P. In fact, the segment z cannot be after x by 
construction. It cannot be before x because by Lemma 2 
there cannot be a unique shortest path from z to d passing 
through x. This reasoning can be extended to any number 
of segments: each time that the algorithm introduces a 
segment, it is not possible to find a solution with a smaller 
number of segments. 

It is easy to prove that the DL_SRP algorithm is 
optimal as well. In fact, it includes one DL-SID for each 
Adj-SID (they correspond to the minimum number of 
segments). In each portion of the path without Adj-SID, 
the algorithm verifies if it is possible to reduce the 
segments eliminating the last Node-SID and using only 
the DL-SID.  

VI.  IMPLEMENTATION AND EVALUATION  

The PMSR solution and TE algorithms have been 
implemented, further details (referring to a simpler, earlier 
version) are described in [8][9]. The source code is 
available at [13], including the Java implementation of the 
flow assignment and SR path assignment algorithms. A 
ready-to-go virtual machine is available ([12]). 

Hereafter we report a simple experimental evaluation 
of the processing time of the proposed DL-SID-based SR 
assignment algorithm. We considered a relatively large 
scale topology (Figure 4) with 153 nodes and 354 
unidirectional links, the “Colt Telecom” topology which 
is included in the Topology zoo dataset [14], assuming 
that all links have the same capacity. We generated a 
random set of traffic demands as follows. We randomly 
selected 40% of the nodes to be PE (e.g., ingress/egress), 
then we randomly selected 20% of the PE couples to be 
active source/destination of traffic flows. For each active 
couple of PEs, in each direction we have an average of 3.5 
flows (the number of flows has a geometrical distribution) 
with the sum of the flow rates equals to 10% of the 
capacity of a link and the size of each flow that has a 
negative exponential distribution. With these parameters, 
we generated a list of 2460 flows along their bit rate. This 
demand largely overcomes the network capacity, so that 
only 940 flows can be allocated using the implemented 
algorithms. We selected only the accepted flows, 
obtaining a traffic demand that closely matches the full 
network capacity, being able to have hop-by-hop paths 
that diverge from the shortest path, but keeping the 
acceptance ratio of the flow close to 1.  

 
Figure 4 – Colt Telecom (08/2010) topology from Topology Zoo (each 

link in the picture corresponds to two unidirectional links) 

Figure 5 reports the time spent for the computation of 
TE paths (flow assignment heuristic) and of SR paths (SR 
assignment algorithm). We use a PC with an Intel Core i7 
2Ghz and 6GB RAM. Note that processing time of the 
flow assignment heuristic has a step-wise dependence on 
the number of iterations of the heuristic optimization 
cycle, which tends to increase with the number of flows. 
Therefore a set of seemingly parallel lines can be 
appreciated in the figure (each one corresponds to a given 
number of cycles). As it is possible to see from the figure, 
the processing time of the SR assignment algorithm is 
negligible with respect to the flow assignment heuristic. In 
the considered range (up to 900 admitted flows) it was 
possible to run both algorithms and allocate the flows in 
less than 8 seconds. This performance seems adequate for 
periodic (e.g., nightly) reallocation procedures that aim to 
evenly redistribute the load on the network links. 



 
Figure 5 – Execution time of the algorithms 

VII.  STATE OF THE ART AND RELATED PROJECTS 

The Segment Routing architecture is being standardized 
within the IETF by the SPRING working group [17]. In 
sections I and II we have introduced SR technology and 
provided references to the active draft specifications. 
SR-IPv6 [18] provides an Open Source implementation of 
IPv6 Data Plane for SR. Control Plane and Traffic 
Engineering aspects are not covered in [18]. 

The SPRING-OPEN project [19] is an ONOS [20] use 
case, which provides an SDN-based implementation of 
SR. Its architecture is based on a logically centralized 
Control Plane, built on top of ONOS, and it drastically 
eliminates the IP/MPLS Control Plane from the network. 
Compared to SPRING-OPEN, our solution still considers 
a traditional IP Control Plane (e.g., based on routing 
protocols like OSPF or IS-IS).  

In both [21] and [22] the authors deal with SR-based 
ECMP-aware Traffic Engineering, proposing solutions for 
the optimal allocation of traffic demands using an ECMP-
aware approach. Our TE problem is different, as we start 
from hop-by-hop paths and try to optimize their mapping 
into SR paths, keeping the constraint of the fixed routing 
over the given hop-by-hop path. 

In [23] two SR testbeds are described, one based on a 
SDN scenario and another one based on a PCE scenario. 
Both testbeds share a common SR Path computation 
engine, that performs the hop-by-hop path computation 
and SR path assignment. The proposed SR path 
assignment algorithm provides the shortest segment list, 
but the solution only considers global Node-SID, 
therefore it cannot be applied to topologies with arbitrary 
IGP link costs. In [24] a rather general TE algorithm for 
SR is considered. It evaluates an optimal path for a flow, 
according to an IGP metric and taking into account 
bandwidth and delay constraints; then it minimizes (or 
enforces a bound on) the number of segments. It considers 
ECMP forwarding by default, but can also introduce 
constraints to support a deterministic hop-by-hop path. 
The solution is not able to support arbitrary hop-by-hop 
paths when arbitrary IGP link costs are used.  

VIII.  CONCLUSIONS 

In this paper we presented PMSR, a Segment Routing 
solution that does not require enhancements to routing 
protocols. PMSR is based on the use of global segment 
identifiers that can be automatically generated by nodes. 
We discussed the advantages of PMSR (in terms of 
simplification of management and reduction of node 
complexity) and advocated the suitability of PMSR to 
support the typical SR use cases. As the PMSR requires 

the introduction of Direct Link Segments to replace 
traditional SR Adjacency Segments, we considered a 
Traffic Engineering use case that requires the Adjacency 
Segments. We proposed an algorithm for the SR path 
allocation, useful for both traditional SR with Adjacency 
Segments and for PMSR with direct-link Segments. We 
proved that it is optimal in terms of the number of 
allocated segments and empirically verified that the 
execution time is small compared with the TE heuristic 
preliminarily needed to allocate the hop-by-hop path. 
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