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Abstract— In recent years, the Internet of Things (IoT) has
introduced a whole new set of challenges and opportunities in
Telecommunications. Traffic over wireless networks has been
increasing exponentially since many sensors and everyday devices
are being connected. Current networks must therefore adapt
to and cope with the specific requirements introduced by IoT.
One fundamental need of the next generation networked systems
is to monitor IoT applications, especially those dealing with
personal health monitoring or emergency response services,
which have stringent latency requirements when dealing with
malfunctions or unusual events. Traditional anomaly detection
approaches are not suitable for delay-sensitive IoT applications
since these approaches are significantly impacted by latency. With
the advent of 5G networks and by exploiting the advantages of
new paradigms, such as Software-Defined Networking (SDN),
Network Function Virtualization (NFV) and edge computing,
scalable, low-latency anomaly detection becomes feasible. In this
paper, an anomaly detection solution for Smart City applications
is presented, focusing on low-power Fog Computing solutions and
evaluated within the scope of Antwerp’s City of Things testbed.
Based on a collected large dataset, the most appropriate Low
Power Wide Area Network (LPWAN) technologies for our Smart
City use case are investigated.

Index Terms—Anomaly Detection, Smart Cities, IoT, 5G,
LPWAN, Fog Computing

I. INTRODUCTION

In recent years, with the advent of the Internet of Things
(IoT), the concept of Smart Cities has become even more
popular [1]. IoT will transform a wide range of services
in different domains of urban life, by creating intelligent
smart grids, improving public transportation and developing
car parking and personal health monitoring applications. In
the future network generation, information will be transmitted
from different types of devices, over heterogeneous wireless
networks with even higher data rates, lower latencies and
lower power consumption [2]. Therefore, it will be necessary
to adapt existing network architectures to future needs and
develop new autonomous management functionalities to help
meet the demanding requirements of future 5G use cases. In
fact, 5G technologies promise very high carrier frequencies
with massive bandwidths, extreme base station densities, an
unprecedented large numbers of antennas and new functional-
ities, such as device-to-device communication (D2D) and Fog
Computing [3], [4]. In Fig. 1, a 5G network architecture is
presented in a Smart City context. 5G technologies aim to
tackle the new business opportunities created by the stringent
requirements of IoT applications. One of the main challenges

is how to efficiently handle with the gathering and processing
of all data coming from the enormous amount of IoT sensors
that will be connected to the network in the next years [5].

The Fog Computing paradigm, which places cloud resources
close to the IoT sensors, extends the Cloud Computing
paradigm to deal with the eminent growth of connected devices
[6]. Nevertheless, Fog Computing is still in its early stages and
needs more time to evolve. One of the remaining challenges
is how to provide proper resource allocation, since IoT ap-
plications and services can be placed in a highly congested
area, which would result in a higher latency [7]. Furthermore,
current IoT sensors and gateways lack in terms of processing
power, battery, memory and storage capacity [8], [9]. IoT
applications will be so diverse that they will have different
sets of communication requirements. For instance, on one
hand, a delay-sensitive IoT application may require very low
latencies, meaning this IoT application must be allocated on
fog resources close to the sensor enabling the control of time-
sensitive network functionalities close to the device [10]. On
the other hand, if this requirement is less important, the IoT
application could be placed far from the IoT sensor in a
central location in order to reduce the number of active fog
resources on the network and therefore minimize the total
energy consumption in the fog domain. Additionally, it is
also important to detect malfunctions and abnormal events in
the network. By identifying unusual events, malfunctions in
IoT sensors can be detected and transmissions of incorrect
information can be avoided, which can improve the overall
Quality of Service (QoS) of the IoT application, especially
in terms of reliability [9]. Detecting unexpected patterns in
the data traffic is known as anomaly detection [11]. Recently,
anomaly detection has attracted the attention of the research
community in multiple areas, such as intrusion detection,
health monitoring, preventive maintenance and fault detection
[12]. In this paper, an anomaly detection approach for IoT
applications in 5G Smart Cities based on the advantages of Fog
Computing architectures is presented. The proposed architec-
ture has been designed for Antwerp’s City of Things testbed
[13] and validated for Smart City use cases, in particular for
an Air Quality monitoring application. Finally, multiple Low
Power Wide Area Network (LPWAN) technologies have been
considered for our use case scenario. Our evaluation results
identify the most adequate LPWAN technologies as wireless
communication enablers for the considered IoT application.



Fig. 1: High-level view of the considered 5G network archi-
tecture.

The remainder of this paper is organized as follows. In
the next section, related work is discussed. In section III, the
anomaly detection approach for smart city environments as
well as the LPWAN network dimensioning is presented. Then,
in Section IV, the scenario and datasets used in the evaluation
are presented, followed by the evaluation results in section V.
Finally, conclusions are presented in section VI.

II. RELATED WORK

Recently, research studies have been carried out in order to
deal with anomaly detection in IoT, Smart City and Industry
4.0 scenarios. In [14], a real-time Intrusion Detection System
(IDS) for IoT has been presented. The proposed solution is
a novel IDS with an integrated mini-firewall for 6LoWPAN
networks in order to detect malicious nodes. Moreover, in
[11], an anomaly detection scheme based on sensor data
has been proposed to deal with unexpected behaviors in
turbomachines in the Petroleum Industry. Furthermore, in [15],
a temporal clustering and anomaly detection method has been
presented for a car parking IoT application in order to detect
unusual events. In [16], a supervised statistical-based anomaly
detection method for Smart Grid data has been proposed.

In recent years, research projects have also been focusing
on reliable and secure IoT for Smart Cities. In the SOCIO-
TAL project [17], an anomaly detection method based on
hyperellipsoidal models has been used to identify unusual
patterns in environmental data collected from IoT sensors
[18]. However, a traditional cloud solution has been deployed
instead of a Fog Computing approach. Additionally, in [9],
a Fog Computing anomaly detection approach for IoT using
a hyperellipsoidal clustering algorithm has been proposed

to significantly reduce latency and energy consumption in
the network when compared to distributed and centralized
architectures. Nevertheless, their work is based on simulation
studies, while our approach is based on an actual deployment
within the scope of Antwerp’s City of Things testbed. Finally,
in the CityPulse project [19], [20], a complete set of real-
time data analytics tools have been presented, such as data
aggregation, event detection and decision support.

In summary, in this paper, a Fog-based anomaly detection
approach is proposed. Our work takes into account not only
the advantages of Fog Computing architectures, which are
suitable for IoT applications in Smart City scenarios, but also
characteristics stemming from LPWAN technologies, since
low power technologies have gained tremendous emphasis due
to the enormous growth of connected devices. All Anomaly
detection approaches cited are only focused on cloud and
data management aspects and no considerations are included
about wireless networks. The proposed approach has been
implemented on our City of Things platform and evaluated
with Unsupervised Clustering and Outlier detection algorithms
for our Air Quality monitoring application. Furthermore, the
most popular LPWAN technologies today have been assessed
based on the requirements of our application.

III. ANOMALY DETECTION IN SMART CITIES

This section presents the proposed low-latency anomaly de-
tection approach for Smart Cities on Fog Computing resources
interconnected by LPWAN networks.

A. Anomaly Detection Principles

Anomaly detection or outlier detection is known as the
process of detecting unexpected behavior or abnormal patterns
in datasets. In the past, anomaly detection was mainly used
to remove the outliers from a dataset, which is called data
cleansing. However, in recent years, anomaly detection has
attracted the attention of the research community because
researchers began to get interested in knowing more about
the anomalies themselves, since they are usually associated
with potentially reoccurring events [21]. There are three main
categories of anomaly detection which are shown in Fig. 2.

Fig. 2: Anomaly Detection Categories: Supervised, Semi-
supervised and Unsupervised.



1) Supervised: In supervised anomaly detection methods,
a fully labeled training dataset is used, i.e., each sample
is considered as normal or abnormal. This category is only
used for specific applications where anomalies are known
beforehand.

2) Semi-Supervised: In semi-supervised anomaly detection
techniques, a training dataset consists of labeled and unlabeled
samples. Usually, a small amount of labeled samples is used.

3) Unsupervised: In unsupervised anomaly detection algo-
rithms, there is no training dataset since nothing is known
about the samples in advance. Therefore, these methods usu-
ally give an estimation of what a normal sample and what
an abnormal one is. The approach presented in this paper
makes use of unsupervised techniques since our goal was to
see if the selected algorithms could learn the distribution of
the data samples without knowing anything beforehand as in
most anomaly detection use cases. Our objective was that the
algorithms themselves could discover and present interesting
behaviors in the datasets. Moreover, labeling datasets for
anomaly detection is not an easy task.

Many categories of unsupervised anomaly detection algo-
rithms exist, of which the most popular are listed in Table I.
Many of these algorithms are available in Scikit-Learn [22],
a powerful machine learning library written in Python, which
has been used to implement the anomaly detection evaluations.

TABLE I: Unsupervised Anomaly Detection Algorithms [23]

Statistical-based
Univariate and Multivariate Gaussian
distribution, Grubbs’ test, Likelihood

approach
Proximity-based K Neighbors
Clustering-based K-Means, MiniBatchKMeans, Birch

Density-based Local Outlier Factor (LOF)
One-class support
vector machines

One Class SVM, Gaussian envelope
(Robust Covariance)

Ensemble-based Isolation Forrest (IF)

B. Fog-based Anomaly Detection Approach

To deal with the growing amount of connected devices in the
network, the Fog Computing paradigm has been introduced to
place computational resources on the edges of the network in
order to deal with the stringent requirements introduced by IoT
use cases, such as low latency and high mobility. Centralized
solutions are not suitable for most future IoT applications,
since most of them will require real-time communication and
generate an enormous volume of data to be transported in the
network, which makes it impossible for centralized solutions
to comply with these requirements. The IoT sensors commu-
nicate with wireless gateways, which are linked with the fog
resource layer, managing a set of computational resources.
These fog resources can communicate with the cloud layer,
which is the top level management entity. Each service or IoT
application must be allocated to and instantiated on a given set
of computational resources. For instance, for a delay-sensitive
IoT application, service allocation must be performed on a
fog resource as close as possible to the IoT sensor that runs

the client application allowing real-time processing and data
analytics at the edges of the network in order to enable the
control of time-sensitive network functionalities close to the
IoT sensor.

In a traditional centralized approach, all IoT sensors send
their data samples to the cloud layer. Then, the anomaly
detection algorithms are executed. This approach implies a
high bandwidth cost, because all data samples need to be
transmitted from the IoT sensors to the cloud layer. Our
approach presented in Fig. 3 is based on the advantages of Fog
Computing architectures, i.e., anomaly detection operations
are performed on fog resources. Every IoT sensor sends its
data samples to one of the fog resources. Then, anomaly
detection operations are performed in a distributed way. After
completion of the anomaly detection tasks, fog resources may
send alerts to the cloud layer and to the IoT sensors if unusual
events are already detected on the data. This way, faster
response times can be achieved if any abnormal behavior is
discovered. Moreover, fog resources can send the outcomes of
the anomaly operations to the cloud layer to combine results
from the different fog resources in order to have a broader view
of the behavior of the network. Afterwards, the cloud layer
could perform global anomaly detection operations and present
the outcomes in a central dashboard in a control room. Then,
alerts can be sent to fog resources and IoT sensors in case
abnormal patterns or inconsistent events were not detected.

Fig. 3: High-level view of the Fog-based anomaly detection
approach.

C. LPWAN Dimensioning

Nowadays, low power wireless technologies have gained
tremendous emphasis due to the massive growth of connected
devices in the network. The need for connecting simple IoT
devices, such as sensors and actuators, is increasing rapidly.
In Table. II, the most popular LPWAN technologies and
the main differences between them are shown. To select a
suitable LPWAN technology for a specific IoT application, an
analysis of its requirements in terms of specific parameters
such as communication range, upload and download data
rate, frequency bands, and latency is needed. In this paper,



TABLE II: Comparison between different LPWAN technologies for IoT applications [24], [25], [26], [27]

LPWAN
Technology LoRaWAN Sigfox LTE-M DASH7 IEEE 802.11ah NB-IoT Ingenu RPMA

Range urban 2-5 km 3-10 km 2-5 km 5 km 1 km 2-5 km 1-3 km
Range rural 15 km 30-50 km - 5 km 1 km - 25-50 km

Data rate 50 kbps 300bps 1 Mbps 166.67 kbps 346.66 Mbps 250 kbps 634 kbps (uplink)
156 kbps (downlink)

Bi-directional Yes Limited Yes Yes Yes Yes Yes
Freq. band Unlicensed Unlicensed Licensed Unlicensed Unlicensed Licensed Unlicensed

Power efficiency Very high Very high Medium Medium High Medium Medium
Security Medium Low High Medium Low (In development) High High
Mobility Yes Limited Yes Yes Yes Yes Yes

Proprietary No Yes No No No No Yes

multiple LPWAN technologies have been evaluated based
on the requirements of our Air Quality monitoring use case
presented in Section IV-A.

Variables used in our LPWAN dimensioning are shown in
Table III. In Fog Computing architectures, fog resources are
usually located within one hop from the IoT sensors. The
variable C is used to indicate the communication range in
kilometers between a fog resource and an IoT sensor. Two
variables, U and D, are used to indicate the upload and the
download data rate, respectively. Then, the total number of
bits to be transmitted is given by N . This way, the upload and
the download transmission time of a packet can be expressed
as shown in (1) and in (2), respectively.

T (upload) =
N

U
(1)

T (download) =
N

D
(2)

Moreover, by using the communication range C and the
propagation speed P for wireless communications, which is
the speed of light (3× 108), the propagation time is given by
(3).

P =
C

3× 108
(3)

Finally, the total packet delivery time L is given by (4).

L = T + P (4)

TABLE III: Variables of the LPWAN dimensioning

Symbol Description
C Communication range in kms.
U Upload Data Rate in kbps.
D Download Data Rate in kbps.
N Number of bits to be transmitted.
T Transmission time of a packet.
P Propagation time of a packet.
L Packet Delivery time.

IV. EVALUATION SCENARIO

In this section, the evaluation scenario is introduced. Then,
the datasets are presented. Finally, the evaluation setup is
described.

A. Use Case - Air Quality Monitoring Application
The evaluation scenario is based on a use case within the

scope of Antwerp’s City of Things testbed. The goal of our
Air Quality monitoring application is to detect high amounts
of organic compounds in the atmosphere and then alert citizens
of air pollution in real-time. As an initial proof of concept, Air
Quality sensors have been integrated in collaboration with the
Belgian postal services Bpost [13]. For daily mail delivery,
Bpost has cars driving around in the city of Antwerp. There-
fore, within the City of Things project, a set of Air Quality
sensors have been mounted on the roofs of Bpost’s delivery
cars as shown in Fig. 4. These sensors send measures of typical
gases and climate data such as temperature and humidity,
which are then annotated with GPS locations. Moreover, these
sensors allow gathering real-time Air Quality information with
broad city coverage, since each car is continuously driving
around in the city. Currently, the set of Air Quality sensors
can communicate via three different LPWAN technologies:
LoRaWAN, SigFox and DASH7 [13].

B. Datasets
A summary of the characteristics of the datasets gathered

for the evaluation is shown in Table IV. The two datasets
come from two different Bpost cars and consist of particle
matter indicators (PM1, PM2.5 and PM10) that are annotated
with a GPS location. The datasets have been collected by
our research group between 2017-05-09 and 2017-06-29. The
particle matter indicators are shown in Fig. 5a and in Fig. 5b
for Bpost car 1 and Bpost car 2, respectively.

TABLE IV: Evaluation datasets

Dataset
Name

No. of
records Description

Bpost 1 70636
Particle matter indicators (PM1, PM2.5, PM10)
and GPS locations from Bpost car 1 between

2017-05-09 and 2017-06-29

Bpost 2 70640
Particle matter indicators (PM1, PM2.5, PM10)
and GPS locations from Bpost car 2 between

2017-05-09 and 2017-06-29

C. Selected Algorithms
As previously mentioned, the anomaly detection evaluations

have been implemented in Python using Scikit-Learn. Unsu-



(a) Inside view of the multi-radio sensor. (b) Air Quality sensor mounted on a Bpost car.

Fig. 4: As part of the Antwerp’s City of Things testbed, multi-radio Air Quality sensors have been mounted on cars of the
Belgian postal service.

(a) Particle Matter Indicators (PM1, PM2.5, PM10) - Bpost car 1 (b) Particle Matter Indicators (PM1, PM2.5, PM10) - Bpost car 2

Fig. 5: Particle Matter Indicators (PM1, PM2.5, PM10 in ppm) for two Bpost cars.

pervised Clustering and Outlier detection algorithms have been
assessed by using the two datasets presented in Section IV-B.
Clustering allows the detection of patterns in unlabeled data
with many dimensions while Outlier detection is related to
the identification of unusual data samples when compared
to the rest of the dataset. Regarding Clustering, the Birch
algorithm has been evaluated while for Outlier detection
Robust Covariance (RC) has been assessed. Birch and RC
outcomes have been compared in order to find patterns or
unusual events in the datasets. Furthermore, the results have
been compared with the correspondent GPS locations to know
exactly where in the city of Antwerp each sample has been
measured.

V. EVALUATION RESULTS

A. Clustering and Outlier Detection

In Fig. 6a and in Fig. 6b, the outcomes of the RC outlier
detection algorithm for the three dimensions regarding particle

matter indicators for the Bpost car 1 are shown with a con-
tamination of 1.0% indicating that the RC algorithm intends to
find the 1.0% of samples which can be considered as abnormal.
Moreover, in Fig. 6c and in Fig. 6d, the results obtained for
the Bpost car 1 by using the Birch clustering algorithm for
5 clusters are illustrated. Regarding outlier detection, values
of PM1, PM2.5 and PM10 above 30 ppm collected by Bpost
car 1 are marked as outliers meaning that these values can be
considered as unusual. Regarding clustering, there are clear
similarities between these results and the outcomes obtained
by the RC outlier detection algorithm. The first cluster is
composed of almost 99.4% of the total data samples indicating
that this cluster can be considered as the normal region of
values for the three particle matter indicators collected by
Bpost car 1. Moreover, the second and the fifth cluster, consist
of 0.5% of the data samples which are also detected as outliers
by the RC algorithm. These clusters can be considered as
unusual regions. Finally, the third and the fourth cluster, are



(a) RC with 1.0% - 3D perspective - Bpost car 1 (b) RC with 1.0% - 3D planes - Bpost car 1

(c) Birch: 5 clusters - 3D perspective - Bpost car 1 (d) Birch: 5 clusters - 3D planes - Bpost car 1

Fig. 6: Robust Covariance Outlier detection with a contamination of 1.0% (blue color: normal samples, red color: abnormal
samples) and Birch Clustering results with 5 clusters (blue, red, green, brown, pink) for Particle Matter Indicators (PM1,
PM2.5, PM10) - Bpost car 1.

(a) RC with 1.0% - 3D perspective - Bpost car 2 (b) RC with 1.0% - 3D planes - Bpost car 2

(c) Birch: 5 clusters - 3D perspective - Bpost car 2 (d) Birch: 5 clusters - 3D planes - Bpost car 2

Fig. 7: Robust Covariance Outlier detection with a contamination of 1.0% (blue color: normal samples, red color: abnormal
samples) and Birch Clustering results with 5 clusters (blue, red, green, brown, pink) for Particle Matter Indicators (PM1,
PM2.5, PM10) - Bpost car 2.



composed of 0.1% of data samples which are also detected as
outliers by the RC algorithm. These clusters can therefore be
considered as very unusual regions.

In Fig. 7a and in Fig. 7b, the outcomes of the RC algorithm
with a contamination of 1.0% for the three dimensions regard-
ing particle matter indicators for the Bpost car 2 are shown.
In Fig. 7c and in Fig. 7d, the results obtained for the Bpost
car 2 by using the birch clustering algorithm for 5 clusters are
illustrated. Regarding outlier detection, values of PM1 above
60 ppm, PM2.5 above 70 ppm and values of PM10 above 150
ppm collected by Bpost car 2 are marked as outliers. This
way, these values can be considered as unusual data samples.
Regarding clustering, there are clear similarities between these
results and the outcomes obtained by the RC outlier detection
algorithm, as shown for the Bpost car 1.

B. GPS Locations of outliers

Outliers must be further analyzed by application experts in
order to extract more information from them. In our evaluation,
the outliers have been compared with the GPS locations
available in the datasets. In Fig. 8, the GPS locations are shown
where PM10 values above 75 ppm and PM2.5 values above
30 ppm have been collected by the Bpost cars, which have
been considered as unusual data samples by the RC outlier
detection algorithm.

Fig. 8: GPS locations (Bpost car 1 - red / Bpost car 2 - blue)
considered as outliers by the RC algorithm.

Regarding Bpost car 1 measurements, all the unusual values
have been collected in the warehouse where usually the Bpost
cars stay at night. In fact, all these values have been collected
on a single night between 2:54 am until 6:33 am on 5/18/2017.
These high values of PM10 and PM2.5 can be related to dust
and organic compounds, which were inside the warehouse at
the time of the measurements. On the other hand, the unusual

values measured by Bpost car 2 have been collected across the
city of Antwerp. These high values of PM10 and PM2.5 can be
explained by high traffic volumes in the city at these locations
at the time of the measurements. This way, by conducting
anomaly detection operations in fog resources, timely alerts
can be transmitted to IoT sensors and to the cloud layer
indicating that high values of particle matter indicators have
been measured. In doing so, citizens can be alerted of high air
pollution levels in real-time.

C. LPWAN Dimensioning Analysis

Considering that for our use case, each upload message is
composed of a String of 12 chars (GPS Location - geohash)
equal to 12 bytes, a 32 bit integer (timestamp) equal to 4
bytes and 3 floating point 64 bit numbers (particle matter
indicators) equal to 24 bytes, the total number of payload
bytes to be transmitted per minute from the IoT sensor to the
fog resource is 40 bytes. On the other hand, each download
message to be transmitted from the fog resource to the IoT
sensor in case of unusual behavior or malfunction is composed
of a String of 12 chars (GPS Location - geohash) equal to
12 bytes and a byte defined by 3 alarm bits and 5 bits for
32 types of predefined messages. Furthermore, each message
has a header for which the size depends on the LPWAN
technology itself. In our evaluation, a general 13 byte header
has been considered in each message as in Sigfox and in
LoRaWAN technologies. Therefore, each upload message is
transmitted with at least 53 bytes which is equal to 424 bits
and each download message with 26 bytes which is equal to
208 bits. Moreover, considering that the area of Antwerp is
equal to 204.5 km2, an estimation of the minimum number
of gateways required for each LPWAN technology to cover
the entire area of the city has been performed. Based on these
assumptions, the LPWAN technologies presented in Table II
have been evaluated. The comparison is presented in Table V
and in Table VI, a list of pros and cons for the multiple
LPWAN technologies is shown. Based on these results and
because of our application requirements, Sigfox technology is
unfeasible to provide wireless communication, since a single
upload message takes more than a second to be transmitted
and due to duty cycle regulations, real-time communication
is not possible, because sending an upload message every
minute implies going against the fairness rules of duty cy-
cle. Moreover, the download capabilities are very limited in
Sigfox technology. On the other hand, Ingenu RPMA is not
considered as an adequate solution because it operates in the
crowded 2.4 GHz band. Nowadays, low frequencies are being
considered as optimal to provide wireless communication for
IoT solutions. Besides, Ingenu RPMA requires high processing
power, which translates into a higher energy consumption.

Regarding licensed LPWANs, LTE-M is the optimal solu-
tion to deploy our use case, because it has a higher data rate
than NB-IoT making LTE-M more suitable for our application
since real-time communication is needed for our scenario. On
the other hand, regarding unlicensed LPWANs, IEEE 802.11ah
and DASH7 are the most adequate solutions to provide wire-



TABLE V: Comparison between the different LPWAN technologies based on the requirements of the Air Quality application

LPWAN
Technology LoRaWAN Sigfox LTE-M DASH7 IEEE 802.11ah NB-IoT Ingenu RPMA

C 5 km 10 km 5 km 5 km 1 km 5 km 3 km
U/D 50 kbps 300bps 1 Mbps 166.67 kbps 346.66 Mbps 250 kbps 634/156 kbps

P 16.67ms 33.33ms 16.67ms 16.67ms 3.33ms 16.67ms 10ms
N (upload) At least 53 bytes
T (upload) 8.480ms 1.413s 0.424ms 2.543ms 1.221µs 1.696ms 0.669ms
L (upload) 25.15ms 1.45s 17.09ms 19.22ms 3.331ms 18.37ms 10.67ms

N (download) At least 32 bytes
T (download) 4.16ms 0.69s 0.208ms 1.24ms 0.60µs 0.83ms 1.33ms
L (download) 20.83ms 0.72s 16.88ms 17.91ms 3.331ms 17.5ms 11.33ms

Area of the City
of Antwerp 204.5 km2

Minimum Number
of Gateways 5 2 5 5 117 5 15

TABLE VI: List of Pros and Cons of the different LPWAN technologies for the Air Quality application

LPWAN
Technology PROS CONS

LoRaWAN Security; Limited downlink capability;

Sigfox None;
Duty cycle regulations (transmit time of 36s per 1 hour): im-
possible to transmit a message every minute for our application;
Proprietary protocol; Limited security; Limited downlink;

LTE-M High data rate; Security; Under development;
DASH7 High data rate when compared with similar LPWANs; Open Source Solution; Lack of deployments;

IEEE 802.11ah Lower transmission time; High data rate; High number of gateways needed (low range when compared
with other LPWANs); Under development;

NB-IoT High data rate when compared with other LPWANs; Security; Under development;

Ingenu RPMA High uplink data rate; High coverage and robustness; Lower range when compared with other LPWANs; Operates in
the crowded 2.4Ghz band; High processing power;

less communication between the devices. LoRaWAN is not
considered as an appropriate solution, because the downlink
capacities are very limited. Moreover, LoRaWAN has the
lower data rate and the correspondent highest transmission
time when compared with IEEE 802.11ah and DASH7. In
fact, although IEEE 802.11ah is currently under development,
it is one the most promising LPWAN technologies with a
very high data rate. However, IEEE 802.11ah deployment will
require a very large number of gateways to cover the entire
city of Antwerp due to the low communication range. On the
other hand, DASH7 supports high data rates when compared to
similar LPWAN technologies and it is already deployed in the
City of Things testbed. Both technologies meet our application
demands, which make them appropriate solutions to provide
wireless communication for our use case in the unlicensed
spectrum.

VI. CONCLUSIONS

In recent years, the need for management functionalities in
Smart Cities is increasing due to the deployment of IoT use
cases. Fog Computing provides an efficient manner of dealing
with stringent requirements introduced by IoT use cases. It
is important to detect malfunctions and abnormal events in
IoT devices to provide a secure and reliable communication.
Therefore, in this paper, a low-latency Fog-based anomaly
detection approach has been presented to identify unusual
events or abnormal patterns in IoT scenarios. Our approach has

been evaluated for a Smart City use case within the scope of
City of Things testbed. Obtained results show that both Birch
clustering and RC outlier anomaly detection mechanisms can
be performed by fog resources close to IoT sensors and, this
way, send timely alerts in case unusual events are detected.
Moreover, for multiple criteria, LPWAN technologies have
been evaluated for our Air Quality application, leading to a
suitable set of LPWAN technologies, IEEE 802.11ah, DASH7
and LTE-M, that can be used as wireless communication
enablers for our Smart City use case. As future work, the
selected LPWAN technologies will be deployed and techno-
economical studies will be performed.
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