
A Performance Benchmark for NetFlow Data
Analysis on Distributed Stream Processing Systems

Milan Čermák, Daniel Tovarňák, Martin Laštovička, Pavel Čeleda
Institute of Computer Science, Masaryk University

Botanická 68a, 602 00 Brno, Czech Republic
E-mail: {cermak, lastovicka, celeda}@ics.muni.cz, danos@mail.muni.cz

Abstract—Modern distributed stream processing systems can
potentially be applied to real time network flow processing.
However, differences in performance make some systems more
suitable than others for being applied to this domain. We propose
a novel performance benchmark, which is based on common
security analysis algorithms of NetFlow data to determine the
suitability of distributed stream processing systems. Three of
the most used distributed stream processing systems are bench-
marked and the results are compared with NetFlow data process-
ing challenges and requirements. The benchmark results show
that each system reached a sufficient data processing speed using
a basic deployment scenario with little to no configuration tuning.
Our benchmark, unlike any other, enables the performance
of small structured messages to be processed on any stream
processing system.

I. INTRODUCTION

Network security monitoring and data analysis has become,
with the increasing volume of traffic, a challenge for current
data processing systems. Especially in high-speed networks,
full packet capture puts high demands on storage and computa-
tion capabilities. Thus, flow aggregation and export compatible
with IPFIX IETF standards (based on NetFlow v9) has become
widely used for traffic monitoring and analysis. It enables flow
analysis by storing and processing only essential descriptive
data about the flows, while all necessary information is pre-
served [1]. However, this approach allows analysis only in
batches (typically in 5 minute intervals [2]), which causes
security anomaly detection to be delayed. The solution to this
problem may be contemporary distributed stream processing
systems, which are able to process large amounts of data
in real-time. The aim of this paper is to set a performance
benchmark of these systems and determine if they are suitable
for real-time flow data analysis.

Several distributed stream processing systems have emerged
differing in architecture, method of data processing, provided
analysis methods, and programming languages. As a result,
each of these systems is suited to a different type of data
and purpose. However, none of these systems are directly
designed for flow data processing, which means processing
a large volume of small structured messages. To determine
which system is suitable for this purpose, we propose a novel
benchmark for measuring the performance of these systems.

To be able to appropriately specify the benchmark, we shall
identify challenges and requirements for flow data processing.

A novel benchmark of a distributed stream processing sys-
tem, respecting common flow security analysis algorithms, is
proposed on this basis. The benchmark is used to compare
Spark [3], Samza [4], and Storm [5], currently the most used
distributed stream processing systems. Finally, their suitability
for a flow data processing is determined by the obtained results
and acquired experience.

In summary, our key contributions are as follows.
1) The specification of challenges and requirements for

distributed stream processing systems for effective flow
analysis.

2) The proposal of a distributed stream processing system
performance benchmark based on flow data processing,
reflecting challenges identified and requirements.

3) The comparison of distributed stream processing sys-
tems and determination of their suitability for flow
analysis.

This paper is divided into seven sections. Section II de-
scribes the state of the art of data processing. Section III
presents the basic characteristics of the three most used
distributed stream processing systems. Section IV proposes
a novel performance benchmark. Section V contains bench-
mark results. Section VI discusses the results. Section VII
concludes the paper.

II. THE STATE OF THE ART

The question of which data processing system is suitable
for an IP flow processing appears already in the work by
Hofstede et al. [6]. They compared the flow processing speed
of NFDUMP and MySQL databases. With the advent of the
MapReduce computation concept [7], novel distributed data
processing systems were introduced, with Hadoop [8] at the
forefront. This enabled the development of new network data
analysis tools [9]–[11] utilizing big data architectures.

Systems based on the Hadoop technology work only with
batches of data and do not permit real-time analysis. To over-
come this limitation, distributed stream processing systems,
such as S4 [12], Spark, Samza, Storm, and Flink [13] were
introduced. These systems offer a completely new approach
to processing large volumes of data in real-time. In order to
determine which of these systems are suitable for flow data
processing, a new comparison of these systems is needed.

Since the distributed stream processing concept is quite new,
there is currently only one universal benchmark proposed by978-1-5090-0223-8/16/$31.00 c○ 2016 IEEE

Lu et al. [14], named StreamBench. This benchmark deter-
mines system performance, fault tolerance and durability using
an analysis of text and statistics data. However, StreamBench
is a universal benchmark which does not respect the problem
of flow data processing. Only two systems were benchmarked
by StreamBench and the source code has not been made public
yet. We base our work on this benchmark and propose a novel
benchmark devoted exclusively to measure the performance of
flow data processing.

III. DISTRIBUTED STREAM PROCESSING SYSTEMS

Distributed stream processing is different from traditional
batch processing. Data is not persistently stored on a disk or
in memory, but they exist only as a stream of messages. In
order to process them, the system must be able to capture them,
process them, and produce the results of such a computation.
To illustrate the workflow of stream processing, we have
presented a top level abstraction consisting of three parts: data
source stream, processing system and results stream, as shown
in Figure 1.

Fig. 1. Stream processing abstraction.

The data source is any system producing data as a stream,
typically through a network socket, but it can also be files in
Hadoop Distributed File System or a specialized system, such
as Apache Kafka [15]. Apache Kafka is a distributed mes-
saging system providing a high level of parallelism through
stream partitioning. It allows us to divide a stream of data
into smaller streams called partitions, which can be consumed
independently by any number of machines.

The processing system is the main part of the abstraction. It
reads data from the source stream and analyses the content of
every incoming message. The system allows advanced analysis
and computations on different types of data from simple text
to specific binary formats. There are many stream processing
systems differing in architecture and data processing methods.
The details and differences between the distributed stream
processing systems discussed in this paper are described in
Table I and sections further below.

The final part of stream processing is an output stream
which can be stored into a file, database, or it can be an input
of another data processing system.

A. Apache Samza

The Samza application runs in Hadoop YARN [18] con-
tainers on a cluster and is divided into tasks according to
input stream partitions [4]. One Samza task processes one or
more partitions using exactly one processor core. Hence, the
level of parallelism must be known before the input stream is
partitioned. During the data processing, a message from the
input stream partition is sent directly to an assigned task. This

TABLE I
CHARACTERISTICS OF DISTRIBUTED STREAM PROCESSING SYSTEMS.

Distributed stream processing system

Samza Storm Spark
Data source Consumer Spout Receiver
Cluster
manager

YARN,
Mesos [16] YARN, Mesos Standalone,

YARN, Mesos

Parallelism Stream partitions
based

Configured in
Topology

Configured in
SparkContext

Message
processing Sequential Sequential Small batches

Data sharing
between
nodes

Database, User
implemented

communication

Database, User
implemented

communication

Proprietary –
SparkContext,
Tachyon [17]

Programming
language Java, Scala

Java, Clojure,
Scala, any other
using JSON API

Java, Scala,
Python

Time window Proprietary User definition
of Spout Proprietary

Count
window Separate Job User definition

of Bolt Accumulator

puts high demands on the stream partitioning, because tasks
are isolated and have no shared memory.

To process data using a shared state, e.g. computing overall
statistics for a specific element in a message, all messages with
the element must be in the same partition or the state must be
synchronized through a common database. The synchroniza-
tion, however, results in a serious throughput bottleneck.

Samza has built-in support for time windows, allowing
an action to be executed after a specified amount of time.
In the event of a need for the execution after a specified
number of messages (count window), a sub-application must
be implemented.

B. Apache Storm

The Storm cluster consists of sub-applications running on
different machines [5]. Each sub-application can use all re-
sources and is not limited by the number of partitions. An
input stream is processed by a component called Spout, which
reads data from an external source and emits them in the form
of tuples. Computation takes place in the Bolt component.

In Storm terminology, the description of a whole cluster set-
up is called Topology. It assigns sub-applications on physical
machines and tells them which Spouts and Bolts will run
each specific sub-application. Each Storm component can run
on more processor cores inside its sub-application and the
number of cores used is defined in the Topology. Storm has no
requirements for a number of partitions or stream partitioning
algorithm, because the assignment of tuples to Bolt is Spouts’s
responsibility.

The data processing paradigm is the same as in Samza.
Bolts can use shared memory only inside one sub-application.
A database with concurrent access must be implemented,
to allow a shared state across multiple machines. The time
window has to be programmed as a special Spout, periodically
sending tuples with timestamps and count windows as a Bolt
aggregating all input messages.

C. Apache Spark

The Spark cluster is very similar to Storm. Messages arrive
to a Spark Streaming component, which transforms them into
batches, and aggregates them for a given period of time [19].
This approach is not pure stream processing, but these batches
are very small, typically created at one second intervals, and
computations can be called near real-time. A sequence of
batches in Spark terminology is a DStream (Discrete Stream)
and is passed to the Spark core.

Processing is done in a Cluster worker, where the pplica-
tion can run on as many processor cores as available. The
coordination of all tasks in one application is provided by
Spark context, which manages workers’ tasks and allows them
to share data across multiple workers, making shared state
management easy.

The time window is fully supported by Spark with the only
limitation that it has to be a multiple of a batching interval of
Spark Streaming. The count window can be implemented by
a user with an Accumulator in shared memory.

IV. PERFORMANCE BENCHMARK DEFINITION

We propose a novel benchmark following the universal
StreamBench benchmark [14], to compare the processing per-
formance of distributed stream processing systems. Contrary
to StreamBench, our benchmark is focused on flow data
processing. This allows us to compare the performance of a
tested system using real network data and operations.

A. Challenges and Requirements

IP flow data processing puts high demands on a system’s
performance, especially in high-speed networks, such as cam-
puses or backbone networks. We observed an average of
5 000 flow/second generation rate in the Masaryk University
campus network and 100 000 flow/second in the CESNET
network (National Research and Education Network). Accord-
ing to these observations, we estimate that the distributed
stream processing system must be able to process at least
300 000 flow/second to handle normal traffic as well as peaks,
which emerge during attacks and other anomalies.

To designate the system as suitable for flow data analysis, it
must also meet the functional requirements in addition to the
flow throughput. Distributed stream processing system must
provide adequate data manipulation operations for the use of
statistical and analytical methods. Support for count or time
windows represents another requirement on the system, which
is necessary for data computation over a specific period of
time. One example of such requirements is collecting ongoing
flow statistics or detection methods based on a threshold.
Another requirement is support got external timestamps, which
allow flows to be processed in the exact time order. This is
not absolutely necessary, but it makes the implementation of
anomaly detection methods more precise.

B. Selected Operations

Contrary to StreamBench, which focuses on both universal
text processing and simple statistics counting, our benchmark

operations are primarily inspired by common security analysis
methods of flow data [20]. Based on the exploration of
these methods, we identified four basic operations that are
included in the majority of them: Filtering, Count, Aggregation
and TOP N. We transformed these operations to standalone
programs to compare the performance of the tested systems
over the basic processing of flow data.

These four operations are preceded by an Identity operation,
used to determine the system’s performance baseline. We have
also added a SYN DoS operation representing an example
of a real network attack detection method combining the
aforementioned operations. This was done to show the system
performance after it executes multiple operations.

The benchmark consists of the following operations:

1) Identity: Input data processing without executing any
operation on them.

2) Filter: Only flows fitting a filtering rule are selected
from the input dataset and sent to the output.

3) Count: Flows containing a given value are filtered and
their count is returned as a result.

4) Aggregation: Contrary to the count operation, the ag-
gregation sums specific values over all flows.

5) TOP N: An extension of the aggregation returning only
a given number of flows with the highest sums of values.

6) SYN DoS: The detection of an attack represented by a
high number of flows from one source IP address with
TCP SYN packets only.

C. Dataset

We have prepared a dataset based on real traffic to bring
our performance benchmark of distributed stream processing
system closer to real-world data computations. The basis of the
dataset is formed by a network traffic sample from the CAIDA
dataset [21]. Because the dataset contains full packet capture
traces, we transformed the sample from PCAP format to a
flow represented in JSON format, which is commonly used
in distributed processing systems. The average size of the one
message of the dataset basis is 270 Bytes. An example of one
message is as follows:

{"date_first_seen":"2015-07-18T18:07:33.475+01:00",
"date_last_seen":"2015-07-18T18:07:33.475+01:00",
"duration":0.000,"src_ip_addr":"86.135.210.175",
"dst_ip_addr":"31.157.1.1","src_port":54700,
"dst_port":80,"protocol":6,"flags":".A....",
"tos":0,"packets":1,"bytes":56}

We take the first one million flows of one destination IP ad-
dress (50.224.90.224) as the dataset basis and repetitively
insert them into the final dataset, changing the address in each
repetition. This allows us to obtain the same result on each
computation node and eases data processing parallelization.
The final number of repetitions (partitions) corresponds to
the number of processor cores used by the tested stream
processing system, or their multiples. It enables the fast
distribution of data to the tested system and a full exploitation
of them, while maintaining the realistic appearance of the
dataset.

D. Benchmark Architecture

The benchmark corresponds to a typical architecture of the
distributed stream processing system described in Section III.
The input stream of data is provided by the Apache Kafka [15]
messaging system, fed by a dataset using multiple writing
threads such that its processing speed exceeds the speed of
the tested system. The dataset is obtained from Kafka through
multiple partitions corresponding to the number of cores
available in the testing environment, or their multiples. This
makes the tested system optimally utilized without waiting for
data at any system node. Another Kafka instance is connected
to the output of the tested system, but a different instance is
used, so it does not affect the speed of Kafka at the input.

The performance benchmark consists of two different en-
vironments for deploying the distributed stream processing
system which is tested. The first one is a single host with
multiple processor cores, allowing us to determine system
performance without transmitting data over the network. The
second environment consists of multiple hosts with the same
total number of processor cores as the first one. It is used to
determine the performance of the tested system operating over
the network. Both environments are connected to the input and
output Kafka in the same way to provide equal conditions.

E. Measurement Method

The measurement aims to compare the performance of
different distributed stream processing systems. Therefore, the
benchmark is focused only on a flow throughput, not on fault
tolerance or durability. These system properties may be tested
by other general benchmarks, e.g. StreamBench. Nevertheless,
the results in [14] show that none of the tested systems had
problems with durability or fault tolerance.

Measuring flow throughput poses a challenge in the case
of distributed stream processing since it is difficult to reliably
determine the end of data processing. Some distributed stream
processing systems provide internal throughput statistics, but
they are not provided by all of them. To overcome these
problems, the benchmark uses an input and output Kafka
system, providing internal statistics of message arrival times.

Kafka, however, does not solve the “end of data processing
problem”. It was necessary to adjust the distributed stream
processing system so that the end of data processing is
determined internally using a previously known computation
result. The end of each dataset basis was updated with the
flows affecting the calculation, which enabled us to reliably
determine the computation result at the end of processing.
Each of the tested systems is complemented by an operation of
sending a message to the output Kafka only if the computation
result is equal to the value corresponding to the end of the
processing.

In summary, the system throughput is measured using
the dataset size and the difference between the time of the
initiation of dataset sending and the arrival time of the message
sent, when processing reaches the predetermined computation
result. The throughput is computed as a number of flows sent
per second.

V. RESULTS

The performance benchmark can be adapted to any dis-
tributed stream processing system. For the needs of this paper
we have selected the three currently most used systems –
Samza, Storm, and Spark. The benchmark was deployed on
a cluster of 7 nodes. The configuration of this cluster cor-
responds to commonly used settings, making the benchmark
more realistic.

A. Testbed Configuration

We prepared a dedicated cluster of 7 VMware vSphere 6.0
nodes to deploy the benchmark and three distributed stream
processing systems. Each of these nodes had the following
configuration:

∙ 2 x Intel R○ Xeon R○ E5-2670 (16/32 HT cores in total),
∙ 192 GB 1600M MHz RDIMM ECC RAM,
∙ 2 x HDD 600 GB SAS 10k RPM, 2,5” (RAID1),
∙ 10 Gbit/s network connection, 1 Gbit/s virtual NICs.
The use of virtualization technology is very common in

modern computation clusters and allows us to prepare multiple
different environments to benchmark the tested system. We
used four different types of VMware virtual machines differing
in the number of available virtual CPUs and available memory,
as described in Table II.

The following software and distributed stream processing
systems were installed on virtual nodes:

∙ Debian Linux 8.1.0 x64
∙ Oracle Java 1.8.0
∙ Scala 2.9.2
∙ Apache Hadoop 2.7.1
∙ Apache Zookeeper 3.4.5

∙ Apache Kafka 0.8.2.1
∙ Apache Spark 1.4.1
∙ Apache Storm 0.9.4
∙ Apache Samza 0.8.0

The benchmark was deployed on single and four cluster
nodes. The two remaining nodes were running Kafka to
produce an input stream of flows and consume computation re-
sults. These Kafka nodes run on the vm large virtual machine,
enabling flow generation at a maximum speed. The Kafka at
the input used a dataset containing 100 million flows, with the
size of 27 GB. This dataset enables the full utilization of the
tested system and a correct throughput measurement.

TABLE II
VMWARE VIRTUAL MACHINES CONFIGURATIONS.

Type vCPUs Memory Drive
vm large 32 128 GB 300 GB
vm normal 16 64 GB 300 GB
vm medium 8 32 GB 300 GB
vm small 4 16 GB 300 GB

B. Benchmark Results

It is important to note that, with respect to the default
settings, we have configured the tested systems only in terms
of functionality, i.e. in order to run the benchmarks success-
fully. No performance fine-tuning was used. Moreover, as
already mentioned in the dataset-related section, only a basic
partitioning scenario was used for the benchmarks , i.e. the
number of partitions was equal to the sum of computing cores.

This is very important since, generally speaking, the number of
partitions directly influences the level of parallelization and in
turn the throughput of the tested system as a whole. However,
this does not always necessarily mean the more partitions the
better, e.g. too many partitions can have a negative impact on
the network layer. Both the above-mentioned facts must be
carefully considered when interpreting the results.

Ten throughput measurements (repetitions) were used for
the benchmark of the selected distributed stream processing
systems. Figures 2-5 depict the average value of these repeti-
tions, along with their maximum and minimum values.

0

500 k

1 000 k

1 500 k

2 000 k

2 500 k

3 000 k

Identity

Filter
Count

Aggregation

Top N
SYN DoS

T
hr

ou
gh

pu
t [

fl
ow

/s
]

Storm
Spark

Samza

Fig. 2. Performance benchmark using 1 vm large node (32 vCPUs in total),
with scattering highlighted.

1) One vm large node: The first benchmark is performed
using one node with 32 vCPUs. The benchmark results,
depicted in Figure 2, show the expected maximum throughput
of each system on the Identity operation. Whereas the Samza
throughput is still around 1 500 k flow/s for all operations,
the throughput of Storm and Spark decreases to 700 k flow/s
approximately. We believe that the throughput slowdown was
caused by the shuffling of incoming messages before their pro-
cessing, which led to input socket overloading. Thanks to the
direct processing of messages, Samza was not affected by this.

0

500 k

1 000 k

1 500 k

2 000 k

2 500 k

3 000 k

Identity

Filter
Count

Aggregation

Top N
SYN DoS

T
hr

ou
gh

pu
t [

fl
ow

/s
]

Storm
Spark

Samza

Fig. 3. Performance benchmark using 1 vm normal node (16 vCPUs in total),
with scattering highlighted.

2) One vm normal node: Based on the analysis of systems
logs and the results of one vm large node, we decided to
make a similar benchmark using a smaller number of processor
cores. This led to an overall increase in the system’s through-
put, since the input socket was not overloaded. Using only

16 vCPUs, Samza was able to process around 1 700 k flow/s.
We also observed a significant increase in Spark throughput,
while Storm retained its previous result or lower. The results
of the benchmark using one vm normal node are depicted in
Figure 3.

0

500 k

1 000 k

1 500 k

2 000 k

2 500 k

3 000 k

Identity

Filter
Count

Aggregation

Top N
SYN DoS

T
hr

ou
gh

pu
t [

fl
ow

/s
]

Storm
Spark

Samza

Fig. 4. Performance benchmark using 4 vm medium nodes (32 vCPUs in
total), with scattering highlighted.

3) Four vm medium nodes: Another performance bench-
mark was performed using 4 vm medium nodes, connected
in a network, with 32 vCPUs in total. With these benchmark
settings, the maximum throughput reached up to 2 000 k flow/s,
as depicted in Figure 4. This result shows that the architecture
of the tested systems is better adapted to deployment in a clus-
ter than to single node. This applies mostly to Spark, which
has a similar throughput as Samza. The result also shows
a large variance in maximum and minimum values which was
probably caused by the network load or system errors.

0

500 k

1 000 k

1 500 k

2 000 k

2 500 k

3 000 k

Identity

Filter
Count

Aggregation

Top N
SYN DoS

T
hr

ou
gh

pu
t [

fl
ow

/s
]

Storm
Spark

Samza

Fig. 5. Performance benchmark using 4 vm small nodes (16 vCPUs in total),
with scattering highlighted.

4) Four vm small nodes: Similarly to the single node
benchmark, we decreased the number of available cores for 4
nodes to 16 in total. The results of the benchmark are depicted
in Figure 5. In this case, there is no increase in data processing
speed. Instead, the throughput decrease, corresponding to
a reduction by half, can be noticed in the throughput of Storm.
Samza’s throughput was decreased only minimally. This led
us to the assumption, that Samza, deployed on 32 cores in
total, was limited by network bandwidth saturation and not by
computing complexity.

VI. DISCUSSION

The benchmark results show that every distributed stream
processing system which was benchmarked is able to process
at least 500 k flow/s using 16 or 32 processor cores. This fulfils
the minimal requirement of 300 k flow/s throughput. However,
Spark and Samza offer a much higher throughput than Storm.
This even allows us to analyse flow data from multiple
networks at the same time. We assume that the systems are
probably capable of higher throughput using a more space-
efficient data format than JSON (e.g. MessagePack), since its
size leads to overloading of network during the benchmark.

The benchmark results also clearly show that Samza and
Spark are able to provide high data processing throughput on
a single node. This eliminates the need for large clusters con-
taining multiple nodes for real-time flow data analysis. Thus,
stream processing can be deployed on a single server together
with NFDUMP [2] to extend its analysing functionality.

Although Samza has the best throughput results, we cannot
say that it is perfectly suitable for flow data processing. The
strict requirement for a number of data partitions correspond-
ing to available processor cores is the biggest disadvantage of
Samza. If partitioning cannot be performed before Samza is
deployed, the analysis is performed using multiple partitions,
which requires a shared state causing a throughput slowdown.
Thus, in the case of selecting an appropriate system, the deci-
sion needs to consider not only the advantages and disadvan-
tages of system itself, but also the deployment environment.

The results show that each of the tested distributed stream
processing systems have very specific behaviour depending
on the cluster setup. To fully understand the behaviour of
each system, a large number of test variations would have to
be run considering different cluster setups, different number
of partitions and different fine-tuned configurations. Although
such a rigorous process is out of the scope of this paper,
the proposed benchmark enables such a large number of test
variations to be performed in a comparable and repeatable way.

VII. CONCLUSION

We have proposed the novel performance benchmark of
a flow data analysis on distributed stream processing sys-
tem. The selected systems were benchmarked using a set
of operations, based on real network data analysis methods.
The benchmark results of the three most used distributed
stream processing systems show, that each tested system is
able to handle normal traffic, as well as its peaks in both
small and large networks. However, when considering default
configurations and a lack of fine-tuning, only Samza and Spark
have a high-enough flow throughput and can be used for the
analysis of data from multiple networks at the same time.
Our benchmark may be used to determine the performance
of processing any small structured messages on any stream
processing system.

The source code of the benchmark and dataset prepara-
tion scripts can be downloaded from https://is.muni.cz/repo/
1323006/dsp-systems-benchmark.zip.

ACKNOWLEDGEMENT

This research was supported by the Technology Agency of
the Czech Republic under No. TA04010062 Technology for
processing and analysis of network data in big data concept.

REFERENCES

[1] R. Hofstede, P. Čeleda, B. Trammell, I. Drago, R. Sadre, A. Sperotto,
and A. Pras, “Flow Monitoring Explained: From Packet Capture to Data
Analysis with NetFlow and IPFIX,” Communications Surveys Tutorials,
IEEE, vol. PP, no. 99, pp. 2037–2064, 2014.

[2] P. Haag, “NFDUMP,” Web page, December 2014, accessed August 6,
2015. [Online]. Available: http://nfdump.sourceforge.net/

[3] M. Zaharia, T. Das, H. Li, S. Shenker, and I. Stoica, “Discretized
streams: An efficient and fault-tolerant model for stream processing on
large clusters,” in Proceedings of the 4th USENIX Conference on Hot
Topics in Cloud Ccomputing, ser. HotCloud’12. Berkeley, CA, USA:
USENIX Association, 2012.

[4] Apache Software Foundation, “Samza,” Web page, 2015, accessed
August 6, 2015. [Online]. Available: http://samza.apache.org/

[5] ——, “Apache Storm,” Web page, 2014, accessed August 6, 2015.
[Online]. Available: https://storm.apache.org/

[6] R. Hofstede, A. Sperotto, T. Fioreze, and A. Pras, “The Network
Data Handling War: MySQL vs. NfDump,” in Networked Services and
Applications - Engineering, Control and Management, ser. Lecture Notes
in Computer Science, F. A. Aagesen and S. J. Knapskog, Eds. Springer
Berlin Heidelberg, 2010, vol. 6164, pp. 167–176.

[7] J. Dean and S. Ghemawat, “MapReduce: Simplified Data Processing
on Large Clusters,” Communications of the ACM, vol. 51, no. 1, pp.
107–113, January 2008.

[8] T. White, Hadoop: The Definitive Guide, M. Loukides and
M. Blanchette, Eds. O’Reilly Media, Inc., May 2009.

[9] Y. Lee and Y. Lee, “Toward scalable internet traffic measurement and
analysis with hadoop,” SIGCOMM Comput. Commun. Rev., vol. 43,
no. 1, pp. 5–13, January 2013.

[10] R. Fontugne, J. Mazel, and K. Fukuda, “Hashdoop: A MapReduce
framework for network anomaly detection,” in 2014 IEEE Conference
on Computer Communications Workshops (INFOCOM WKSHPS), April
2014, pp. 494–499.

[11] S. Marchal, X. Jiang, R. State, and T. Engel, “A Big Data Architecture
for Large Scale Security Monitoring,” in 2014 IEEE International
Congress on Big Data (BigData Congress), June 2014.

[12] L. Neumeyer, B. Robbins, A. Nair, and A. Kesari, “S4: Distributed
Stream Computing Platform,” in 2010 IEEE International Conference
on Data Mining Workshops (ICDMW), December 2010.

[13] Apache Software Foundation, “Flink,” Web page, 2015, accessed
August 6, 2015. [Online]. Available: https://flink.apache.org/

[14] R. Lu, G. Wu, B. Xie, and J. Hu, “Streambench: Towards benchmarking
modern distributed stream computing frameworks,” in 2014 IEEE/ACM
7th International Conference on Utility and Cloud Computing (UCC),
December 2014, pp. 69–78.

[15] J. Kreps, N. Narkhede, and J. Rao, “Kafka: A distributed messaging sys-
tem for log processing,” in Proceedings of 6th International Workshop
on Networking Meets Databases (NetDB), Athens, Greece, 2011.

[16] Apache Software Foundation, “Apache Mesos,” Web page, 2012,
accessed December 16, 2015. [Online]. Available: http://mesos.apache.
org/

[17] Tachyon Project, “Tachyon,” 2013, accessed December 16, 2015.
[Online]. Available: http://tachyon-project.org/

[18] Apache Software Foundation, “Apache Hadoop NextGen MapReduce
(YARN),” web page, 2015, accessed September 8, 2015.
[Online]. Available: http://hadoop.apache.org/docs/current/hadoop-yarn/
hadoop-yarn-site/YARN.html

[19] M. Zaharia, M. Chowdhury, M. J. Franklin, S. Shenker, and I. Stoica,
“Spark: Cluster Computing with Working Sets,” in Proceedings of the
2Nd USENIX Conference on Hot Topics in Cloud Computing, ser.
HotCloud’10. USENIX Association, 2010.

[20] A. Sperotto, G. Schaffrath, R. Sadre, C. Morariu, A. Pras, and B. Stiller,
“An Overview of IP Flow-Based Intrusion Detection,” IEEE Communi-
cations Surveys Tutorials, vol. 12, no. 3, pp. 343–356, 2010.

[21] CAIDA, “The CAIDA UCSD Anonymized Internet Traces 2015
- 20150219-130000.” [Online]. Available: http://www.caida.org/data/
passive/passive 2015 dataset.xml

