
OneClock to Rule Them All:
Using Time in Networked Applications

Technical Report�, January 2016

Tal Mizrahi, Yoram Moses∗

Technion — Israel Institute of Technology

Abstract—This paper introduces OneClock, a generic approach
for using time in networked applications. OneClock provides
two basic time-triggered primitives: the ability to schedule an
operation at a remote host or device, and the ability to receive
feedback about the time at which an event occurred or an
operation was executed at a remote host or device. We introduce
a novel prediction-based scheduling approach that uses timing
information collected at runtime to accurately schedule future
operations.

Our work includes an extension to the Network Configura-
tion protocol (NETCONF), which enables OneClock in real-
life systems. This extension has been published as an Internet
Engineering Task Force (IETF) RFC, and a prototype of our
NETCONF time extension is publicly available as open source.

Experimental evaluation shows that our prediction-based ap-
proach allows accurate scheduling in diverse and heterogeneous
environments, with various hardware capabilities and workloads.
OneClock is a generic approach that can be applied to any
managed device: sensors, actuators, Internet of Things (IoT)
devices, routers, or toasters.

I. INTRODUCTION

A. Background

Motivation. Various distributed applications require the use
of accurate time, including industrial automation systems [2],
automotive networks [3], and accurate measurement [4]. Sur-
prisingly, while these different applications typically use stan-
dard time synchronization methods (e.g., [5]), there is no
standard method for using time, and thus each of these appli-
cations uses a proprietary management protocol that invokes
time-triggered operations. In this paper we present a generic
approach that allows the use of accurate time to manage
various diverse devices, from routers to toasters.1

Why NETCONF? A formal announcement by the Inter-
net Engineering Steering Group (IESG), released in March
2014 [7], declared that the IETF is encouraging the use of
NETCONF [8], rather than the Simple Network Management
Protocol (SNMP) [9]. Indeed, the networking community is
quickly shifting from SNMP-based Management Information
Bases (MIB) to modules based on YANG [10], the modeling
language used by NETCONF. During the writing of this paper,
the IETF Active Internet Draft list [11] consisted of 256 drafts

�This technical report is an extended version of [1], which was accepted
to IEEE/IFIP NOMS 2016.

∗Yoram Moses is the Israel Pollak academic chair at Technion.
1Paraphrasing the 25-year old gimmick of the network-managed toaster [6].

that define YANG data models [12], and only 21 drafts that
define MIBs.

NETCONF and YANG are gaining momentum in the con-
text of various diverse applications, not only in the traditional
realm of routers and switches, but also in other applications,
such as Virtualized Network Functions [13] and Internet of
Things (IoT) devices [14], [15]. NETCONF is being adopted
not only by the IETF, but also by other organizations, such as
the Open Networking Foundation [16], and the Metro Ethernet
Forum [17].

We chose to use NETCONF as a baseline for OneClock, due
to its increasing adoption rate and diversity of applications and
environments.

B. The OneClock Protocol

In this paper we introduce a generic protocol for using time
in networked applications. The protocol is defined as an
extension of NETCONF. A full specification of this extension,
including an open-source YANG module that defines the
extension, has been published as an RFC [18].

Our OneClock extension defines two basic time-related
primitives: (i) scheduling: a NETCONF client2 can schedule
a Remote Procedure Call (RPC) to be performed by a NET-
CONF server at a prescribed future time, and (ii) reporting:
a NETCONF client can receive feedback about the time of
execution of an RPC, or a notification about the time of
occurrence of a monitored event.

OneClock can be used in various important use cases, such
as invoking scheduled operations in diverse applications, tak-
ing coordinated snapshots of a system, or performing network-
wide atomic commits.

C. OneClock: Accurate Scheduling

One of the greatest challenges in our approach is to accu-
rately schedule network operations. Even if a managed device
(server) keeps an accurate clock, it is difficult to guarantee
that scheduled operations are performed very close to their
scheduled times. The actual execution time may depend on
the processing power of the server, on its operating system,
and its load due to other tasks that run in parallel.

2We follow the NETCONF terminology; managed devices, referred to as
servers, are managed by one or more client.

ar
X

iv
:1

60
1.

07
33

3v
1

 [
cs

.N
I]

 2
7

Ja
n

20
16

We propose a prediction-based approach that allows a
client to accurately schedule network operations without prior
knowledge about the servers’ performance. The approach is
based on measuring the Elapsed Time of Execution (ETE) of
each RPC, and using previous ETE measurements to predict
the next ETE.

es s

Fig. 1: Elapsed Time of Execution (ETE): ETE = Te − Ts.

The ETE is defined to be Te − Ts (see Fig. 2), where Ts

is the scheduled start time of the RPC, and Te is the actual
completion time of the RPC. The actual start time of the
RPC is denoted by T ′s. Hence, as depicted in Fig. 1, the ETE
is affected by two non-deterministic factors: (i) the server’s
ability to accurately start the operation, and (ii) the running
time of the RPC.

For each scheduled operation (see the numbered steps in
Fig. 2):3

1) The client predicts the ETE of the next RPC based
on previous measurements of the scheduled time and
execution time.

2) For a given desired execution time, Td, the client sched-
ules the operation to be performed at Td − ETE.

3) The server reports the actual time of execution, Te, back
to the client, allowing the client to use this feedback for
scheduling future operations.

server

client rp
c
 (T

1)

rp
c
-r
e
p
ly

(T
2
)

T1

time

scheduled time
T2

measured

ETE

execution time

rp
c
 (T

s)

rp
c
-r
e
p
ly

(T
e
)

Ts
scheduled time

Ts = Td - ETE
Td

desired

execution time

...

compute predicted ETE

based on ETE measurements
1

2 3

Te
actual

execution time

Fig. 2: Prediction-based scheduling: by predicting the ETE, a
client can control when the RPC will be completed.

Notably, our scheduling approach allows a NETCONF
client to accurately schedule network operations in a hetero-
geneous environment, where the performance of the managed
servers is not necessarily known in advance.

D. Related Work

The use of the time-of-day in network management is a
common practice. Time-of-day routing [19] routes traffic to
different destinations based on the time-of-day. Scheduled

3We follow the notation of [8], where Remote Procedure Calls are denoted
by uppercase RPC, and the messages that carry RPCs are denoted by
lowercase rpc.

operations [20], [21] allow various policies and configurations
to be applied at specific time ranges. The work of [22]
analyzed the use of timed path updates in Software Defined
Networks. This paper introduces a more general framework
that allows time-triggered operations in any network managed
device, and enables accurate scheduling of network operations
in a heterogeneous environment. The work of [23] suggested
a method for accurate scheduling in switches and routers
using Ternary Content Addressable Memories (TCAM). Our
scheduling scheme is more generic, as it makes no assumption
about the hardware of the managed devices.

The literature is rich with works that analyze and predict
program running times, e.g., [24]–[28]. In this paper we use
time series analysis to predict the execution time of a remote
operation, allowing to perform accurate scheduling of the
requested operation.

E. Contributions

The main contributions of this paper are:
• We introduce OneClock, a generic approach for using

time in networked applications. OneClock defines two
basic primitives, schedule, and report. Several use cases
that demonstrate the merits of OneClock are presented.

• We present a scheduling approach that allows accurate
scheduling by predicting the server’s execution time. We
analyze three prediction algorithms: two average-based
algorithms, and a Kalman-Filter-based algorithm.

• We define a OneClock extension to NETCONF, which
has been published as an IETF RFC.

• We have implemented a prototype of the NETCONF
time extension. Our prototype is available as open source.
Our experimental evaluation demonstrates how accurately
events can be scheduled over a network.

II. USING ONECLOCK IN PRACTICE

In this section we describe three use cases that illustrate how
the two time-triggered primitives, scheduling and reporting,
can be used in distributed systems.

A. Coordinated Operation

It is often desirable to coordinate a set of events or oper-
ations that should take place at different nodes in the system
at the same time,4 or should occur according to a specific
order. The schedule primitive can be used to coordinate
events occurring in actuators in a factory product line [2], to
coordinate a routing change in a network [29], or to orchestrate
events in scientific experiments [30].

Using OneClock, a client can schedule a simultaneous event
at multiple servers, or define a sequence of scheduled times
that determine the order and relative timing of events.

4In practical systems it is typically not possible to coordinate events to
be performed exactly at the same time at different nodes. Throughout the
paper, the term ‘same time’ should be read as ‘same time within the accuracy
limitations of the servers’.

s

sscheduled time

(a) Scheduled RPC.

e

eRPC executed

(b) Reporting the execution time.

s

e

es

RPC

executed

(c) Reporting the execution time
of a scheduled RPC.

s

s

n
o
ti
fi
c
a
ti
o
n

scheduled time

(d) Scheduled RPC with
notification.

Fig. 4: The time capability in NETCONF.

Client

Server 1 Server 2 Server n

T T T

(a) Coordinated operations: all
servers perform the operation at
the same time, T .

Client

Server 1 Server 2 Server n

T T T

(b) Coordinated snapshot: all
servers send their state to the

client at the same time.

Fig. 3: Coordinated operations and coordinated snapshots.

B. Coordinated Snapshot

In many applications it is desirable to monitor events or
statistics with respect to a common time reference.

A client can perform a coordinated snapshot, i.e., capture
the state of a monitored attribute at all the servers at the
same time. While a simultaneous snapshot does not produce a
consistent distributed snapshot [31], it provides a coordinated
snapshot of the servers’ state. For example, when collecting
statistics from all the servers, it is most useful to capture
the information at the same time in all servers. In power
grid networks [32], synchrophasor measurements are used for
monitoring the operation of a power grid. These measurements
must be synchronized, so as to allow correct system-wide
processing.

OneClock enables coordinated snapshots; using the sched-
ule primitive, a client can schedule a NETCONF get-config
operation [8] to be taken at time T , causing all the servers to
send their response at the same time (Fig. 3b).

C. Network-wide Atomic Commit

The NETCONF commit [8] is an RPC that commits the
candidate configuration, i.e., copies the candidate configu-
ration to the running configuration. This operation allows
the client to prepare a set of configuration updates in the
candidate datastore, and then apply them at once with the
commit operation.

It is often desirable to perform a network-wide atomic
commit, where either all the servers successfully perform the
commit operation, or if some of the servers are not able to
perform the commit, then none of the servers perform it.

Atomic commits can be performed using NETCONF with-
out our time extension, but potentially at the cost of a tem-
porary state of inconsistency, where different servers use dif-

ferent configuration versions (Fig. 5). This can be done using
the NETCONF confirmed commit procedure. This procedure
requires two steps: (i) the client sends a first commit message
to all the servers, causing them to switch to the candidate
configuration, and (ii) the client sends a confirming commit
message to all the servers, finalizing the commit procedure.
If the two phases are not completed successfully, or if the
client cancels the commit, the servers roll back to the previous
configuration.

The OneClock schedule primitive enables a clean and
straightforward approach to network-wide commits, as illus-
trated in Fig. 5. The client sends a scheduled commit message
to the servers, to be performed at a future time T . If some of
the servers fail to schedule the commit operation, the client
can cancel the commit before time T , leaving all the servers
at the current configuration.

III. NETCONF TIME EXTENSION

We introduce an extension to the NETCONF protocol that
allows time-triggered operations. The extension is defined as
a new capability [8]. Details are presented in [18].

A. Overview

The time capability provides two main functions:
• Scheduling. When a client sends an rpc message to a

server, the message may include the scheduled-time
parameter, denoted by Ts in Fig. 4a. The server then starts
to execute the RPC as close as possible to the scheduled
time Ts, and once completed the server can respond with
an rpc-reply message.

• Reporting. When a client sends an rpc message to a
server, the message may include a get-time element
(see Fig. 4b), requesting the server to return the execution
time of the RPC. In this case, after the server performs
the RPC it responds with an rpc-reply that includes the
execution-time parameter, specifying the time Te at
which the RPC was completed.

The two scenarios discussed above imply that a third
scenario can also be supported (Fig. 4c), where the client
sends an rpc message that includes a scheduled time, Ts,
as well as the get-time element. This allows the client to
receive feedback about the actual execution time, Te. Ideally,
Ts = Te. However, the server may execute the RPC at a

server A

Time

client c
o
m
m
it

c
a
n
c
e
lO

K

server B

e
rr
o
r

O
K

Old configuration

New configuration

c
o
m
m
it (T

)

c
a
n
c
e
lO

K

e
rr
o
r

O
K

c
o
m
m
it (T

)

T

server A

client

server B

(a) (b)

c
o
m
m
it

Fig. 5: Atomic commit: (a) NETCONF confirmed commit, without using time. (b) Time-triggered commit.

slightly different time than Ts, for example if the server is
tied up with other tasks at time Ts.

The report abstraction, presented in Sec. I-B, allows the
client to receive information about the execution time of an
RPC, or to receive notifications about the time of occur-
rence of events. The former can be implemented using the
get-time procedure we defined, while the latter is already
supported in NETCONF by using notifications that include the
eventTime parameter [33].

B. Applying the Time Primitives to Various Applications

The time capability specification we defined [18] includes a
YANG module that adds the two new primitives, schedule and
report, as two parameters in all the RPC types defined in [8].
For example, this YANG module enables scheduled commit,
and scheduled set-config RPCs.

Notably, the time primitives are not limited to the RPCs
defined in [8]. If a new YANG module defines a new RPC,
the module can include the time parameters, allowing the new
RPC to use the time primitives. Our open source code includes
two such examples:
• We enhanced the well-known toaster YANG module [34],

by allowing the make-toast operation to be a sched-
uled RPC.

• We created a new YANG module called test, which
triggers the server to perform a configurable command
line. Using the schedule parameter, the test RPC can be
used as a remote variant of the well-known Cron [35]
command in Linux.

The report primitive can be used not only by applying
the get-time parameter, but also by other means that
are inherently possible when using NETCONF. The time of
occurrence of important events can be sent to the client using
a NETCONF notification [33], or can be included in the
NETCONF data model. For example, the YANG data model
that defines a log entry may include the time-of-day in each
log entry.

C. Notifications and Cancellation Messages

1. Notifications

As illustrated in Fig. 4a, after a scheduled RPC is executed
the server sends an rpc-reply. The rpc-reply may

arrive a long period of time after the rpc message was sent
by the client, leaving the client without a clear indication
of whether the rpc was received. Therefore, we define
an optional netconf-scheduled-message notification
(Fig. 4d), which provides an immediate acknowledgment of
the scheduled RPC. As illustrated in Fig. 4d, when the server
receives a scheduled RPC it sends a notification that includes
the message-id of the scheduled RPC.

2. Cancellation Messages

A client can cancel a scheduled RPC by
sending a cancel-schedule RPC (Fig. 6). The
cancel-schedule RPC, defined in this document,
can be used to enforce the coordinated network-wide commit
described in Sec. II-C.

server

client rp
c
 (T

s)

rp
c
-r
e
p
ly

Ts

n
o
ti
fi
c
a
ti
o
n c
a
n
c
e
l-

s
c
h
e
d
u
le

time RPC not executed

Fig. 6: Cancellation message.

D. Clock Synchronization

The time capability we defined requires clients and servers
to maintain clocks. It is assumed that clocks are synchronized
by a clock synchronization method, e.g., [5], [36].

E. Acceptable Scheduling Range

A server that receives a message that is scheduled to be
performed at time Ts verifies that the value Ts is not too far
in the past or in the future. As illustrated in Fig. 7, the server
verifies that Ts is within the acceptable scheduling range.

If Ts occurs in the past and within the acceptable scheduling
range, the server performs the RPC as soon as possible

The scheduling bound defined by sched-max-future
guarantees that every scheduled RPC is restricted to a near
future scheduling time, on the order of seconds, and not on the
order of hours or days. This restriction significantly reduces
the impact of potential coherency problems that may result

from server failures, or from multiple clients trying to schedule
conflicting operations.

IV. PREDICTION-BASED SCHEDULING

Our scheduling approach is based on using previous mea-
surements of the Elapsed Time of Execution (ETE).

Based on the ETE measurements, the client uses the pre-
diction approach illustrated in Fig. 8. The prediction approach
consists of three steps:

1) When a scheduled operation is required to take place
at time Td, the client uses previous ETE measurements,
x[1], . . . , x[n − 1], to predict the next ETE, denoted by
s[n|n− 1].

2) The next scheduled time is Ts = Td − s[n|n− 1].
3) The client updates its measurement set based on the

feedback received from the server about the execution
time Te.

In the rest of this section we describe the two main com-
ponents of our scheduling approach, the ETE measurements,
and the ETE prediction.

A. ETE Measurements

We analyze two measurement methods:
Periodic probing. This approach uses ETE measurements

that are taken periodically at a constant frequency. In systems
that require periodic operations, these ETE measurements are
inherently available. In other systems, the client can proac-
tively send periodic scheduled RPCs to every server in order
to probe the ETE. The main drawback of periodic probing is
that it can potentially consume unnecessary resources, both at
the client and at the server.

Burst probing. The second approach uses an on-demand
burst of probe RPCs; when a scheduled RPC is required, the
client initiates a burst of N scheduled RPCs, performed at

Time

Ts

Server receives

scheduled RPC.

acceptable scheduling range

sched-max-past sched-max-future

Fig. 7: Acceptable scheduling range: defined by two config-
urable parameters: sched-max-future and sched-max-past.

measured T
e

x[n] = T
e - T

s

ETE measurements

x[1], x[2], � , x[n-1]

ETE Prediction:

s[n|n-1]
Scheduling:

Ts = Td - s[n|n-1]

1

2

3

Fig. 8: Prediction-based scheduling approach.

a fixed frequency. This approach does not require resource
consumption in the absence of actual scheduled RPC requests,
but the prediction is potentially less accurate, since it is based
on a smaller number of measurements.

Note that both approaches require the probe RPCs to be
similar in terms of performance and running time to the future
RPC for which the prediction is required.

B. ETE Prediction Algorithms

We analyzed three prediction algorithms, Average, FT-
Average, and Kalman. We now describe these algorithms.

1. Baseline

The baseline for comparison in our evaluation is the simplest
approach which assumes s[n] = 0, and therefore assigns Ts =
Td. In this approach the prediction error is equal to the ETE.

2. Average Algorithm

The Average algorithm performs an average of the last N
measurements:

s[n|n− 1] =
1

N

N∑
j=1

x[n− j] (1)

3. Fault-tolerant Average (FT-Average) Algorithm

The Fault-tolerant Average [37] performs an average of the
last N measurement samples, after ignoring the highest and
the lowest measurement values. Hence, this approach masks
the most noisy or erroneous measurement of the N samples.

s[n|n− 1] =



1
N

N∑
j=1

x[n− j], if N < 3

1
N−2 (

N∑
j=1

x[n− j]

− max
1≤j≤N

x[n− j]

− min
1≤j≤N

x[n− j]), otherwise

(2)

4. Kalman Filtering Algorithm

Kalman Filtering [38] is one of the most well-known
data fusion and estimation methods. One of its significant
advantages is that it is the optimal estimator in systems with
white Gaussian noise.

The algorithm we use is a one-dimensional Kalman Filter.
Our terminology and notations are based on the standard
literature, e.g., [39].

Modeling the system. In the general Kalman Filtering
model, the system equation is s[n] = F ·s[n−1]+w[n], where
F is the state transition coefficient. In our context the client
does not have any information about how the ETE changes as
a function of time, and therefore it is assumed that the state

x[n] The observed ETE of the nth sample.
s[n] The estimated ETE at n, given the measurements up

to n.
s[n|n− 1] The estimated ETE at n, given the measurements up

to n− 1.
w[n] The ETE signal noise of the nth sample.
v[n] The measurement noise of the nth sample.
P [n] The estimated variance of the ETE.
P [n|n− 1] The estimated variance at n, given the measurements

up to n− 1.
K[n] The Kalman gain.
W [n] The estimated variance of w[n], given the measure-

ments up to n− 1.
V [n] The estimated variance of v[n], given the measure-

ments up to n− 1.

TABLE I: Kalman Filter Notations

transition coefficient is 1. Hence, the Kalman system equation
is given by 3.

s[n] = s[n− 1] + w[n] (3)

The Kalman observation equation is given by:

x[n] = s[n] + v[n] (4)

Based on the two equations above, we present the prediction
equations and the update equations, which are the core of the
Kalman Filtering algorithm.

Prediction equations. The client uses the prediction equa-
tions in step 1 of Fig. 8 to estimate the next ETE based on
the first n− 1 measurements.

s[n|n− 1] = s[n− 1] (5)

P [n|n− 1] = P [n− 1] +W [n] (6)

Update Equations. The client uses the update equations
in step 3 of Fig. 8 to update its state based on the new
measurement, x[n].

s[n] = s[n|n− 1] +K[n](x[n]− s[n|n− 1]) (7)

K[n] =
P [n|n− 1]

P [n|n− 1] + V [n]
(8)

P [n] = (1−K[n])P [n|n− 1] (9)

Variance estimation. W [n] is defined to be the estimated
variance of w[n], and V [n] is the estimated variance of v[n].
By Eq. 3 and Eq. 4, we have w[n] = s[n] − s[n − 1], and
v[n] = x[n]− s[n]. Hence, the variance of w[n] and v[n] can

be estimated by the sample variance using the last N values
of x[·] and s[·], as follows:

W [n] =
1

N
·

N∑
i=1

((s[n− i]− s[n− i− 1])−

(
1

N
·

N∑
j=1

(s[n− j]− s[n− j − 1])))2
(10)

V [n] =
1

N
·

N∑
i=1

((x[n− i]− s[n− i])−

(
1

N
·

N∑
j=1

(x[n− j]− s[n− j])))2
(11)

V. EVALUATION

A. Background

We implemented a prototype of the NETCONF time ca-
pability. The prototype was implemented as an extension to
the OpenYuma [40], a NETCONF software implementation
written in C over Linux. Our code is publicly available as
open source [41].

Goal. The goal of the experiments was to evaluate our
prediction-based scheduling approach over various machines,
platforms, and under various workloads.

Method. We evaluated the three prediction algorithms
(Sec. IV) on Linux-based servers in two academic testbeds,
Emulab [42] and DeterLab [43], and in two public cloud
platforms, Microsoft Azure [44], and Amazon Web Services
(AWS) [45]. Our measurements were performed on over 100
servers, for a total duration of over 5000 hours, summing up
to over 3 million measurement samples.

Our results are based on measurements that were performed
using a commit RPC on the well-known toaster YANG
module [34]. In each experiment a NETCONF client sent
scheduled RPC messages to a server, and the client recorded
the Ts and Te values. The experiments produced log files (at
the client) containing Ts and Te values, and then the three
prediction algorithms were run offline.5 The three algorithms
were run with N = 8 in most of the runs6, except for specific
runs in which the value of N was different, as described below.

We quantify the accuracy of our prediction by observing
the mean absolute prediction error. The prediction error of an
RPC is defined as the difference between the predicted ETE
and the measured ETE.

5In the current prototype we have not integrated the prediction algorithm
logic into the NETCONF client. The prediction algorithms were run offline
on the log files of the NETCONF client.

6N is the number of measurement samples used in each prediction
computation. For further details see Sec. IV.

0.00001

0.0001

0.001

0.01

0.1

1

Type I Type II Type III Type IV Type V Type VI

M
ea

n
 A

b
so

lu
te

 P
re

d
ic

ti
o

n

E
rr

o
r

[s
ec

o
n

d
s

-
lo

g
.]

Server Type

Baseline

Average

FT-Average

Kalman

(a) Performance on different platforms.

0

0.002

0.004

0.006

0.008

0.01

0.012

0.014

1 10 100 1000

M
e
a

n
 A

b
so

lu
te

P
r
e
d

ic
ti

o
n

 E
r
r
o

r
 [

se
c
o

n
d

s]

Measurement Period [seconds]

Baseline
Average
FT-Average
Kalman

(b) Periodic measurement.

0

0.002

0.004

0.006

0.008

0.01

0.012

0.014

0 5 10 15

M
ea

n
 A

b
so

lu
te

P
re

d
ic

ti
o

n
 E

rr
o

r
[s

ec
o

n
d

s]

Number of Samples per Burst

Baseline
Average
FT-Average
Kalman

(c) Bursty measurement.

Fig. 9: Performance on various machine types (a). Type V machines were used in (b) and (c).

0

0.005

0.01

0.015

0.02

0.025

0 50 100 150

A
b

so
lu

te
 P

r
e
d

ic
ti

o
n

E
r
r
o

r
 [

se
c
o

n
d

s]

Time [seconds]

1 VM - Baseline
1 VM - FT-Average
20 VMs - Baseline
20 VMs - FT-Average

(a) Performance on shared machine with 20
VMs, compared to machines with one VM.

0

0.01

0.02

0.03

0.04

0.05

0 50 100 150

A
b

so
lu

te
 P

r
e
d

ic
ti

o
n

E
r
r
o

r
 [

se
c
o

n
d

s]

Time [seconds]

Baseline

FT-Average

Stress - Baseline

Stress - FT-Average

(b) Performance on stressed server compared
to unstressed server.

0

0.01

0.02

0.03

0.04

0.05

0 50 100 150

A
b

so
lu

te
 P

r
e
d

ic
ti

o
n

E
r
r
o

r
 [

se
c
o

n
d

s]

Time [seconds]

Baseline

Average

FT-Average

Kalman

(c) Occasional error spikes during a stress
experiment.

Fig. 10: Instantaneous prediction error viewed over a 150 second period. The behavior shows peaks under synthetic workload.
(a) was measured on Azure, and (b), (c) on Type V machines.

B. Experiment I: Performance on different platforms

In this experiment (Fig. 9a) we compared the prediction
error of the three prediction algorithms on various server
types. The prediction in this experiment was based on periodic
sampling, with a measurement period of 8 seconds.7 The list
of servers we tested is presented in Table II.

Type Description Platform / class
I Public cloud (shared tenancy),

1GB memory
Amazon / t2.micro

II Public cloud (shared tenancy),
768MB memory

Azure / A0

III Xeon E3 LP 2.4 GHz, 16GB
memory

DeterLab /
MicroCloud

IV Xeon 2.1 GHz, 4GB memory DeterLab / pc2133
V Quad Core Xeon E5530 2.4 GHz,

12GB memory
Emulab / d710

VI Dual Core Opteron 1.8 GHz,
4GB memory

DeterLab / bvx2200

TABLE II: Machine types.

As shown in Fig. 9a, the prediction algorithms significantly
reduced the prediction error compared to the baseline ap-
proach. The experiment shows that in most of the cases FT-
Average produces the lowest error.

7The measurement period is the elapsed time between two consecutive
measurements.

C. Experiment II: Periodic vs. bursty measurement

We compared periodic measurement and burst-based mea-
surement (see Fig. 9b and 9c). The periodic measurement
was performed at various measurement periods, and the burst
measurement was performed with various burst sizes, and with
a fixed period of one measurement per second. We note that
in this experiment the error produced by the three algorithms
is very similar.

Interestingly, the results show that a burst of 4 samples
suffices to produce similar results to a periodic measurement.

In the periodic measurement (Fig. 9b) the lowest prediction
error was achieved with a period of one measurement per
second. We were not able to test lower measurement periods
due to a performance limitation in the NETCONF client we
used.

Another interesting observation is that when the measure-
ment period was on the order of one minute or more we
observed slightly higher ETE values (Fig. 9b) than when
the measurement period was on the order of a few seconds.
This can be explained by the server’s cache policy, which
allows better performance for operations that are performed
frequently.

D. Experiment III: Performance under synthetic workload

In this experiment we studied the prediction error in stressed
NETCONF servers, compared to the error in unstressed NET-

CONF servers. We used two methods to stress the machines:
(i) We used the lookbusy [46] utility to inject synthetic
workload (Fig. 10b). We configured the utility to run at a
CPU utilization of 95% and at a memory utilization of 95%.
(ii) We used the Azure platform to run multiple VMs on the
same physical machine (Fig. 10a). We ran 20 VMs on the
same machine, where one of the VMs was the NETCONF
server.

During the stress experiments we observed that most of
the ETE measurements were unaffected by the stress, but as
depicted in Fig. 10a and 10b, there were occasional spikes in
the ETE, causing temporary high prediction error. As shown in
Fig. 10a and 10b, prediction error of the FT-Average algorithm
during the ETE spikes is slightly lower than the baseline error,
and during most of the run the prediction error of the FT-
Average is significantly lower than the baseline error.

Fig. 10c compares the three prediction approaches during
an ETE spike. As illustrated in Fig. 10c, the FT-Average
algorithm was the most resilient to these spikes, as it ignores
the maximal and minimal measurement samples, and thus
ignores the peak ETE value. As depicted in the figure, the
two other algorithms were more sensitive to these spikes.

VI. DISCUSSION

Prediction method. As discussed in the previous sections,
we analyzed three prediction algorithms. Kalman filtering was
used as it is one of the most celebrated and popular data
fusion algorithms. The Average approach was chosen due to its
simplicity, and FT-Average due to its resilience to occasional
isolated noisy measurements.

The experimental results show that the prediction error
offered by the three algorithms is similar, and is signifi-
cantly lower than the baseline error. The FT-Average approach
showed slightly lower prediction error in most of the experi-
ments. FT-Average is especially advantageous in the presence
of occasional spikes in the ETE, as it inherently ignores the
erroneous measurement. Interestingly, even a short burst of
N = 4 measurements allows the simple FT-Average algorithm
to predict the ETE with a very low prediction error.

Measurement period. The measurement period is the
elapsed time between two consecutive measurements. Frequent
measurements may be more sensitive to changes in the ETE,
and allow a more accurate prediction. On the other hand, if
measurements are performed too frequently they may affect
the server’s performance. Since the client continuously moni-
tors the prediction error, the client can dynamically change the
measurement period for each server to improve the prediction
error. Thus, an interesting extension to our work would be
to implement an algorithm that dynamically changes the
measurement period for each server.

RESTCONF. An interesting next step would be to extend
the scope of our work, and apply it to the emerging REST-
CONF [47]. This work would be especially interesting in the
context of resource constrained servers, such as IoT devices.

Multiple RPC types. The ETE of an RPC depends on the
RPC type. Thus, the prediction method should be used on a
per-RPC-type basis. A possible extension of our work would
be to consider how to predict the ETE of RPC type A using
measurements of RPC type B.

Time zone issues. Since the client and servers may be
spread across multiple time zones. The NETCONF date-
and-time format specifies the time zone for each timestamp,
thereby avoiding ambiguity in the timestamp value. Moreover,
to avoid problems that may arise during Daylight Saving Time
(DST) changes, the client can invoke scheduled RPCs using
the UTC time zone, which is not subject to DST changes.

Impact of the network delay on the measurements. When
a client sends a scheduled RPC message, the message must
be sent in advance, allowing the message to arrive to the
server before the scheduled time. Thus, as the network delay
increases, the client must send the scheduled RPC sooner.
In our experiments we considered the network delay when
planning the time at which RPCs are sent. Note that the ETE
is a metric of the servers’ performance, and is not affected by
the network delay.

Inter-RPC influence. The ETE of an RPC may be affected
by other RPCs that are running in parallel, or are scheduled
to run in parallel. The prediction approach presented in this
paper estimates the RPC’s execution time, given that the server
is subject to workload by other tasks or other RPCs running
in parallel. In our evaluation we mimicked these scenarios by
synthetically creating additional workload on the servers.

VII. CONCLUSION

OneClock is a generic approach for using accurate time in
distributed applications. As NETCONF is gaining momentum
and penetrating various new network applications, OneClock
seems like a natural extension that can add the time dimension
to network configuration and management.

We analyzed three prediction algorithms, and found the
simple FT-Average to be the most accurate algorithm in most
of the experiments. Our experimental evaluation confirms that
prediction-based scheduling provides a high degree of accu-
racy in various diverse environments, decreasing the prediction
error by an order of magnitude compared to the naı̈ve baseline
approach.

VIII. ACKNOWLEDGMENTS

We gratefully acknowledge Alon Schneider and Eylon
Egozi for their help with the prototype implementation. We
thank Amazon for supporting our AWS experiments by an
AWS in Education Research Grant award. We gratefully
acknowledge the Emulab project [42] and the DeterLab
project [43] for the opportunity to perform our experiments
on their testbeds. This work was supported in part by the ISF
grant 1520/11.

REFERENCES

[1] T. Mizrahi and Y. Moses, “OneClock to Rule Them All: Using Time
in Networked Applications,” in IEEE/IFIP Network Operations and
Management Symposium (NOMS), 2016.

[2] K. Harris, “An application of IEEE 1588 to industrial automation,” in
International IEEE Symposium on Precision Clock Synchronization for
Measurement Control and Communication (ISPCS), 2008.

[3] IEEE, “Time-Sensitive Networking Task Group,” http://www.ieee802.
org/1/pages/tsn.html, 2016.

[4] P. Moreira, J. Serrano, T. Wlostowski, P. Loschmidt, and G. Gaderer,
“White rabbit: Sub-nanosecond timing distribution over ethernet,” in
International IEEE Symposium on Precision Clock Synchronization for
Measurement Control and Communication (ISPCS), 2009.

[5] IEEE TC 9, “1588 IEEE Standard for a Precision Clock Synchronization
Protocol for Networked Measurement and Control Systems Version 2,”
IEEE, 2008.

[6] “The Internet Toaster,” http://www.livinginternet.com/i/ia myths toast.
htm.

[7] “Writable MIB Module IESG Statement,” https://www.ietf.org/iesg/
statement/writable-mib-module.html, 2014.

[8] R. Enns, M. Bjorklund, J. Schoenwaelder, and A. Bierman, “Network
configuration protocol (NETCONF),” IETF, RFC 6241, 2011.

[9] J. Case, M. Fedor, M. Schoffstall, and C. Davin, “A simple network
management protocol (SNMP),” IETF, RFC 1157, 1990.

[10] M. Bjorklund, “YANG - A Data Modeling Language for the Network
Configuration Protocol (NETCONF),” IETF, RFC 6020, 2010.

[11] “Active Internet-Drafts,” https://datatracker.ietf.org/doc/active/, 2015.
[12] B. Claise, “YANG data models statistics,” http://www.claise.be/

YANGPageMain.html, 2015.
[13] R. Penno, P. Quinn, D. Zhou, and J. Li, “YANG Data Model for Service

Function Chaining,” IETF, draft-penno-sfc-yang-13, work in progress,
2015.

[14] A. Sehgal, V. Perelman, S. Kuryla, and J. Schönwälder, “Management of
resource constrained devices in the internet of things,” Communications
Magazine, IEEE, vol. 50, no. 12, pp. 144–149, 2012.

[15] J. Schönwälder and A. Sehgal, “Management of the Internet of Things,”
http://cnds.eecs.jacobs-university.de/slides/2013-im-iot-management.
pdf, 2013.

[16] Open Networking Foundation, “OpenFlow Management and Configura-
tion Protocol (OF-Config 1.2),” 2014.

[17] Metro Ethernet Forum, “Service OAM Fault Management YANG Mod-
ules,” MEF 38, 2012.

[18] T. Mizrahi and Y. Moses, “Time Capability in NETCONF,” IETF, RFC
7758, 2016.

[19] G. R. Ash, “Use of a trunk status map for real-time DNHR,” in
International TeleTraffic Congress (ITC-11), 1985.

[20] D. Levi and J. Schoenwaelder, “Definitions of managed objects for
scheduling management operations,” IETF, RFC 3231, 2002.

[21] K. Watsen, “Conditional Enablement of Configuration Nodes,” IETF,
draft-kwatsen-conditional-enablement, work in progress, 2013.

[22] T. Mizrahi, E. Saat, and Y. Moses, “Timed consistent network updates,”
in ACM SIGCOMM Symposium on SDN Research (SOSR), 2015.

[23] T. Mizrahi, O. Rottenstreich, and Y. Moses, “TimeFlip: Scheduling
network updates with timestamp-based TCAM ranges,” in IEEE IN-
FOCOM, 2015.

[24] M. A. Iverson, F. Özgüner, and L. C. Potter, “Statistical prediction of
task execution times through analytic benchmarking for scheduling in a
heterogeneous environment,” IEEE Trans. Computers, vol. 48, no. 12,
pp. 1374–1379, 1999.

[25] E. Ipek, B. R. de Supinski, M. Schulz, and S. A. McKee, “An approach
to performance prediction for parallel applications,” in Euro-Par, 2005.

[26] P. Giusto, G. Martin, and E. A. Harcourt, “Reliable estimation of execu-
tion time of embedded software,” in Conference on Design, Automation
and Test in Europe (DATE), 2001.

[27] M. A. Iverson, F. Özgüner, and G. J. Follen, “Run-time statistical estima-
tion of task execution times for heterogeneous distributed computing,” in
International Symposium on High Performance Distributed Computing
(HPDC), 1996.

[28] G. Bontempi and W. Kruijtzer, “A data analysis method for software
performance prediction,” in Conference on Design, Automation and Test
in Europe (DATE), 2002.

[29] S. Hares and M. Chen, “Summary of I2RS Use Case Requirements,”
IETF, draft-ietf-i2rs-usecase-reqs-summary-01, work in progress, 2015.

[30] M. Lipinski, “White Rabbit - Ethernet-based solution for
sub-ns synchronization and deterministic, reliable data
delivery,” http://maciejlipinski.pl/myPage/docs/presentations/WR
IEEE802-Tutorial-Geneve2013.pdf, 2013.

[31] K. M. Chandy and L. Lamport, “Distributed snapshots: Determining
global states of distributed systems,” ACM Trans. Comput. Syst., vol. 3,
no. 1, pp. 63–75, 1985.

[32] B. Dickerson, “Time in the power industry: how and why we use it,”
Arbiter Systems, technical report, http://www.arbiter.com/ftp/datasheets/
TimeInThePowerIndustry.pdf, 2010.

[33] S. Chisholm and H. Trevino, “NETCONF Event Notifications,” IETF,
RFC 5277, 2008.

[34] Toaster YANG Module, http://www.netconfcentral.org/modulereport/
toaster, 2015.

[35] “Cron - Linux man page,” http://linux.die.net/man/8/cron, 2015.
[36] D. Mills, J. Martin, J. Burbank, and W. Kasch, “Network time protocol

version 4: Protocol and algorithms specification,” IETF, RFC 5905,
2010.

[37] J. Lundelius and N. A. Lynch, “A new fault-tolerant algorithm for clock
synchronization,” in Symposium on Principles of Distributed Computing
(PODC), 1984.

[38] R. E. Kalman, “A new approach to linear filtering and prediction
problems,” Journal of Fluids Engineering, vol. 82, no. 1, pp. 35–45,
1960.

[39] A. Papoulis and S. U. Pillai, Probability, random variables, and stochas-
tic processes. Tata McGraw-Hill Education, 2002.

[40] OpenYuma, https://github.com/OpenClovis/OpenYuma, 2015.
[41] “OneClock source code,” https://github.com/TimedSDN/Yuma-Time,

2015.
[42] Emulab — Network Emulation Testbed, http://www.emulab.net, 2015.
[43] The DeterLab project, http://deter-project.org/about deterlab, 2015.
[44] Microsoft Azure, https://azure.microsoft.com, 2015.
[45] Amazon Web Services, http://aws.amazon.com, 2015.
[46] D. Carraway, “lookbusy — a synthetic load generator,” https://www.

devin.com/lookbusy, 2015.
[47] A. Bierman, M. Bjorklund, and K. Watsen, “RESTCONF Protocol,”

IETF, draft-ietf-netconf-restconf, work in progress, 2015.

http://www.ieee802.org/1/pages/tsn.html
http://www.ieee802.org/1/pages/tsn.html
http://www.livinginternet.com/i/ia_myths_toast.htm
http://www.livinginternet.com/i/ia_myths_toast.htm
https://www.ietf.org/iesg/statement/writable-mib-module.html
https://www.ietf.org/iesg/statement/writable-mib-module.html
https://datatracker.ietf.org/doc/active/
http://www.claise.be/YANGPageMain.html
http://www.claise.be/YANGPageMain.html
http://cnds.eecs.jacobs-university.de/slides/2013-im-iot-management.pdf
http://cnds.eecs.jacobs-university.de/slides/2013-im-iot-management.pdf
http://maciejlipinski.pl/myPage/docs/presentations/WR_IEEE802-Tutorial-Geneve2013.pdf
http://maciejlipinski.pl/myPage/docs/presentations/WR_IEEE802-Tutorial-Geneve2013.pdf
http://www.arbiter.com/ftp/datasheets/TimeInThePowerIndustry.pdf
http://www.arbiter.com/ftp/datasheets/TimeInThePowerIndustry.pdf
http://www.netconfcentral.org/modulereport/toaster
http://www.netconfcentral.org/modulereport/toaster
http://linux.die.net/man/8/cron
https://github.com/OpenClovis/OpenYuma
https://github.com/TimedSDN/Yuma-Time
http://www.emulab.net
http://deter-project.org/about_deterlab
https://azure.microsoft.com
http://aws.amazon.com
https://www.devin.com/lookbusy
https://www.devin.com/lookbusy

	I Introduction
	I-A Background
	I-B The OneClock Protocol
	I-C OneClock: Accurate Scheduling
	I-D Related Work
	I-E Contributions

	II Using OneClock in Practice
	II-A Coordinated Operation
	II-B Coordinated Snapshot
	II-C Network-wide Atomic Commit

	III NETCONF Time Extension
	III-A Overview
	III-B Applying the Time Primitives to Various Applications
	III-C Notifications and Cancellation Messages
	III-D Clock Synchronization
	III-E Acceptable Scheduling Range

	IV Prediction-based Scheduling
	IV-A ETE Measurements
	IV-B ETE Prediction Algorithms

	V Evaluation
	V-A Background
	V-B Experiment I: Performance on different platforms
	V-C Experiment II: Periodic vs. bursty measurement
	V-D Experiment III: Performance under synthetic workload

	VI Discussion
	VII Conclusion
	VIII Acknowledgments
	References

