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Abstract—Since the 1970’s it has been acknowledged that a
complex system can be broken into (a) its invariant functional
parts (mechanism), and (b) the externalized choices for how the
system should behave (policy). Policy-based management’s main
objective is to separate and externalize the decisions required by a
system from the mechanisms provided by the system, and provide
a way to define and evaluate these decisions. A few decades later,
we have today a plethora of different policy models and even more
policy languages — plus tooling — offering policy-based solutions
for virtually any use case and scenario. However, policy-based
management as a standalone domain has never been evaluated
in terms of which parts are variant / invariant, i.e. which parts
of policy-based management can be domain-, model-, language-,
usecase-independent. In this paper, we introduce and define a
formal universal policy model that does exactly that. The result
is a model that can be used to design, implement, and deploy
immutable policy infrastructure (engine and executor) being able
to execute (virtually) any policy model.

I. INTRODUCTION

In the past few years, the concept of policy-based manage-
ment has taken center stage — again — in the communication
industry. Policy is core to activities such as the TM Forum
SID [1] and Zoom [2], IETF’s SUPA [3] and to an extent
ANIMA [4], AT&T’s D2 [5] and ECOMP [6] open sourced
in ONAP [7], ETSI’s MANO [8] open sourced in OSM [9],
and Ericsson’s control architecture COMPA [10].

For any given scenario the first choice is the most critical:
select a policy model'and soon after a policy language” from
the ever growing list of candidates. These choices are often
made based on limited information or experience, even though
they are critical for the success of any activity, be it a standard,
an open source project, a company’s product portfolio, or
a single product. When a wrong choice becomes obvious,
usually much later, this can (usually will) lead to massively in-
creased efforts and cost for an organization. Changing a policy
model and/or language can be very difficult (or impossible),
especially when policy is a system’s core component.

A. This Work

In a manner similar to how any domain is examined,
when we examine different policy approaches and systems it
becomes clear that there are aspects of them that are similar
and invariant, and parts that are different, and varying (variant).
The principle of “separating policy from mechanism” [11]
applies the term mechanism to the invariant parts and policy
to the variant parts. When we maximize the invariant parts we
can then build immutable infrastructure that is independent

le.g. obligation, adaptive, promise, goal, utility, authorization, intent, refrain
ze.g. Ponder, N3, Turtle, KAoS, Rei, Drools, XACML, SAML, WS-Policy
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of the policy approach, and define a Universal Policy Model
(UPM) to operate on this infrastructure and to describe and in-
terchange between different policy- and application-domains.

Using Domain Driven Development (DDD) concepts
[12][13], we have defined a UPM, detailed in Fig.l1. The
Reference Model for Policies (RM-Pol) captures all policy
mechanisms. This model is presented as a base formal Domain
Model (DM) for the policy domain in §II. The Application
Domain Model (ADM) and Policy Domain Model (PDM)
describe the invariant parts. The variant parts are then concrete
Policy Models (PMs) and associated languages expressing
them. In other words, the PDM defines all aspects to build
immutable policy infrastructure while the PMs define how
concrete, domain-specific policies should be specified. §IV
details one example PM: an action policy (e.g. [14]).

The UPM can then be translated to execute on the common
immutable infrastructure, i.e. policy executors and engines.
This translation uses defined templates detailed in §III. The
resulting Universal Policy Execution Environment (UPEE)
is described in §V, with discussion of a candidate concrete
implementation of the UPM and UPEE called APEX [15].

As a result, a decision for a particular policy model and
language is no longer mission critical. With immutable infras-
tructure (policy engine and executor) and basic tooling (policy
authoring), policy models and languages can be changed any
time, or coexist solving different business problems. Only
policy definitions change, not components.

B. Related Work

Understanding the role of policies and the policy-based
approach requires some historical context. Policy was first
used in the 1970’s for security [16] where a relation W
provides access control rules to govern system security. These
rules help to govern state transitions on receiving requests.
In [17], the authors state that a system specification describes
what a system does while a policy describes how. Here, the
dynamic features are policy, role, and control.

Reference Model for Policies

Domain T ] (RM-Pol)
Model
(DM) Application | [Policy DM Policy Model
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Fig. 1: Universal Policy Model (UPM)



In the mid 1970’s operating systems began using the term
policy as an artifact of control [11], where users could influ-
ence kernel-space decisions without requiring an expensive
kernel to user space switch. In [18] the authors separate
static and dynamic policies for memory allocation, for static
memory allocated at scheduling time with dyramic memory
changing with the process. The policy/mechanism principle
for operating system resource allocation is introduced in [11],
while [19] explains how this principle can be applied to
networks and their management.

Policies are first used in communication systems in [20]
to control sharing resources. In [21] rules are used to detect
and later prevent network congestion. Event Condition Action
(ECA) rules appear first in active databases [22]. A defined
event triggers the evaluation of a defined set of queries
(condition) and a defined action is executed if the condition
is satisfied. The processing of rules is strongly associated to
database transactions. Event types for ECA are defined as
database operation, temporal, and external notification.

Policy as a paradigm for network management is originally
defined in [23], based on earlier work [24][25][26]. Originally
focusing on access control, the work introduced domains,
subject, and target, plus policy categories (and models) and a
policy system (with language and tooling) called Ponder. This
is then followed by policy standards, such as the IETF policy
framework, DMTF CIM, TMF SID, to name a just view. A
detailed historic perspective on policy can be found in [27].

A deep understanding of policy requires study of policy
frameworks [28], approaches [29], and concepts for specifica-
tions [30]. Policies from different domains were also analyzed,
such as cognitive radio [31], security [32], network traffic and
QoS [33], and XML and open environments [34].

Approaches for models that allow multiple PMs in a single
PDM have been developed in [35] and more recently in [3].
Here, each PM is bound to its specific definitions, for instance
an ECA policy is bound to its inherent rule structure, so while
being extensible, it is not easy to add new policy models.

A better approach is to specify a formal taxonomy that
informs a formal PDM, independent of any specific PM, for
instance in [36]. We apply the underlying concepts of this
approach but strive for less variance in the PDM.

Tool support for syntactic and semantic translation between
models can be achieved [37]. However, it is important to note
that semantic translation cannot be fully automated. In [38]
we study inter-domain relationships and policy translation,
both important aspects for UPM. We have summarized today’s
challenges for policy-based management in [39] and [40].

II. REFERENCE MODEL FOR POLICIES

The DM © defines required concepts (their semantics
and relationships) and sub-models. Sub-models define specific
responsibilities and decomposition. The main two sub-models
are the ADM D¢ (applications A) and PDM P (policies P).
Other sub-models can be added if required, e.g. for a naming
architecture D™, time D°, or a location model ©!. Table 1
shows that the domain models (D¢, ©P) can be specialized in

Domain Model D = {concept; 1, D% D, D1.n}
Application DM~ D¢ = {4, concept ,} = {M{ .} ={¢¢ .}

Policy DM DP = {P, concept] ,}E={M YE{ .}

TABLE I: RM-Pol

models (91%, 9MP), which can then be further specialized in
concrete models (€%, ¢P). For instance, an application model
92, can define sets of applications for orchestration as A°%
and A°™°® and concrete models for their implementation and
deployment. Similar, we can use the PDM for policy models

Pece and Pgoal .

A. Domain Model Concepts

The DM defines fundamental concepts shared among all
sub-models, shown in Table II. A set of names N contains
names nj. , as unique identifiers of concepts and their in-
stances. Name structure and semantics in a sub-model D",
for example the architecture in [41]. Most concepts introduced
below have a name n and a natural language description d.

A timestampvtv defines a point in time, further defined in
a sub-model D*. Some concepts need to be typed as a type
7 € 11, usually defined in a type model ©7.

A relationship ¢ formalizes how two concepts z; and zo
relate to each other. For instance, an application a is executed
in a processing system ¢?. Further semantics might be defined
in a relationship model ®". A multi-relation ¢¢ allows for n-
dimensional relationships, e.g. multi-layer network topologies.

Executable and declarative expressions are modeled with the
concepts Language, Statement, and Strategy. A language
[ maps to an (external) execution environment for statements.
A statement A\ is a mapping from a language [ to a set of
expressions. Finally, a strategy £ defines a mapping of a type
m to a statement \. They allow different implementations of
the same process or algorithm (cf. pp 315 in [42]).

Some concepts require typed values, e.g. a policy parameter
delay as type int with integer values. These types need to
be declared (introduced), defined (run-time association), and
can finally be used (with values). A type declaration y binds
a key (usually a string) to a type, which is in a given type

Name N = {n1..n},nj; = name : name € D"
Description d ="text”

Time stamp £ € DF

Location L= {[1..n} €D

Type M={m.n}:m; €D7

Relationship  ® = {¢1..n} : ¢; € D" = (n,d, 21, 22)

- multi 4 ={¢7 ,}: 067 = (n,d, ¢1,00)
Language L= {[1..n}

Statement A={N.n} A = (I, {expression})
Strategy E={{.a}:& = (n,d, 7N

Typed value V' = {v1.., },v; = (id, value) : id € F
- definition F={fi.n}, fj = (id, key,d) : key € T
- declaration 7 = {y1..n},y; = (key, type,d) : type € I1¥
Event E={ei.n}ej=(n,dt,Ve):nel

- definition F'={y.n}v =n4d7)

Context C=A{ci.n},cj=(n,d, V) :necQ

- definition Q=A{wi.ntwj=(n,d7T)

TABLE II: RM-Pol Domain Model Concepts



Application A={a1.n},a; =(n,d,m,U,U?)

- distributed A? =A{af  },a = (n,d,7,U,U*,U?)

- unit U={uin}u;=(ndUILF*UE"UP)

- process AP ={a} 1} a¥ = (n,d, A?)

- task Al = {atlun}7a§1: (n,d,m, At I, F*UZt U P)
Interface I={i1..n},i; = (n,dN)

Resource R={ri.n},7j=(n,dI,P)

Processing System
Computing System

P = {yf 1) = (n,d, I, R" R, AP)
we = {y§ 398 = (n,d, {(vP,d)})

Layer L={(1n)lj= <n7d7{(Népa¢p>}>
Domain A = (81.0),8; = (n,d, NA")

Executor xEU:(n,d,Ui,Iz,F””UE”> i
Engine xeeA:(n,d,w,Ui,_UaUXUUl>

- cluster xz¢ € Ad = (n,d,n,U", UL U XU X°)

TABLE III: RM-Pol Application Domain Model

set ITY. The type set should provide the semantics of the type.
For execution the type set should be supported by a language.
Once declared, a type can defined. A type definition f binds
an identifier 1d to a key declared in 7. Once defined by a
concept, the type can be used. Using a typed value v binds an
id (previously defined in F) to a value.

The concepts Event and Context model information other
concepts can accept, process, manipulate, or produce. Here,
events transport information between concepts as domain
events [43]. Context describes what information a component
(e.g. an event, an application, a policy) requires that is external
to itself. This well-defined information facilitates semantic
interoperability without complicated APIs.

Both, event and context, are essentially containers of typed
values. So they need to be defined before they can be used.
Their definitions (v for events, w for context) bind a name
with a type declaration y. Once defined, they can be used for
information exchange. An event e associates the name with a
time stamp  (creation) and typed values V¢. A context item
c associates the name with typed values V°.

The similarity allows us to define an invariant equivalence
function. Two events (or two context items) are equivalent if
Vv, € Vi Avg € V5 the key and type associated with their
id are identical. The differences between are that events are
immutable, and context can have veracity (read/write).

B. Application Domain Model

The ADM main concepts, modeled following the principles
introduced in [44], are: Application, Unit, Process, and Task.
The complete set of concepts is shown in Table III. An in-
depth discussion of a 5G application domain is in §3 of [45].

We are using fundamental concepts of distributed operating
systems. An application a of type 7 has units U realizing
the purpose of the application and application units U®
for its management (tasks, memory, and I/O). A distributed
application a? extends a with units U¢ for the distribution
management (the distributed versions of U%).

When a (distributed) application is executed it becomes an
Application Process and its units become Tasks inside this
process. Units and tasks can have interfaces I for interactions
and a combination of policies for control and management:

Policy P ={p1.n},pj = (n,d, 7, M™,=EP)
DFA M™=(Q,%,6,q0,F) : qo = o, F = {®}
State set Q={e,®}UST

N

— —

- = - - _
State tuple ST = (s1..k) 1 (sT)V (st sIT YV (st st ,siT

k
Alphabet Y =FE. _Ul E2,
i=
— ; ;
State s . Bl - E° = (n,d,T",0,T, 10, Z,0,2%,Q5)
— ) — it
- types s EY — ET sto Bt — EO st Bt — BT
- task set T={r,VT,n*)}:m0 €T
- finalizer Z ={z1.n},2j = (n,d, \*, F*,E%)
- output O =09 U{01..n},05 = (I'°, sn)

Task selector
Task

o= (n,d,\,57)
T = (n,d,\", Fi, Fo, FT 57 Q)

TABLE IV: RM-Pol Policy Domain Model

—_

static parameters F', execution strategies =, and decision
policies P. Resources R are applications related to hardware
(or abstracted software) resources supporting an application.

There are three orthogonal concepts to group distributed
applications. Each application is executed on a processing
System P with HW and SW resources. A computing system
1 manages multiple processing systems. A Layer contains
applications of the same scope (for processing and 1/0). A
Domain comprises applications that use similar function(s)
mapping from input values (domain) to output values (range).

Finally, we can use these concepts to define an application
for logic execution. We start with an application unit called
Executor z. It can execute a concept that contains some logic
statements A using one or more execution strategies. Once
executed as a task, the task type can be used to indicate
which languages the executor supports. Supported languages
and their specific execution environment are included or can
be provided by the surrounding application. This application
is called an Engine z°. Engines can aggregate one or more
executors and provide the required execution environments U,
A Cluster then is a distributed application combining engines
and other clusters as deeply nested as required. This realizes
a composite pattern (cf. pp 163 in [42]) allowing fine-grained
deployment configurations (cf. Fig.8).

C. Policy Domain Model

The main concept of the PDM, as shown in Table IV, is a
policy p of type 7 defined by a state machine M ™ with optional
execution strategies =P. The type identifies the underlying PM,
e.g. eca for an ECA policy. The strategies are requirements for
a policy executor stating how the policy should be executed.

The core of a policy is the state machine or Deterministic
Finite Automaton (DFA) M™, the 5-tuple (Q, 3, d, qo, F'). The
initial state gy defined as e is the entry point for the policy
executor zP. The accepted states F' are the exit points back to
aP as {@®}. The state set () contains g and F' and the policy
states S¥. The alphabet X is the union of the input events of
the first state and all output events of all states in S™.

In other words, we model a policy as a DFA with a single
entry (e), a single exit ((), and a variable set of states in
between (S™). Each state accepts an event e’ defined in I'
and produces an event e° defined in I'°. Input events of the
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Fig. 3: PDM State Machine Options

first state in S™ are called stimulus events e’ (they trigger or
stimulate a policy). Output events of the last state in S™ are
called response events e” (they are the response or actions of
the policy). The transition function § can then be defined as
(Sn,€2) = Sp+1. The initial transition is always (e,e!) = s1.
Final transitions are always (s,,€?) = (® with variable s,,.
All states in S™ should be defined according to the un-
derlying PM. For an ECA policy we would for instance
define states event, condition, and action. S™ must realize
a Directed Acyclic Graph (DAG). A topological sort (e.g.
Kahn’s algorithm [46]) can be used to test this condition.
This leads to four possible state machines for a sequential
(non-branching) execution (in sequence from ST to S7). The

resulting state machines are shown in Fig.2.
— —
1) state s'” taking e’ producing e”. ST = (s"
—

).
2) state s accepting e producigg ei and state sﬁ accept-
ing ¢’ producing e”. ST = (s*, 5.
3) state s, state s?° accepting e’ producing e°, and state
s, ST = (sﬁ’,s%,sﬁ).
= = = =

4) case 3 variation with n states s%°. S™ = (s, si°  s'").

There are two more sets of situations for the DFA not cov-
ered by the simple sequential model. This first set covers more
complex policy models, e.g. implementing SON functions as
described in [47]. The second set looks at situations were a
state does not produce an expected output event.

All these situations are shown as options in Fig.3. For the
first set of situations, the figure shows all possible (10) options
for branching the DFA. The more of those options are used
in a policy, the more the policy becomes a general purpose
application. Thus these options need to be used with care to
achieve the right balance between a policy and an application.
For the second set of situations the figure shows how empty
events can transit to the accepted (final) state of the DFA.

With these considerations of cases and options for the state
machine we can define the po_}icy State concept as shown in
Table IV. The standard state s realizes a mapping from E' to
E°. Tt is defined by the tuple (n,d,T% o, T, 79, Z,0,Z%,Q5).
The standard elements of the tuple are the name n, description
d, input event definitions I, and execution strategies Z=°.
Furthermore, the state might require context defined as €2°.

The remaining state elements realize an adaptive decision-
making per state with generation of output events realizing a
deterministic transition function §. Using the task selector o,
the state can select a task (implementation of the decision-
making logic) from a set of tasks 7. In simple (or not-
decidable) cases, the default task 7y is selected. The possible
set of state outputs O provides mappings from possible output
events ' to a single next state s,. Each task 7 € T has
an associated state finalizer z with logic to create an output
o € O. For simple states (1 task), a default output oy is defined.

Task selector o, task 7 and state finalizer z have their
respective logic A7, o7, and \®; as well as supported strategies.
A task accepts typed values F and produces typed values
F°. Input and output values of a task must be member of the
state’s input and output events. This ensures that tasks can
be reused in different states, as long as this condition is met.
Tasks can also have parameters (static configurations) F'7 and
task-specific context Q7. A finalizer accepts typed values F*
corresponding to the output typed values of the associated task.
Finalizer and state output can use the state context.

The other three introduced states differ only 1_1)1 the types
of input and output events._:Fhe standard state s realizes a
mapping from E? to E", s% realizes a mapping from E? to
E°, and s'" realizes a mapping from E’ to E".

The PDM concepts, their relationships, and the design
patterns they realize are shown in Fig.4 as a UML class
diagram. Events realize the domain event pattern [43]. Policy
states S are an expression of the state pattern [42]. They are
expressed in the form of a state machine M for execution.
Task Selector and Task represent the strategy pattern [42]. All
logic is designed using the foreign code pattern [13].

The concepts can also be mapped to different areas of
interest. Events realize input and output. State, Task Selector,
an Task represent execution. All logic captures application
area and domain expertise.
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Fig. 5: Model Templates

III. PDM AND PM TEMPLATES

The RM-Pol can be expressed in form of templates as the
basis for a Universal Executable Policy Specification (UEPS).
Fig.5 shows the templates. They can be further refined for
specific PMs. In combinations, the templates are a blueprint
for a concrete expression of a policy as UEPS in structured
languages such as JSON [48], YAML [49], or XML [50].

A policy template defines the main concepts of name (key),
description, type, state machine, and strategies. It references
the DFA with its defined 5-tuple. The DFA’s state set is
expressed using one or more state templates, each referencing
all other templates (event, task selector, task, and finalizer).
These general templates can be further refined if required,
typically altering policy states: the input/output events and the
cardinality of tasks, outputs, and finalizers.

IV. PoLicY MODEL EXAMPLE - ECA

We have modeled several PMs based on the general tem-
plates, namely: ECA [14], CA [51], variations of Goal and
Utility Function policies [51], SON OM policy using fuzzy
logic, OODA [52], and our own adaptive MEDA [53].

For the ECA PM we assume three states: an event s, uses
definition of events to decide if the policy is triggered, a
condition s. evaluates a set of conditions with binary result,
and an action s, fires (enforces) a set of actions.

{e,@}U S FEluelUe?UE!U{a}
(6(e, €t ;) =5e,6(se,€2) = ¢, 6(sc,€2) = sa,

6(50476711&) = @76(S€7®) = @75(5117@) = @)7'7{@}

Meca —
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P —>. Se

@

Fig. 6: DFA for an ECA PM

A few conditions apply for an ECA policy: States s. and s,
can fail, i.e. produce &. A failing s, means the policy is not
triggered. The result of s, as Boolean, if false, s, fails, i.e.
produces @. These conditions can be formalized as: m = eca,
S = (5., 8¢,84), and v° = ¢ = (condition, true|false).
The resulting state machine can be defined as shown in Fig.6.

Fig.7 shows the all templates for an ECA policy. Grey
marked concepts indicate refinements from general templates.

V. UNIVERSAL PoLICY EXECUTION ENVIRONMENT

For the design of UPEE we map the PDM execution units
to architecture components. The executor xP is realized by

UEPS Template for —>  State Machine M*?
Action Policy (ECA)
State Set Q
n ‘ d ‘ = State Tuple 5
Policy Type eca sy |event (s,)
State Machine | M*® g— s, |condition (s)
S3 |action(s,) l
Event s, (s*°) Condition s (s'°) Action s, (s")
nd[r]= o] [Alehabet n[d[ = o n[dl= o
Output \ s, Transistions 5 Input ‘ % Input ‘ y
TaskSel. | @ Initial State do ° Output [ v°—s, Output [ MM~
Finalizers| {g} Final States F (©) TaskSel. | @ TaskSel. | @
Default Task| e Finalizers| {g} Finalizers| {2}
Tasks [ {700} Default Task] T Default Task| Ta

Tasks | {700} Tasks | {T,,00}

Fig. 7: Templates for an ECA PM

Universal Policy Executor (UPx). The engine z° is realized
by Universal Policy Engine (UPe). A cluster of engines x° is
realized by Universal Policy Engine Cluster (UPec).

There are various options for clustering and deploying
UPEE components. Available deployment options are: as
library for an application, as component, as a service, in a
closed control loop (such as COMPA [54]), and in cloud envi-
ronments (supported are OpenStack, Docker, and Kubernetes).

Fig.8 shows two clustering examples. Example 1 has one
engine with three executors. The engine accepts different
stimulus events and produces different response events. This
configuration requires some instrumentation to route stimulus
events to appropriate executors and created response events
to the engine egress interface. Routing can be realized for
instance using messaging systems with topics.

Example 2 shows a cluster of clusters. Routing becomes
more complex, probably requiring the introduction of name
spaces for components. A load-balanced routing solution for
high-volume events is detailed in [55]. The distribution of
(context) information is detailed in [56].

UPx executes a policy, i.e. the policy’s state machine. Since
the PDM is invariant, UPx and its algorithms are invariant.

We designed two strategies for executing a policy. The first

=
stimulus response stimulus Upec response
oo g T oL
— [ » — Bi[}‘[_’ —>
UPe UPec
1) engine with executors 2) cluster with cluster of engines

Fig. 8: UPEE Example Clustering Options
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strategy is called orchestrated using a centralized component
in full control of the execution. The second strategy is called
choreographed using a choreographer and other components
realizing a de-centralized execution. Both are supported by
components realizing actual logic execution for specific lan-
guages, for instance a JVM and Jars for Java or a Javascript
engine for Javascript logic. Fig.9 shows this architecture.

The UPx decomposition is realized in three steps. In Step
1 the State Machine Executor (SMEX) executes the first state
and then requesting the current state to provide for the next
state to be executed, until no further next state is returned.
Fig.10 shows the invariant workflow and algorithm for SMEx.

Step 2 Strategy. Our two strategies are realized by the
Choreographer (Ch) and the Orchestrator (Or). Or uses a State
Executor Orchestrated (StExOr) for centralized policy execu-
tion (cf Fig.11): select default task 7y, if a task selector exists
execute it, if the resulting task is empty (no task selected)
return an empty output, otherwise execute the task followed
by executing the finalizer, return the generated output.

Ch uses a State Executor Choreographed (StExCh) for
policy execution delegating parts of it to a State Runner (SRu)
and a Task Executor (TEx). It realizes the same workflow as
the Or just distributed over those components. This strategy
can be important to balance load on large deployments.

1 lex(M\7, €', T, 79, C*®) 2 1 lex(\7, Vi, V7T, CT) 2 1 lex(\*, V', O) fat
Result: 7V & Result: Vet V& Result: o
2 | le + L.yo 2 | le « L.y~ 2 | le + L.y=
s | 7« leexec(e’, T, 19, C¥) 3 | V 4 le.exec(V*, V7, C7) s | o< le.exec(V?, O)
a | if 7 = @ then a | if Vyet = @ then a | if o = 2 then
5 L—» log(no 7) 5 L—) log(no Vyet) 5 — log(no o)
6 | return 7 6 | return Vyet e Lo (2,2)
7 | return o

Fig. 12: Logic Executor (LEx) for Task Selector, Task, and State Finalizer

Step 3 Logic Execution. The execution of logic (task
selection, tasks, finalizers) is the same for both strategies.
The Logic Executor (LEx) is responsible for executing any
logic, including required run-time validation. Fig.12 shows the
algorithms for all logic execution. The difference lies in the
input and output parameters of the functions, logic execution
is the same. Language Executor (LangEx) is an implementa-
tion (and potentially deployment) specific realization of logic
execution. Each language can have specific mechanisms and
requirements. Externally provided components, for instance a
Java VM, might provide Just In Time (JIT) or Ahead of Time
(AOT) compilation. Other language run-time environments
might facilitate scripted or byte-code execution.

Our APEX policy engine [15] implements all shown com-
ponents of UPEE. We support plugins for logic written in
Java, Javascript, Python, Ruby, Drools, and XACML. Tem-
plates from RM-Pol are expressed in well-defined (schema
supported) JSON or XML, deployed to an APEX engine, and
directly executed using JAXB [57]. No further translation or
transformation is required. Any concrete policy model (for
instance the detailed ECA policy) is then only a specialization,
thus directly executable using the same infrastructure.

VI. CONCLUSION

In this paper, we have defined a Universal Policy Model.
Following the principle of ‘“separation of mechanism and
policy”, UPM identifies and details the invariant parts of
policy described in the PDM. A number of DDD concepts
and design patterns have been used in the model. The PDM
model can be translated into templates, effectively creating a
UEPS. Execution concepts of the DM have been translated
into components for a UPEE architecture. Finally, we have
discussed the invariant algorithms of the UPEE components.

UPEE has been implemented in our APEX policy engine
[15] available as open source in the ONAP platform [7]. A
deployment of APEX in North America is described in [54].
In this use case we are using a MEDA PM linked to radio
network and security ADMs. Here, we evaluate radio network
anomalies and use security components (probes, observability
servers) to control nodes and to deal with rogue handsets.
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