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Abstract—In this work we tackle the bus stop selection step
for the School Bus Routing Problem (SBRP). Our goal is to
minimize the number of bus stops in order to assign all students
to a bus stop respecting a home-to-bus-stop walking distance
constraint. Our strategy creates a large number of possible
bus stops points in a road network and uses a pseudo-random
constructive heuristic algorithm to assign students to a bus
stops. Our approach is tested on a real georeferenced data of
a brazilian city and is compared with a different methodology.
Results demonstrate that the proposed approach is able to find
good solutions for this optimization problem. Besides,the higher
the number of possible points to install bus stops, the smaller is
the number of bus stops required to attend all students.

Index Terms—School Bus Routing Problem; Bus Stop
Selection; Constructive Greedy Heuristic;

I. INTRODUCTION

The School Bus Routing Problem (SBRP) [1]–[5] is a
classical combinatorial optimization problem which, given a
set of roads, schools, students, vehicles and garages, consists
of generating an efficient schedule for a fleet of school
buses. Each bus picks up students from various bus stops
and delivers them to their designated schools while satisfying
various constraints such as the maximum capacity of a bus,
the maximum riding time of a student in a bus and the time
window of a school. According to [2] the SBRP can be
divided into five sub-problems: Data Preparation; Bus Stop
Selection;Routes Generation; School Bell Time Adjustment and
Route Scheduling. As far as we are concerned, only Desrosiers
et al. [2,6] address all five steps of the SBRP. Normally, the
research works deal with the Route Generation and the Route
Scheduling steps.

In this work we will address a different version of this
problem dealing with just with the Data Preparation and
the Bus Stop Selection steps. The Data Preparation step [7]
consists of generating a single network containing students,
residences, schools and garages. The Bus Stop Selection step
considers the road network and the students location in order
to determine the location of the bus stops. Some constraints

may also be employed, such as a maximum home-to-bus-stop
distance [8]. However, the Bus Stop Selection step is often
omitted in literature because most studies assume that the
locations of bus stops are known before hand.

Our goal is to minimize the number of bus stops in a
road network respecting a maximal home-to-bus-stop distance
constraint. With less bus stops it can be easier to the planning
authorities to choose the best bus routes using any software
or even manually. For instance, if we are able to assign all
students within a same bus stop, no computation is need to
find the best routes. Instead of choosing bus stops just in the
road intersections as Faraj et al. [9], our strategy discretizes
the network points enabling the creation of bus stops in a
large number of points. Furthermore, we use a pseudo-random
algorithm based on a GRASP [10] Construction Phase to
tackle the problem.

Our results demonstrate that our approach was able to find
good solutions for this optimization problem. Increasing the
number of possible points to install bus stops, we are able to
decrease substantially the number of bus stops to attend all
students.

In our study we have used a real georeferenced data of a
brazilian city and our sample consists of 944 students. Figure
1 presents the road network of the city being studied. The blue
points represent the student’s homes.

This work is organized as follows: Section II presents the
definition of the problem; Section III presents the related work;
Section IV presents our baseline algorithm; Section V presents
our proposed algorithm; Section VI presents our results; and
Section VII concludes our work.

II. DEFINITION OF THE PROBLEM

Given a network N composed of a set of roads R, R =
{1, 2, ..., r}, a set of students S, S = {1, 2, ..., i}, a set of
equally spaced points P , P = {1, 2, ..., j} for installing bus
stops and a maximal home-to-bus-stop walking distance λ,
our goal is to find the minimal set of bus stops B, B ⊆ P ,
which is able to attend all students. We also need to define a978-1-5090-0223-8/16/$31.00 c© 2016 IEEE



Figure 1. Roads and Students

dij parameter that represents the distance between the student
i and the possible bus stop j. It is important to notice that
for this case, since we are dealing with georefenced data, the
distance between the students and the bus stops should be
calculated using the network roads and is different from the
Euclidian distance.

Figure 2 shows an example of assignment of students to
bus stops: circles represent stops, squares represent students
and the color represents ’assignment’: students assigned to a
given stop share the same color of the stop.

Figure 2. Example of an assignment of students to bus stops

For this problem, an Integer Linear Programming (ILP)
formulation M with the following sets of variables is defined:

yj =

{
1, if point j is chosen to receive a bus stop
0, otherwise.

xij =

{
1, if student i is assigned to bus stop j
0, otherwise.

and the following set of parameters can be also defined:
• dij : distance between student i and point j.
• λ: maximal home-to-bus-stop walking distance.
In order to model this problem we must create the following

set:
Θ = {(i, j) ∈ S × P | dij ≤ λ}

The Θ set avoids creating variables xij in which the distance
between student i and possible bus stop j are less than λ.

The bus stop allocation is modeled as follows:

min

|P |∑
j=1

yj (1)

subject to:∑
(i,j)∈Θ

xij = 1 ∀i ∈ S (2)

xij ≤ yj ∀i ∈ S, j ∈ P | (i, j) ∈ Θ (3)
yj ∈ {0, 1} ∀j ∈ P (4)
xij ∈ {0, 1} ∀(i, j) ∈ Θ (5)

Objective function (1) minimizes the number of select points
to install bus stops. Constraint (2) ensures that every students
will be assignment to just one bus stop. Constraint (3) ensures
that, if one point is chosen to receive a bus stop, at least
one student will be assignment to this bus stop, and, if one
student is assignment to a point, this point must be a bus stop.
Constraints (4) and (5) are the integrality constraints.

III. RELATED WORK

After the work of Bodin and Berman [11], only few
works deal with the bus stop selection step of the SBRP.
Although the bus stop selection and the bus route generation
are highly interrelated, in most of previous works both
problems are considered independently. The combination
of the two steps has already been approached from some
location-allocation-routing (LAR) heuristics [2,11,12] and
allocation-routing-location (ARL) [13,14] strategies.

More recently, Schittekat et al. [5] present a GRASP
coupled with a VND heuristic for the SBRP with only one
school. The authors aim to minimize the total travel distance
of all school buses determining the set of bus stops, the best
assignment of students to a bus stop and the routes that lie
along the chosen stops. Different from most works that the
student-bus stop assignment step is made before the route
generation step, the authors compute a set of potential stops to
each students, generate the routes, and then, assign the students
to the best possible bus stop in order to minimize the total
travel distance.

In 2014, Kinable et al. [15] present an exact
branch-and-price algorithm for the SBRP. The authors
aim to find a feasible assignment of students to stops and
find routes for the vehicles, minimizing the total length of
the routes and respecting the vehicle capacity. Although the
authors present an exact approach for the SBRP and also
concern about the school bus stop assignment, they use a
simpler version of the problem with just one school, single
load, homogeneous vehicles and without time windows.

Also in 2014, Faraj et al. [9] solve a single load version
of the SBRP using real georeferenced data with information
about the students, roads and schools. They deal with the data
preparation, bus stops selection and routes generation steps.
For the bus stop selection, the authors implement a heuristic
based in the Dominating Set Problem in order to find the
minimum number of bus stops to assign all students.

A fundamental difference between the work of Faraj et al.
[9] and our proposal is related to the location of the bus
stop assignment. In Faraj et al. [9], the bus stop can only
be allocated to the same position of one student, while in this



work the bus stop can be allocated to any position along the
roads as long as this position being a vertex in the graph. In
this way, much more possible points where a bus stop can be
allocated will be analyzed and the results will be compared
with the baseline algorithm [9].

IV. BASELINE ALGORITHM

In this section the baseline algorithm proposed by Faraj et
al. [9] is presented. We choose this algorithm as our baseline
algorithm because Faraj et al. [9] algorithm also aims to
minimize the number of bus stops. Moreover, the authors use
the same real georeferenced data making easier to compare
the results.

In Faraj et al. [9] algorithm the bus stop selection is
divided in two phases: (a) generation of buses stops; and (b)
assignment of students to their buses stops. The students are
divided in two groups: the isolated ones, and the groupable
ones. The isolated are the ones which there is no other student
closer enough to form a group. A group is formed if there is
more than one student whose distance between them is less or
equal to the maximum allowed walk distance for each student.
In the exact position of each isolated student a bus stop must
be created.

For each group, one or more geographical points is chosen
which might become a bus stop. In other to choose these
points, the authors implement a heuristic for the Dominating
Set Problem [16]. The heuristic for Dominating Set Problem,
proposed by Faraj et al. [9], consists of computing a priority
P for each vertex of a graph G = (V,E), in which V
represents the set of student residences and E represents the
road network. Priority is directly proportional to square of
the vertex degree and is inversely proportional to the sum
of the degrees of neighbor vertex. Vertices are interactively
inserted into the dominating set DS according to its priority
(highest to lowest). At each step, all redundancies are removed
from DS. The computational cost of this heuristic is given by
Θ(|Students| × |Stops|).

V. PROPOSED ALGORITHM

In this section we present our algorithm to solve the
proposed problem. We use the PostgreSQL software with some
geographical1 extensions which deals with spacial data and
routing functions respectively.

Given a network N with a set of roads R, a set of students S
and the parameters λ and σ - distance between the equidistant
points - our algorithm has 5 steps. Firstly, we create equidistant
points along the road network. Then we create a topology
and project the students to a vertex of the network. Secondly,
we compute the travelled distance between each student to
each vertex storing the ones that respect the home-to-bus-stop
walking distance constraint. At last we select the bus stops
using a pseudo-random greedy function. Algorithm 1 presents
our algorithm to solve the problem.

1PostGis and PgRouting - postgis.net and pgrouting.org

Algorithm 1: General Algorithm
Input: R,S, λ, α
Output: Bus Stops

1 R′ ← Equidistant Points(R, λ);
2 Create Topology(R′, S);
3 Students Projection(R′, S);
4 Distance Calculation(R′, S);
5 Bus Stop Selection(R′, S, α);

A. Creation of Equidistant Vertices in the Road Network

In this section we present the procedure that creates
the Equidistant Points. The original network N has few
vertices. The only vertices are the starting points, the
ending points of the roads and also the road intersection.
The Equidistant Points Procedure creates vertices in the
original road network at each λ kilometers. For instance,
if λ = 0.5, at each 500 meters of each road, the
Equidistant Points procedure creates a new vertex. Of
course, the higher the number of different points (possible bus
stops) created along the road network, the more points must
be analyzed and, probably, better solutions will be achieved.
In an ideal model, all the points belonging to the roads should
be analyzed in order to find the best one which can attend
the students. However this is not feasible since the number
of points in a road is infinite. In spite of that fact, a good
solution will be the one that the distance between each point
to another, along the road is small, creating a lot of possible
bus stops to be analyzed. However, that distance can not be
too small creating a large number of points that can cripple
the algorithm. Algorithm 2 presents our procedure to create
equidistant points in the road network.

Algorithm 2: Equidistant Points Procedure
Input: Roads of the data set R, λ
Output: Set of equidistant points along the roads R′

1 R′ ← 0;
2 for each r ∈ R do
3 newPoint← StartPoint(r);
4 R′ ← EndPoint(r);
5 numPoints← (broadLength(r)/λc);
6 for it← 0 to numPoints do
7 newPoint← newPoint+ λ;
8 R′ ← R′ ∪ newPoint;
9 end

10 end

The Figure 3 shows a created graph using the original
points associated with the vertices of the edges while the
Figure 4 shows the created graph for the same data, using
the equidistant points created by the Algorithm 2. It is easy
to notice that the graph of Figure 4 has more vertices when
compared with the graph of Figure 3, showing that there are
more bus stops possibilities to be analyzed.



Figure 3. Graph with Original Points

Figure 4. Graph with Equidistant Points

B. Creation of the Topology of the Graph

In order to create the graph topology for the problem we
use the CreateTopology function provided by PgRouting. It
is responsible to create a edge table, a vertex table and to
connect all the edges to the respective vertex of the graph. The
topology of the graph is based on the geometry information
of the georeferenced data. After the creation of the graph, it
is possible to use all the routing functions of PgRouting.

This function associates to each edge a vertex corresponding
to the point of the beginning of the edge, the point of the
end of the edge and the point related with the intersection of
edges. Furthermore all the road segments are broken at the
intersections.

C. Projection of the Students in a Road Network

In this section we present our projection strategy. Such
issue arises since our source database contains the exact
georeferenced location of each entity, and we have to bring
these entities to the road network. After projecting entities, we
separate the street (edge) considering the point of projection.

For this step it is used a function which return the minimum
distance between two geometries. So for each coordinate of a
student, the closest vertex is associated to that coordinate. In
that way, each student is projected on the closest vertex in the
graph.

Fig. 5 shows an example of the projection. The green points
represents the exact location of entities. The red ones represent
their projection to the nearest road.

Figure 5. Projection of Students

D. Distance Calculation Procedure

Having all the possible points that could be a bus stop
represented by the set of neighbors vertex and the same
mapped vertex of the students, it is possible to calculate the
distance of each vertex of this set to all of the mapped students.

From each vertex it is possible to pass, as an external
parameter, the distance of the restriction of the problem and,
therefore, to seek only for the result of the mapped students. In
this way it is possible to create a set composed of each vertex
and the number of students it can attend using the constrained
distance.

E. Bus Stops Selection Procedure

In the section we present our bus stops selection procedure.
We build a constructive heuristic that at each iteration chooses
a new bus stop. The procedure repeats until all students are
assigned.

Our strategy works as follow: for each possible point i,
to install bus stops we compute all the unattended students
that can be assign to this bus stop respecting the maximal
walk-to-bus-stop constraint. Then, instead of always selecting
the best solution (the point that attended the most number
of unattended students), we build a Restricted Candidate List
(RCL) of good elements, and one element (not necessarily
the best candidate) is randomly selected. A RCL parameter
α determines the level of greediness or randomness in this
pseudo-random procedure. In the algorithm, α is the RCL size.
When α = 1, the RCL has one element representing a greedy
solution. When α = 2, the RCL has two elements, that means
that the RCL will have the two vertex with more unattended
students, and so forth. For instance, when α = |R|, a full
random solution is returned. Algorithms 3 and 4 present the
proposed Build RCL and Select Bus Stop procedures.

VI. COMPUTATIONAL RESULTS

The methodology described in the previously section is
applied in the real georeferenced data set related to a Brazilian
city, and the results are compared with the ones found in the
Faraj and al. [9]. We analyze our algorithm using different
values for λ and different values for α.



Algorithm 3: Build RCL Procedure
Data: N,α

1 RCL ← ∅;
2 for i← 1 to α do
3 Γ ← Point With Max Unattend Students(N );
4 RCL ← RCL ∪ Γ;
5 end

Algorithm 4: Select Bus Stops Procedure
Data: G, η, α

1 busStops ← ∅;
2 attendedStudents ← 0;
3 while attendedStudents < |S| do
4 Build RCL(G,α);
5 selectedPoint ← Randomly Choose Element(RCL);
6 busStops ← busStops ∪ selectedPoint;
7 attendedStudents ← Update Attended Students(S);
8 end

A. Comparing different values for λ

Our first set of experiments compares different values for λ
when α = 1. In this case our algorithm is fully greedy, i.e.,
the Select Bus Stops procedure always selects the point that
attend the most number of unattended students.

Table I shows the number of bus stops found for the same
number of students, using the presented methodology for
different λ values. When λ = Original, it means that the
algorithm does not create the equidistant points and it is only
possible to install bus stops in the end points, start points
and intersection points of the original road network. The field
Number Edges, Number Vertices, Number Stops represent the
number of edges of the road network graph, the number of
vertices, i.e., the number of possible points to install bus stops
and the number of bus stops found by our algorithm. The
field Original Stops represents the number of bus stops that
intersects the Original set, i.e., the number of bus stops that
are the same ones when λ = Original.

λ Number Number Number Original
Edges Vertices Stops Stops

Original 3640 1754 128 128
2km 4181 2258 125 51
1km 5124 3106 121 36

0.5km 7166 4901 117 22
0.25km 11561 8570 111 3
0.1km 25449 10855 67 1

0.05km 49183 13899 46 2

Table I
COMPARISON BETWEEN DIFFERENT λ VALUES

It is possible to note that for all λ value our algorithm find
less bus stops then Faraj et al. [9] work. In our worst case,

Figure 6. Students and Bus Stops Assignment

Figure 7. Comparison Between Different λ Values

using only the original vertices, 128 bus stops were found
while in the best case, using λ = 0.05, it was found only 46
bus stops. Also it is possible to observe that as long as the
number of vertices in the graph grows, the solution tends to
be better. The last column in the Table I shows that as long as
the number of vertices grows, the number of bus stops found,
that corresponds with the same ones found for the original
case, is smaller.

Figure 6 illustrates the students (blue points) and the bus
stops (red points) for the best case, using the graph of 0.05
kilometer equidistant vertices.

The Figure 7 illustrates the comparison between the number
of students attended by each bus stop. We compared the two
approaches. The first one we use the original graph. In the
second one λ = 0.05. Analyzing the figure, is possible to
notice that, when λ = 0.05, the best bus stop for the graph
attended 37 students while the best bus stop found for the
graph using the original vertices attended only 15 students.
Comparing both curves of the two different graphs, it is
possible to see why the first one found 128 bus stops while
the second one found 46.

B. Comparing different values for α

Our second set of experiments compare four different values
for α when λ = 1, i.e., when the distance between the
equidistant points is 1 kilometer. When α = 1 we have a fully
greedy solution. For each α value we execute the algorithm
33 times in order to present some statistic results.

The Figure 8 illustrates the comparison among the four
different λ values. The graphic represent the number of bus
stops found for each execution of the algorithm.

Analyzing the Figure 8, it is noticeable that the number



Figure 8. Comparing Different α Values

of bus stops found when α 6= 1 was less than the greedy
approach (α = 1), specially when α = 3. However all times
that a better solution was found, it was only by one, and,
at most, two bus stops less than the greedy approach. So, in
order to see how good the fully greedy approach is compared
with the pseudo-random approach, the confidence interval was
calculated.

A confidence interval is used to indicate whether an estimate
is reliable . It represents an estimated range of a population
parameter given a range of likely estimates [17]. For this case,
it was used the sample average, the standard deviation and the
sample size to have a 95% of confidence. It is possible to
calculate the confidence interval using the following formula:
−Zc ≤

(
Media−µ
σ÷√η

)
≤ Zc , where Zc = 1,96.

Analyzing the Table II it is possible to observe that when
α = 1 the algorithm presented a better solution compared with
α = 5 and α = 10. When α = 1 the algorithm found always
121 stops which is smaller than the confidence interval of
the other two instances. However, for the case of the random
candidate, the fully greedy approach present a result that was
inside the confidence interval. This demonstrates that in 95%
of the times, the fully greedy approach found a solution that
was smaller or inside the confidence interval of the average
when α 6= 1.

Average Standard Deviation Confidence Interval

Best 3 120.73 0.83 120.43 ≤ µ ≤ 121.03
Best 5 121.80 1.45 121.20 ≤ µ ≤ 122.3
Best 10 123.47 1.87 122.76 ≤ µ ≤ 124.10

Table II
CONFIDENCE INTERVAL WHEN λ = 1

VII. CONCLUSION

In this work we presented a solution for the allocation
problem of bus stops using a real and georeferenced data set
of the students and roads of a city located in the country side
of Brazil. The results found by our algorithm were, in some
cases, more than 80% better than the one found in Faraj et
al. [9]. We also noticed that the less is the λ value, the better
is the solution. Also, it was possible to notice that the fully

greedy approach (α = 1) was satisfactory for the problem.
That fact can be showed analyzing the confidence interval for
different α values. All results presented a better solution or a
solution that was inside the confidence interval compared with
α 6= 1.

Finally, this work presented an efficient approach to solve
the optimization problem that can be implemented in different
georeferenced cities. Is expected that this work can help in the
country side scholar transportation. As future works we intend
to measure the influence of parameter λ in the total distance
traveled by the school buses.
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