Toward Real-time Network-wide Cyber Situational
Awareness

Tomas Jirsik*t, Pavel Celeda*
*Institute of Computer Science, TFaculty of Informatics
Masaryk University, Botanickd 68a, 602 00 Brno, Czech Republic
E-mail: {jirsik,celeda} @ics.muni.cz

Abstract—In today’s complex computer networks, we are
constantly facing a risk of data loss, system compromise, or
intellectual property theft. The complexity of the networks
hinders their effective defense. A Network-wide Cyber Situational
Awareness (NwWCSA) has been introduced to assist a network
security administrator with network security. The concept, how-
ever, faces several challenges that hinder an efficient application
of the NwCSA in a real-world environment. The challenges
include the overload of raw data, low speed of reaction, and a
lack of context and unified view on a network. In this paper,
we present a novel framework that faces above mentioned
challenges. The framework leverages a distributed data stream
processing system and methods for real-time big data processing.
The framework is evaluated with respect to stated requirements
on systems for NwCSA. Moreover, we present a prototype
framework implementation and provide lessons learned from its
real-world deployment.

I. INTRODUCTION

Computer networks continue to increase in their sophisti-
cation and complexity. Various commercial services, critical
systems, and information sources are maintained in such
networks, which makes them a lucrative target for terrorists,
cyber espionage, or criminal activities. The intruders take
advantage of the complexity and sophistication of the networks
to elude the security measures. To be able to defend systems
from the intruders, it requires an ability to retrieve data about
the network, comprehend processes in the network, identify
and detect a threat, and take appropriate actions, i.e. to achieve
a situational awareness over a network.

Situational awareness (SA) as a general concept is widely
discussed in literature [1], [2]. The situational awareness is de-
fined in [1] as “perception of the elements in the environment
within a volume of time and space, the comprehension of their
meaning and the projection of their status in the near future”.
The application of the SA concept in the network security
domain is, however, not straightforward. The efficient applica-
tion of Network-wide Cyber Situational Awareness (NWCSA)
faces several major challenges due to high dynamics of the
network environment, speed and volume of network traffic,
and complexity of the computer networks. The first challenge
is an overabundance of raw data. An analyst is overloaded with
the raw network data [3]. Volume, velocity, and variability
of the raw data prevent him/she them from comprehending a
network and taking proper decisions. The next challenge is

978-1-5386-3416-5/18/$31.00 (© 2018 IEEE

the speed at which cyber events occur. The reaction speed of
defenders is much smaller in comparison to the speed of the
intruder’s actions due to automation of the attacks. Last but
not least challenge is to provide a homogeneous toolset with a
unified view both on whole network and individual elements
in a network.

In this paper, we first provide necessary background by
defining NwCSA and describing relevant state-of-the-art. We
focus on a detailed elaboration of possibilities of network
perception and comprehension. Based on the elaboration, we
identify requirements for an efficient application of NwCSA
that respond to above-mentioned challenges. Next, we present
a novel framework that meets the identified requirements.
The framework reduces data overload through distributed data
computing suitable for processing of a large volume data. The
speed of the reaction is improved by a shift from a traditional
batch-based data analysis to a stream-based approach. Further,
we present an innovative solution for unified presentation of
information about both whole network and individual network
elements. The efficiency of the framework is demonstrated on
a real-world prototype deployment. The lessons learned from
the deployment are offered in the discussion section.

II. NETWORK-WIDE CYBER SITUATIONAL AWARENESS

The SA has been originally used in conventional military
conflicts to assist officers in taking strategic decisions. With
a transition from conventional battlefields to cyber ones, the
traditional SA had to be adapted to the cyber environment. The
traditional SA has evolved into Cyber Situational Awareness
(CSA). Network-wide Cyber Situational Awareness (NWCSA)
is a specific field of CSA which focuses on gaining SA in
computer networks. The elements considered in NwCSA are
parts of network physical infrastructure (i.e. switches, routers,
hosts, servers, and lines), and network traffic transferred via
a network. The goal of NwCSA is to provide the insight into
the dynamics of computer networks and provide information
necessary to answer questions arising in the decision process,
e.g. where did an attacker come from, and what harms have
been caused by an attack.

NwCSA systems are multilevel. A NwCSA system re-
lies on information from intrusion detection systems (IDS),
antiviruses, malware detectors, logs, flows and other infor-
mation sources. This raw information is transformed into
events that are further processed [4], [5]. The number of

events is however still too high, and their processing is too
labor-intensive to be processed manually. The systems for
automatic creation of even higher abstractions are needed [3].
The higher abstractions are, for example, graphs of networks
with vulnerability dependencies, or decision trees serving as
cyber defense support. Prototype systems that are capable of
providing even higher abstractions are emerging in literature,
e.g. CAULDRON [4], AHEAD [6]. Further, the distillation of
valuable information for NwCSA from network data becomes
a big data problem as the volume of network traffic is
increasing on a compound annual growth rate of 21 % every
five years [7].

The challenges of NWCSA covered by this paper, i.e. over-
abundance of raw data, unified view, and speed of reaction, are
relevant to perception and comprehension part of the NwCSA.
In following subsections, we present state-of-the-art of the
collection methods and tools that serve for network perception
along with approaches to gaining network comprehension.

A. Network Perception

The network perception represents a collection of infor-
mation about network status, attributes, and dynamics. Raw
information from a network is collected via probes. There exist
two types of probes - active and passive. The passive probes
are transparent to the network and collect data passing through
an observation point. Active probes, on the other hand, actively
gather information from a network. They probe a network and
based on the response they determine the information output,
e.g. what hosts are present in a network.

There are two types of raw data, which are observed. We
observe data about the network itself (e.g. type of devices, their
position in a network, links, routing) or we gather information
from network traffic (e.g. who is communicating with whom,
how long). For observation of network itself, mainly active
probes are used (Nmap [8], ZMap [9] or commercial tools
Network Topology Mapper [10], IPsonar [11], and WhatsUp-
Gold [12]). Further, information about the network infrastruc-
ture can also be collected using simple network management
protocol (SNMP) [13] or via a centralized collection of logs
from network devices, e.g. rsyslog [14].

Passive probes are used mainly for observation network
traffic. The network traffic offers insight into the actual be-
havior of network elements. It shows, e.g., who is commu-
nicating with whom, when, and for how long. Available raw
data sources for network perception are network packets, IP
flows, and logs. The packet analysis offers the most detailed
information we can obtain from network traffic. However,
the volume of the packets and data to analyze is enormous,
and resources needed for analysis are excessive. Therefore,
the packet analysis is not efficient on a network-wide scale,
and it is mostly used on demand in specific cases. The tools
for capturing packets from networks are e.g., tcpdump [15],
tshark [16].

IP flows are used mainly for a network-wide traffic moni-
toring. An IP flow is an abstraction of a network connection
defined as a set of packets with common properties passing

an observation point during a certain interval. [17]. Due to
the abstraction, a volume of data to analyze is lower than
in the case of packet analysis. For example, in a medium-
sized network of 24,000 active IP addresses, we observed
an average of 12,000 flows/second and 110,000 flows/second
in the national wide research and education network. Open-
source IP flow probes are e.g. fprobe [18], YAF [19], and
nprobe [20].

B. Network Comprehension

Comprehension phase of NWCSA process covers an under-
standing of information carried in a raw data. From the raw
data, we derive advanced relations such as critical points or
bottlenecks in a network infrastructure, top talkers, suspicious
behavior, vulnerabilities, and so forth.

After the collection during network perception, the raw
data are stored then into collectors. Type of incoming data
determines the type of a collector and way of data storage.
IP flow collectors (e.g. nfcapd [21] or IPFIXcol [22]) store
data in binary format into column databases into a usually
five minutes bins. Dumps from network traffic are stored in a
libpcap file format into .pcap files and logs are typically stored
in Hadoop Distributed File System (HDSF) [23]. The outputs
from active probes are stored in various arbitrary formats.

The analysis of raw data a set of queries and responses
on data stored on a collector. Raw network traffic dumps are
analyzed by an individual .pcap file. Analysis of the raw traffic
is done ad-hoc and generally on demand. IP flows stored on
collector are typically analyzed in half- to five-minute batches.
The analyses are run either on a regular basis, e.g. every five
minutes or on demand, e.g. analysis of a host’s communication
in a network. The analysis of network logs is done on the
fly due to the recent development of data stream processing
architectures. The results of the active probes take a form of
unstructured text. Automatic processing is then tool-custom.
The results are analyzed periodically to update the status of a
network continuously.

The analysis workflow influences the speed of reaction in
NwCSA. NwCSA aims to lower the reaction time as much
as possible [3]. One way how to reach a lower the response
time in NwCSA is to reduce a time needed for analysis.
As shown in the previous paragraph, network data analyses
exhibit different time granularity. The different and rather
long analysis times reduce the speed of reaction in NwCSA.
Analysis results need to be synchronized among data sources
and the fast analyses wait for the results of the slow ones.
Even a delay in orders of minutes may cause serious harms
to network infrastructure and services worth thousands of
dollars [24].

There already exist solutions that are designed aim ad-
ministrator with comprehend network processes. Commercial
solutions are represented by Splunk [25] and AleinVault [26].
However, these solution faces the same challenges as NwCSA
does. According to user reviews, AlienVault suffers from
performance issues when handling a large volume of logs [27],

and Splunk can be enhanced in support of additional types of
databases [28].

C. Requirements

A great variety of information is needed to achieve an
efficient NwCSA. Figure 1 summarizes the current state of
network perception and comprehension described in previous
subsections and highlights issues of contemporary NwCSA.

Network IP Flows

Logs

Traffic
Dumps

Active

First, there exist many tools that retrieve data of various
types from a network. Each tool usually uses own storage and
leverages a tool-specific analysis language and approaches.
The tools have different settings of data collection process
and storage which influences analysis workflow and data
comprehension. Second, raw data is collected at high speeds
and volumes. As the tools for data collections differ, the
data type, format, frequency, and information they carry differ
too. Moreover, information carried in raw data can overlap,
duplicate, or even contradict, which further impedes the anal-
ysis. Third, a network administrator has to understand many
network monitoring methods and approaches, switch between
them for specific information, run different types of analyses,
and use various levels of details in an analysis. The diversity
of data sources and complexity of the analysis also hinders
the decision process as it takes to an administrator a longer
time to collect all data necessary for an informed decision.
The result is then a low reaction speed in NwCSA.

To face above mentioned disadvantages and challenges
in perception and comprehension of a network, we impose
requirements for an effective framework for NwCSA:

o Performance - the framework should be able to process
and analyze large volumes of the data at high speeds.

o Universality - the framework should be able to gather
and process several data from various data sources.

o Context - the framework should be able to offer complete
information including context relevant to the information
instead overwhelming a user with a flood of raw data.

+ Dynamic level of detail - the framework should be able
to provide a dynamic level of detail both in time and
information domain.

« Reaction time - the framework should minimize the time
needed for analysis to increase the speed of reaction.

In the following section, we apply all requirements and
describe a novel framework for a network perception and
comprehension in NwCSA along with its prototype implemen-
tation.

III. REAL-TIME NETWORK-WIDE CYBER SITUATIONAL
AWARENESS FRAMEWORK

The proposed framework for network perception and com-
prehension leverages new advances achieved in distributed
data stream computing and apply their concepts to the
Network-wide Cyber Situational Awareness domain. Such an
approach results in several improvements in performance,
universality, and data analysis.

A. Architecture

The proposed framework is depicted in Figure 2. The data
are captured from a network via probes. Captured data are not
sent to specialized collectors by a data type as in the previous
approach, though. Instead, all data from probes are processed
in one system. To be able to process data from various probes
in one system, the data needs to be normalized into a general
format. Normalization takes place in a normalization system
(e.g. Logstash [29]). After the normalization system receives
data from probes, it decodes them and transforms them into
a general Data Serialization Format (DSF), so that the data
can be processed in one system. Normalized data is further
sent to a messaging system. The purpose of a messaging
system is to distribute data for distributed stream processing
framework efficiently. There are many messaging systems such
as ActiveMQ, RabbitMQ, or Apache Kafka (for the full list
see [30]). Currently, the most suitable system is Apache Kafka
as it offers sufficient message throughput and is compatible
with most data stream processing frameworks.

Traffic Dumps :_33

DSF B | <2,
IPFlows =S } B —— < .
- B
Network Logs P
Normalization Messaging
System System
on the fly DSF - DSF
— = SR
B

Stream Processing
Framework

Result Presentation Analysed Data

Fig. 2. Framework for perception and comprehension of a network.

The core of the framework is a distributed stream processing
system. Systems for distributed data stream processing are
capable of processing a large volume of data at high speeds,
as has been shown in [31]. The distributed systems can easily
adapt to an increase in data volume, speed, and variety.

An additional computational node can be added instantly to
the system to boost the performance. Previously impossible
analysis, such as computing host statistics for each host from
IP flows simultaneously, are now possible. Broadly used sys-
tems for distributed data stream processing are Spark, Storm,
Samza, and Flink, all maintained by Apache Foundation.
These systems provide all basic functional requirements for
distributed stream data processing such as data reliability,
fault tolerance, and generality. The stream processing systems
process data in data streams which enables parallelization of
the analysis and increases the speed of analysis. The data is
processed on-the-fly immediately after it is received by the
systems. The on-the-fly processing makes the real-time data
analysis possible and significantly improves a response time
of the framework.

Analysis of data in data streams is based on continu-
ous queries. An analysis is initialized by raising the query.
Since then, all incoming data are analyzed using the query.
An analysis is done in primary memory to achieve a high
throughput (no I/O operations are needed). Only results of
the analyses are handed in for further processing and storage
which improves analysis response time. The processed and
analyzed data is then sent to a data storage. A data storage
keeps results of data analysis and serves as a data source
for result presentation to the user. So-called "Next Generation
Databases” are suitable for NwWCSA work-flow. These storages
are able to hold a large volume of the data and support
advanced queries over the stored data needed for a proper
result presentation and comprehension. Currently, the most
common database for storing a large volume of data from data
stream processing systems is Elastic Stack [32] comprising of
Logstash, Elasticsearch, and Kibana.

Result presentation layer is necessary for data comprehen-
sion in NwCSA. In the proposed framework, the results of an
analysis are presented to a user in a unified manner. Due to
the unified processing of the data, the framework can provide
information from various data sources in one user interface.

B. Prototype Implementation

To demonstrate a pilot implementation of the framework, we
introduce a publicly available prototype Stream4Flow' [33].
To highlight the advantages of the framework, we implement
NwCSA framework based on IP flow data source. An instance
of Stream4Flow currently provides a decision support infor-
mation about a network of 25 000 hosts to a computer incident
response team.

The normalization component of the framework, IPFIX-
Col [22], transforms IP flows to a JSON format. JSON
formatted IP flows are distributed into data stream processing
system using Apache Kafka. Apache Spark Streaming was
selected as the data stream processing system as it provides
sufficient data throughput, a wide range of programming
languages (Scala, Java, Python), and support for Map-Reduce
programming model. Moreover, it offers a GraphX library for

Thttps://stream4flow.ics.muni.cz/

graph analysis. Analyzed data are stored in Elasticsearch. An-
other part of Elastic Stack, Kibana, is used for result preview.
The Stream4Flow framework also provides an additional web
interface (see Fig. 3) that offers both macro and micro view
of the network using a combination of a zoomable, clickable
heatmap (macro view) and basic visualizations of IP flows
characteristics (micro view).

il q

Staistics of the o

Fig. 3. Stream4Flow web interface with macro and micro view

The prototype has been receiving IP flows at average speeds
of 8500 IP flows per second for more than two months in the
production deployment. Even though the prototype collects
only IP flows, it provides a variety of information needed to
achieve NwCSA. Basic characteristics of the whole network
are computed, as well as individual characteristics for each of
25 000 active hosts in the network, such as the sum of packets,
bytes, flows, port utilization, the number of communication
peers and so forth. These characteristics have been computed
every 10 seconds for each device. The members of the cyber
security incident response team have reported a positive effect
on understanding the network.

IV. DISCUSSION

In this section, we discuss each of the stated requirements
for a NwCSA framework. We examine the framework from
performance, universality, dynamic level of detail, context, and
reaction time point of view. Conclusions of the discussion are
based both state-of-the-art findings and own experiences from
prototype deployment. The section concludes with further
remarks that describe additional comments and lessons learned
applicable for framework deployment.

A. Performance

An efficient framework should be able to process data from
variable data sources at high speeds and volumes. Distributed
stream processing system used in framework allows data
processing even in volumes and velocity described above.
In a case of need for higher performance, an additional
computational node can be added to increase throughput.
Moreover, there is no single point of data input that might
become a potential bottleneck. The data are received through
multiple input points, which further increases the throughput.

It has been shown in [31] that tools for distributed stream
data processing are capable of processing data in volumes
and speed over 1M records/second in a small cluster of four
commodity servers. The performance requirements on the data
storage are further significantly reduced due to the fact, that
only preprocessed results are stored instead of raw data. In
case a raw data are required for analysis, another distributed
storage node for raw data can be added to the framework.

The proposed framework also brings performance advan-
tages regarding data analysis. Some advanced analyses, such
as data clustering, computation of long-term characteristics,
or top N characteristics, are computationally intensive and de-
mand large volumes of memory and computational power. The
distributed nature of stream processing systems allows task
parallelization using MapReduce programming principle [34]
which makes the computation of such tasks possible. Process-
ing data in data streams also brings a performance advantage.
The operations over data streams, such as duplication, split,
union, enables us to parallelize the data streams and their
analysis. The parallelization further increases the speed and
possibilities of the analyses.

B. Universality

Universality requirement guarantees that a framework based
system can receive and analyze data from various types of
data sources. The universality is achieved in two steps. The
first step is the ability to receive from different data sources.
The second step is the ability to analyze various data within
one system.

Data sources provide data with different structure and infor-
mation. A normalization systems used in framework maintains
universality by using so-called codecs. A codec is a description
of a data structure sent by a data source. It specifies the
position and meaning of a given information in sent data.
Normalization tools, such as Logstash, support input codecs
for a variety of data sources including a Netflow v5/9 codec
for data from IP flow monitoring, nmap codecs for results
active network scanning, or syslog codecs for machine logs.

Various types of data can are analyzed in the proposed
framework due to a unified internal representation of the
data. An implemented normalization process transforms the
data into readable, comprehensible format. Due to a dynamic
and structure of received data, a general data serialization
format (DSF) is used. Widely popular DSF is Javascript Object
Notation (JSON) format. JSON is an open-standard file format
that transforms objects into key-value pairs of human-readable
text. The DSFs enable to share the data efficiently among the
individual components of the framework no matter of the input
data format.

C. Dynamic Level of Detail

A comprehension of a network requires two kinds of
dynamic details - a dynamic level of time granularity and
dynamic level of view perspective. The proposed framework
implements both of the dynamic levels of details.

A challenge of dynamic level of time granularity is to
provide short-term results. The long-term statistics can be
derived from short-term ones by aggregation. The short-term
results require a data collection and analysis in small time
intervals (so-called micro batches). The stream processing
approach used in the framework is designed to process and
analyze data in micro batches. The micro batches enable us
to achieve a required level of minimal time granularity. The
stream processing frameworks also implement a concept of
sliding windows suitable for long-term analysis. An illustrative
example of the advantages of stream processing framework is
an analysis of IP flows. A probe exports IP flows for analysis
in a continuous stream. Current tools for IP flow analysis,
however, aggregates this continuous stream into batches of
five-minute data. The analysis is then done per batch. Using
the stream processing frameworks, we can analyze the data
per IP flow.

Dynamic level of view represents the possibility to see a
network both from overview and in detail. In current NwCSA,
both views were obtained by a different set of tools specialized
for a given view. Providing both views from raw data in
a unified tool was too computationally demanding as raw
data for both views needed to be processed. Distributed
systems and MapReduce programming principle enable such
computations, which makes a macro and micro view in a
single tool possible. We can assign an entity identifier (e.g.
IP address, MAC address) as a mapping key. Computations
of required characteristics, statistics and analyses are then
distributed among the machines according to the key. Using
this approach, we are able to monitor in detail all entities in
a network and, at the same time, monitor the overall network
state.

D. Context

Thanks to the successful implementation of performance
and universality requirement, the framework meets also the
context requirement. The universal nature of the framework
enables us to process data from various sources. Scalability
and distributed nature of the framework guarantees a sufficient
computational power to process and analyze the data. Thus,
all necessary raw data needed for NwCSA can be managed in
one system.

The possibility of processing all types of data in one
framework enables us to combine pieces of information from
different data sources effectively. Information about a host net-
work behavior gained from IP flow analysis can be supported
by relevant log records from the host. The results of analyses
of different data sources can be correlated which each other
to increase the precision and robustness of the analyses.

Data stream processing systems are suitable for data pre-
processing as they implement continuous queries. Using the
continuous queries, we can precompute several predefined
characteristics and statistics. The administrator does not need
to run analyses over collected raw data. Instead, the analyses
are run on preprocessed characteristics. This approach reduces

the data overload in NwCSA as an administrator handles
preprocessed data instead of raw data.

E. Reaction time

Proposed framework improves the reaction time in two
ways: it reduces analysis response time, and it enables a
real-time data processing. Both enhancements shorten a time
needed for a delivery of information necessary for a decision
to an administrator, which decreases the reaction time.

The analysis response time is reduced due to the use of
distributed systems for data processing. As described earlier,
distributed systems enable parallelization of analysis compu-
tation, e.g. by using MapReduce programming model. An
analysis can then finish in a shorter time and results of the
analysis are available earlier. The analysis response time is
also improved by a data preprocessing done by the stream
processing system. The analysis process does not need to
process a large volume of raw data. Instead, some partial
results are precomputed, and only a reduced volume of data
is analyzed.

Data stream processing systems included in the framework
are able to process data in real time. A piece of a raw in-
formation is processed immediately when a stream processing
system receives it. Real-time data processing is a significant
advantage over current tools for network perception. As de-
scribed earlier, there are delays caused by the analysis of the
data in batches. In the case of IP flows, the delay can reach
up to 10 minutes. Including systems capable of real-time data
processing into NwCSA framework eliminates such a delays
and improves the reaction time.

FE. Further Remarks

Setting the real-time distributed stream processing system
as the cornerstone of data analysis in NwCSA has following
consequences. The nature of the real-time stream processing
transforms the approaches to data analysis. In current tools for
network data analysis, data are analyzed ex-post. Raw data
are stored and then analyzed retrospectively. It is possible
to perform a query over historical data or search back the
data for additional information if needed. In the stream-based
approach, the data cannot be analyzed ex-post. The data
are analyzed in data streams using continuous queries. Only
results of the queries are stored. Nevertheless, there might
occasionally be demand for ex-post analysis. In that case, we
recommend extending the framework with a suitable primary
data retention store that makes on-demand ex-post analysis
possible.

Support of various data sources and processing different
data in one system opens a new issue regarding information
duplication. In a real-world deployment, the data collection
area of the probes can overlap. Two separate probes can then
observe the same information. A suitable example is an IP
flow that is routed via two probes or the log records from
two different machines that represent the same network scan.
Duplication of collected information needs to be kept in mind
during data analysis and comprehension. In case information

is not deduplicated, biased or incorrect findings may occur.
The bias is then carried further in NwCSA framework, and
misleading decisions are taken.

V. SUMMARY

In this paper, we introduce a novel framework for network-
wide cyber situational awareness that aims to face current
challenges of NwCSA. The framework takes advantages of
recent advances in distributed data stream processing. The
considerable computational power of these systems enables
us to analyze all data harvested from a network in one
system, which was not possible before. The stream-based
data processing also reduces the time needed for reaction
as data are processed on the fly. The framework reduces
a volume of data that an analyst needs to analyze as only
results of the preprocessing are stored for analysis by the
administrator. The universality of the framework is ensured
by a normalization component that transforms raw data into
a common representation format. Efficient result analysis and
data comprehension are possible due to the usage of next-
generation databases and novel visualizations.

Presented framework surpass current solutions for NwCSA
by providing a real-time overview of a network in one system,
supplying administrators with both general and detailed infor-
mation about a network, and by adding context to network
data. The framework is discussed regarding performance,
universality, dynamic level of detail, data context, and reaction
time. Moreover, experiences from a real-world deployment of
the framework are provided.

The framework focuses on network perception and com-
prehension part of NwCSA. There are still open issues in
a projection of network status in the future and cognitive
processes in NwWCSA. The issues include, but are not limited
to the ability to see the likely outcome of a given decision,
prediction of attacker’s actions, or optimization and capture of
cognitive reasoning process of an administrator. Nevertheless,
we believe, that the presented framework for NwCSA can be
further improved to address the above-introduced issues.

ACKNOWLEDGMENT

This research was supported by the Security Research
Programme of the Czech Republic 2015-2020 (BV III/1-VS)
granted by the Ministry of the Interior of the Czech Republic
under No. V120162019014 — Simulation, detection, and miti-
gation of cyber threats endangering critical infrastructure.

REFERENCES

[1] M. Endsley and E. O. Kiris, “The out-of-the-loop performance
problem and level of control in automation,” Human Factors,
vol. 37, no. 2, pp. 381-394, 1995. [Online]. Available: http:
//dx.doi.org/10.1518/001872095779064555

M. Endsley and D. Garland, Situation Awareness Analysis and Measure-
ment, ser. Situation Awareness: Analysis and Measurement. Taylor &
Francis, 2000.

[3] A. Kott, C. Wang, and R. F. Erbacher, Cyber Defense and Situational
Awareness. Springer, 2014.

S. Jajodia, S. Noel, P. Kalapa, M. Albanese, and J. Williams, “Cauldron
mission-centric cyber situational awareness with defense in depth,” in
2011 - MILCOM 2011 Military Communications Conference, Nov 2011,
pp. 1339-1344.

2

[4

=

[5]

[7]

[8]
[9]

[10]

(11]

[12]

[13]
[14]
[15]
[16]

[17]

(18]
[19]
[20]
[21]
[22]
[23]

[24]

[25]
[26]

[27]

[28]

[29]
[30]

[31]

M. Drasar, T. Jirsik, and M. Vizvary, Enhancing Network Intrusion
Detection by Correlation of Modularly Hashed Sketches. Berlin,
Heidelberg: Springer Berlin Heidelberg, 2014, pp. 160-172.

F. De Gaspari, S. Jajodia, L. V. Mancini, and A. Panico, “Ahead: A
new architecture for active defense,” in Proceedings of the 2016 ACM
Workshop on Automated Decision Making for Active Cyber Defense, ser.
SafeConfig ’16. New York, NY, USA: ACM, 2016, pp. 11-16.

C. and/or its affiliates, “Cisco VNI Forecast and Methodology,
2015-2020,” June 2016, [cited 2017-04-27]. [Online]. Avail-
able: http://www.cisco.com/c/en/us/solutions/collateral/service-provider/
visual-networking-index- vni/complete- white-paper-c11-481360.html

G. FE. Lyon, Nmap Network Scanning: The Official Nmap Project Guide
to Network Discovery and Security Scanning. USA: Insecure, 2009.
Z. Durumeric, E. Wustrow, and J. A. Halderman, “Zmap: Fast
internet-wide scanning and its security applications,” in Presented
as part of the 22nd USENIX Security Symposium (USENIX Security
13). Washington, D.C.: USENIX, 2013, pp. 605-620. [On-
line]. Available: https://www.usenix.org/conference/usenixsecurity 13/
technical-sessions/paper/durumeric

solarwinds, “Network topology mapper,”
on 02-05-2017. [Online]. Available:
network-topology-mapper

Lumeta, “Ipsonar,” May 2017, cited on 02-05-2017. [Online]. Available:
http://www.lumeta.com/products/ipsonar/

ipswitch, “Whatsup gold network monitoring,” May 2017, cited
on 02-05-2017. [Online]. Available: https://www.ipswitch.com/
application-and-network-monitoring/whatsup-gold

J. Dilley and I. Cooper, “Known HTTP Proxy/Caching Problems,” RFC
3143, Jun. 2001. [Online]. Available: https://rfc-editor.org/rfc/rfc3143.txt
R. Gerhards, ‘“Rsyslog,” May 2017, cited on 04-05-2017. [Online].
Available: http://www.rsyslog.com/

tecpdump, “tcpdump,” May 2017, cited on 02-05-2017. [Online].
Available: https://www.wireshark.org/docs/man-pages/tshark.html
Wireshark, “tshark,” May 2017, cited on 02-05-2017. [Online].
Available: https://www.wireshark.org/docs/man-pages/tshark.html

B. Claise and B. Trammell, “Specification of the IP Flow Information
Export (IPFIX) Protocol for the Exchange of Flow Information,” RFC
7011, Sep. 2013. [Online]. Available: https://rfc-editor.org/rfc/rfc7011.
txt

S. Astashonok, “fprobe,” May 2017, cited on 04-05-2017. [Online].
Available: https://sourceforge.net/projects/fprobe/

C. M. U. CERT, “Yaf - yet another flowmeter,” May 2017, cited on
04-05-2017. [Online]. Available: https://tools.netsa.cert.org/yaf/

ntop, “nProbe,” May 2017, cited on 04-05-2017. [Online]. Available:
http://www.ntop.org/products/netflow/nprobe/

May 2017, cited
http://www.solarwinds.com/

P. Haag, “nfdump,” May 2017, cited on 05-05-2017. [Online].
Available: http://nfdump.sourceforge.net/
P. Velan, “Ipfixcol,” May 2017, cited on 05-05-2017. [Online].

Available: https://github.com/CESNET/ipfixcol

T. A. S. Foundation, “Hadoop distributed file system,” May 2017, cited
on 05-05-2017. [Online]. Available: https://hadoop.apache.org/

U. Franke, P. Johnson, J. Konig, and L. Marcks von Wiirtemberg,
“Availability of enterprise it systems: an expert-based bayesian
framework,” Software Quality Journal, vol. 20, no. 2, pp. 369-394,
2012. [Online]. Available: http://dx.doi.org/10.1007/s11219-011-9141-z
I. Splunk, “Splunk enterprise,” May 2017, cited on 05-05-2017.
[Online]. Available: https://www.splunk.com/

I. AlienVault, “Unified security management,” May 2017, cited on
05-05-2017. [Online]. Available: https://www.alienvault.com/
trustradius, “Alienvault usm reviews,” May 2017, cited on 05-

05-2017. [Online]. Available: https://www.trustradius.com/products/
alienvault/reviews

L. yuan Lai, “Splunk and spark,” May 2017, cited on O05-
05-2017. [Online]. Available: https://conf.splunk.com/session/2015/

conf2015_LYuan_Splunk_BigData_DistributedProcessingwithSpark.pdf
Elasticsearch, “Logstash,” May 2017, cited on 016-05-2017. [Online].
Available: https://www.elastic.co/products/logstash

L. Strzalkowski, “Queues,” 2016, cited on 12-05-2017.
Available: http://queues.io

M. Cermak, D. Tovarnak, M. Lastovicka, and P. Celeda, “A performance
benchmark for netflow data analysis on distributed stream processing
systems,” in NOMS 2016 - 2016 IEEE/IFIP Network Operations and
Management Symposium, April 2016, pp. 919-924.

[Online].

(32]

[33]

(34]

C. Gormley and Z. Tong, Elasticsearch: The Definitive Guide, 1st ed.
O’Reilly Media, Inc., 2015.

T. Jirsik, M. Cermak, D. Tovarnak, and P. Celeda, “Toward Stream-Based
IP Flow Analysis,” IEEE Communications Magazine, vol. 55, no. 7, pp.
70-76, 2017.

J. Dean and S. Ghemawat, “Mapreduce: Simplified data processing on
large clusters,” in Proceedings of the 6th Conference on Symposium on
Opearting Systems Design & Implementation - Volume 6, ser. OSDI’04.
Berkeley, CA, USA: USENIX Association, 2004, pp. 10-10. [Online].
Available: http://dl.acm.org/citation.cfm?id=1251254.1251264

