
HoneyDrone: a Medium-Interaction Unmanned
Aerial Vehicle Honeypot

Jörg Daubert∗, Dhanasekar Boopalan†, Max Mühlhäuser∗, Emmanouil Vasilomanolakis∗
Telecooperation Lab,

Technische Universität Darmstadt
Darmstadt, Germany

∗{daubert, max, vasilomano}@tk.tu-darmstadt.de
†dhanasekar.boopalan@stud.tu-darmstadt.de

Abstract—Over the last years, we have experienced an in-
creased utilization of Unmanned Aerial Vehicles (UAVs) not only
in personal, but also commercial and public safety applications.
Simultaneously, malicious activities have emerged too; from
hijacking of UAVs (and their cargo), to the theft of private
information stored in UAVs, attacks not only exist but seem
to increase both in their numbers and their sophistication. In
this paper, we propose HoneyDrone, the first honeypot that is
specifically designed for the protection of UAVs. HoneyDrone
emulates a number of UAV-specific and UAV-tailored protocols,
making it possible to lure adversaries into attacking it. The
honeypot is designed to run in portable low-cost devices, e.g.,
Raspberry Pis, which makes it possible to strategically deploy
it in a variety of locations. Our system can assist in detecting
active attackers in a certain area, as well as in shedding light
into the adversaries’ techniques for compromising UAVs. We
evaluate HoneyDrone’s performance and also examine a number
of different realistic attack scenarios to show how the honeypot
can cope with them.

I. INTRODUCTION

Unmanned Aerial Vehicles (UAVs), commonly referred to
as drones, have gained massive popularity in recent years.
UAVs are used for personal purposes, e.g., taking pictures and
videos, as well as professional applications, such as agricul-
tural surveys and package deliveries. Furthermore, even mis-
sion critical operations including medication delivery services
and health and safety inspections are performed with UAVs
nowadays. As UAVs are computer-controlled systems with
radio/wireless interfaces, attacks and attack scenarios against
these systems are surfacing [8], [11], [12]. For instance,
these may include wiretapping and theft of data, mission
interference, and even the theft or misuse of UAVs. To cope
with this attack landscape, we propose the idea of a portable
drone honeypot; a security mechanism which can emulate the
protocols that are utilized by UAVs and lure attackers into it.

A honeypot is a system whose only value lies in being
probed, attacked, and/or compromised [6]. In detail, such
systems have no real production value, but instead they appear
to be vulnerable and thus attractive to attackers. Traditionally,
honeypots are utilized as early warning defense mechanisms,
as methods for studying adversaries and their techniques, as
well as a way to reduce the attack surface of the monitored
network [6].

On top of the aforementioned functionalities of honeypots,
we argue that due to certain properties of the UAVs (namely
the signal strength property and the ability of the UAV to
quickly traverse an area) a drone honeypot introduces addi-
tional benefits. In particular, in a drone-attack scenario the
adversary does not have to maintain visual of the target, but
instead can rely on their signal strength for attacking and
hijacking the drone; for example, by utilizing a high-gain
antenna. Therefore, we argue that a UAV honeypot is able
not only to detect a drone attack but even mitigate it as long
as: (i) it has a stronger signal than the actual drone (which for
example can be achieved with proper antennas) and (ii) that is
placed in a strategic location. This scenario is also illustrated
in Figure 1.

Drone attacker

Drone

HoneyDrone

Fig. 1. High level view of the honeypot usage scenario

In this paper, we propose HoneyDrone, a novel medium-
interaction portable drone honeypot. HoneyDrone provides
a medium-interaction interface for many UAV-specific and
UAV-tailored protocols. This allows for the emulation, record-
ing and analysis of malicious activity in UAVs. HoneyDrone
is also portable, in the sense that is lightweight and can
be deployed in low-cost small devices, e.g., a Raspberry Pi.
This portability property is important as it makes it possible
to dynamically deploy the honeypot in various locations. In
addition, we argue that with our honeypot it is possible to



guide attackers away from real UAVs and delay them, whilst
reducing the overall attack surface of the monitored area.
Finally, to the best of our knowledge this is the first honeypot
which is specifically designed for UAVs and UAV protocols.

The rest of this paper is structured as follows. In Section II,
we discuss the related work in the fields of honeypots. Fur-
thermore, Section III introduces HoneyDrone with an emphasis
on its architecture and the particular modules that constitute
it. Subsequently, Section IV, evaluates the proposed system
in terms of its performance as well as its ability to cope
with realistic attack scenarios. Lastly, Section V concludes
this paper and gives some insights on our future work plans.

II. RELATED WORK

Honeypots are systems whose only value lies in being
probed, attacked, and/or compromised [6]. Having no real
production value, any communication or interaction with such
a system is considered an attack. Honeypots can be classified
to low-, medium- and high-interaction with respect to the level
of interaction they offer to the adversary.

On the one hand, high-interaction honeypots are real sys-
tems, e.g., a Virtual Machine (VM), that exhibit certain vulner-
abilities and are closely monitored. These systems, however,
are very expensive to maintain and have the risk of being
compromised. On the other hand, low- and medium-interaction
honeypots only emulate protocols, in a different granularity
(low and hight respectively). Such systems are nowadays
the preferred option, compared to high-interaction ones, for
several reasons [9]. First, they are much cheaper to maintain
as they can offer explicit and detailed logging and monitoring
functionalities. Moreover, it is easier to develop secure and
contained low- and medium-interaction honeypots.

Name Generic MAVLink FS Config Drone
Protocols Protocol Radio

Heralding [2] FTP,SSH 7 7 7 7
Telnet

Kojoney2 [4] SSH 7 7 7 7
Cowrie [7] SSH 7 7 3 7

Telnet
HosTaGe [16] FTP,SSH 7 7 3 7

Telnet
HoneyPy [3] TCP,UDP 7 7 3 7
HoneyWRT [1] Telnet 7 7 3 7
Bluepot [13] L2CAP 7 7 7 BT

RFCOMM
OBEX

TABLE I
ANALYSIS OF HONEYPOT DRONE CAPABILITIES IN THE STATE OF THE ART

As summarized in Table I, a number of state-of-the-art
honeypots [5], [6], [10] can monitor and emulate several
general purpose protocols, such as Telnet, SSH, and FTP.
Nevertheless, to the best of our knowledge, there seems to be
no honeypot supporting the drone-specific MAVLink protocol.
Likewise, none of the honeypots seems to be able to take an
extracted File System (FS) from a drone, emulate the FS,
and record the changes. Similarly, most of the honeypots
are designed for one fixed use case and lag the option to

be configured to emulate different devices easily. Only a
few honeypots have been designed to be mobile or portable
[14], [17], [18], offering the ability to be placed close to the
operating area of UAVs or perhaps even mounted to a UAV
directly. Finally, it is vital for a honeypot to emulate a drone’s
radio interfaces; none of the honeypots is designed to emulate
and log WiFi radios, only Bluepot [13] can emulate the (rarely
used) Bluetooth radio.

III. HONEYDRONE ARCHITECTURE

This section proves a brief background in UAV communi-
cation, explains how our honeypot leverages these communi-
cation capabilities, and presents its architecture.

A. UAV Communication
Many of today’s UAVs often use radio bands and protocols

that are widely supported by commodity hardware and soft-
ware defined radios. Even though this fact makes attacks on
UAVs affordable on the one hand, it also allows us to construct
the low-cost HoneyDrone on the other hand. Examples are
budget UAVs with Wi-Fi and Bluetooth for command and
control. Expensive and professional UAVs build on vendor-
specific radio protocols, e.g., Lightbridge1 and SiK Radio2.
Nevertheless, these protocols operate frequency bands with a
high availability radio interfaces and software-defined radios.

On top of the radio communication, UAVs use application
protocols that have been attacked in the past: Telnet, SSH, FTP,
and more recently MAVLink3 [15]. Again, these protocols
are easy to attack, but are also well-defined enough to be
implemented within a honeypot.

Our portable HoneyDrone leverages these properties to
emulate drone radio interfaces on cheap commodity hardware,
and by offering low to medium interaction and emulation for
many of the aforesaid communication protocols. In addition,
the HoneyDrone emulates all relevant properties for a range
of commercial and self-build UAVs for command and control.

B. HoneyDrone Architecture
Our first generation portable drone honeypot is designed

around cheap mini computers, such as the Raspberry Pi family.
The supported features include the radio protocols Wi-Fi with
the application protocols Telnet, SSH, FTP, and MAVLink.
These features are well suited for consumer UAVs like the
AR Drone; even professional self-build UAV use this protocol
stack for MAVLink telemetry.

In order for a honeypot the emulate UAVs, several very
specific challenges have to be resolved: first, UAVs use
vendor-specific Wi-Fi properties, such as ESSID, BSSID,
authentication, encryption, IP assignment, etc. Unlike existing
honeypots, HoneyDrone emulates such properties. Second,
UAVs are physical objects moving in the real world, which
reflects into (MAVLink) telemetry and flight recorders. The
HoneyDrone, therefore, uses a drone simulator to generate
realistic telemetry and input responses.

1www.dji.com/lightbridge-2
2github.com/ArduPilot/SiK
3diydrones.com/profiles/blogs/hijacking-quadcopters-with-a-mavlink-exploit



UAV File Systems

AR Drone 2 Phantom 3 [...]

HoneyDrone Database

MongoDB

UAV Profiles

AR Drone 2 [...]

UAV Emulation

Filesystems

Connection 
Guard

Services

SSH FTP

TelnetMAVLink

[...]

Network Interface Emulator (NIE)

GNU/Linux Services

HostAPd [...]
Bluetooth

Wi-Fi SiK

[...]

Fig. 2. HoneyDrone architecture

At a glance, the honeypot prototype is using a Raspberry Pi,
running Raspbian, in combination with an Alfa AWU036NH
wireless adapter, and the Hostapd and Dnsmasq. The soft-
ware core is implemented in Python 2.7 with the Twisted
framework. A combination of PyMAVLink, MAVProxy and
the Ardupilot Software In The Loop (SITL) simulates drones
with MAVLink access. The HoneyDrone takes UAV profiles
from a configuration file and sets up all components to emulate
a UAV down to Wi-Fi MAC addresses and UAV filesystems
(contents extracted from real drones). Lastly, all attacker input
is recorded to a MongoDB database.

In detail, the HoneyDrone is comprised of the components
as depicted in Figure 2:

1) Network Interface Emulator (NIE): The NIE is re-
sponsible for setting up the communication/network in-
terface of the HoneyDrone host. The network interfaces
supported by this architecture are Wi-Fi, Bluetooth, SiK
Radio (serial interface). Upon start, the NIE takes the
interface settings for a particular UAV from the configu-
ration file, checks for the availability of network devices
and brings up the interface. These settings include the
ESSID and BSSID of a UAV—the device parts of the
BSSID can be specific or autogenerated as desired. Next,
additional services, such as HostAPd, are configured and
launched to emulate for instance the authentication of a
particular UAV. The configuration commands as well as
the daemon log files are written to the database.

2) UAV Emulation: The UAV Emulation is the core of
HoneyDrone. The emulation handles incoming connec-
tions, creates objects of specific protocols, e.g., Telnet,
and continuously monitors and logs the traffic. The emu-
lation takes its input from the configuration file, similarly
to the NIE, to customize and emulate specific protocols
on a network interface. The customization is crucial as
UAVs protocol implementations differ; for Telnet and
SSH that includes the prompt, the available commands,

and the whole FS as such. All these functionalities are
realized by three sub-components:

• Services: The services are a set of classes or mod-
ules, each for a different protocol. In more details,
a service defines a set of variables and methods to
emulate a particular protocol on the HoneyDrone.
The current HoneyDrone prototype fully supports
Telnet, SSH, FTP, and MAVLink for a set of UAVs.
To the best of our knowledge, the HoneyDrone is the
first honeypot supporting MAVLink. For that we use
the Ardupilot SITL4 simulator in combination with
MAVProxy and PyMAVLink. The SITL simulates
one of the most popular flight control firmwares,
the Ardupilot family, which includes for instance
the Arducopter. MAVLink relays the communica-
tion from a network interface to a SITL instance,
while allowing to log all commands, responses,
and telemetry. PyMAVLink converts the MAVLink
message to a human-readable form before recording
them into the database.

• Connection Guard: While the HoneyDrone is more
“physical” than existing honeypots due to the radio
interfaces, it is designed to handle multiple attackers
simultaneously. The Connection Guard is respon-
sible for spawning services, limiting the number
of connections if required, and for detecting and
recovering services’ failures.

• File System Emulator: UAVs differ significantly in
their FSs. We, therefore, separated the FS structure
from the emulation. The emulator loads an FS from
the Drone FS (see below) to match a particular
UAV. All modification performed by an attacker are
recorded in a transient overlay and logged to the
database.

3) Drone File System: The Drone FS refers to the emu-
lated FS of a specific drone. For instance, some UAVs
expose the Linux /bin folder or a folder with flight
recordings, while others do not. To correctly emulate
these differences, we extract the FSs from real UAVs
and convert them to a file. Files uploaded by an attacker
are persisted and logged for later investigation.

4) HoneyDrone Database: The database component col-
lects and stores all the information in MongoDB. We
selected this database for its excellent RESTful/JSON
export capabilities and the document-oriented structure.
The latter feature allows for fast and easy addition,
extension and modification of stored record types. In
the current prototype, the database will, for instance,
record connection (attempts), (invalid) credentials, and
issues commands (valid and invalid) for the supported
application protocols.

5) Configuration file: This component refers to a single
or a set of configuration files that are used by the
NIE at the time of network interface setup and by the

4http://ardupilot.org/dev/docs/sitl-simulator-software-in-the-loop.html



UAV Emulation while the HoneyDrone is active. The
configuration contains properties such as the type of
network interface for the emulated drone, the FS to be
chosen, and the settings for the protocols to be emulated.
We are using an INI-style format for the configuration.
This format is compact and human-readable to allow
for quick and easy adjustments; for instance to alter the
emulated ESSID to match a real UAV.

In summary, while several existing GNU/Linux and open
source components are used by the HoneyDrone, the correct
integration, configuration, execution, monitoring, and data
extraction is unlike any other honeypot. Moreover, the tight
coupling of HoneyDrone with physical properties, e.g., the
wireless network interfaces and the UAV simulation, signifi-
cantly distinguishes the architecture from other low-interaction
honeypots.

IV. EVALUATION

The evaluation of the HoneyDrone prototype is twofold.
First, we study its performance by measuring the CPU uti-
lization in different scenarios and while running HoneyDrone
in a Raspberry Pi. Second, we emulate two attack scenarios,
focusing on the Telnet and MAVLink protocols respectively.

A. Performance Evaluation

The HoneyDrone is designed to be deployed close to
real drone locations and potential attackers. Therefore, the
HoneyDrone is only required to handle attackers within phys-
ical/wireless range as opposed to honeypots running on an
Internet scale. Still, we aim at high efficiency to be able to run
HoneyDrone on low-power and even battery-powered devices.
The ultimate goal is to carry HoneyDrone with real drones
or to run HoneyDrone as part of a drones flight controller.
For that, we evaluate the honeypot’s CPU utilization on a
Raspberry Pi 2 model B v1.1 with a 900MHz ARM Cortex-A7
quad-core CPU and 1GB of RAM.

We measured the CPU utilization in multiple stages starting
with an idle Raspbian system, incrementally enabling Hon-
eyDrone services, connecting simulated attackers, and finally
letting the attackers interact with the honeypot.

During the HoneyDrone software startup, the CPU utiliza-
tion reaches its maximum with 48% over the idle Raspbian
system. With all current services—including the physical
simulation of a drone—running, the CPU utilization reaches
an average 18% above idle. Here, the drone and MAVLink
protocol simulation account for the vast majority of this
utilization. Each adversarial connection to a service, such
as Telnet/SSH/MAVLink, incurs up to another 2% of CPU
utilization. Therefore, the HoneyDrone can support multiple
parallel connections without any significant overhead in its
performance on a low-power portable computer.

B. Attack Scenarios

In the following, we emulate two attack scenarios (a Telnet
and a MAVLink attack) and show how HoneyDrone deals with
them.

1) Telnet attack: In this attack scenario, we perform a
Telnet attack on a real Parrot AR Drone 2.0 followed by a
similar attack on the HoneyDrone. In order to hijack the drone,
it is necessary to de-authenticate the device which is currently
controlling the drone. When such de-authentication attack is
carried out on clients connected to the HoneyDrone, it neither
causes any damage to the HoneyDrone application nor to any
hardware.

"_id" : ObjectId("5131d0100fa4c416dc63c210"),
"clientinfo" : {
"ip" : "192.168.1.31",
"type" : "TCP",
"port" : 40784},
"eventinfo" : [
{
"timestamp" : "2017-12-20 21:03:12.141377",
"event" : "New Connection "},
{
"timestamp" : "2017-12-20 21:03:15.718012",
"event" : "Command found: ‘ls -l‘"},
{
"timestamp" "2017-12-20 21:04:35.567345",
"event" : "Command found: ‘rm -r bin‘"}
]}

Fig. 3. MongoDB log of the Telnet attack

For a Telnet connection to the drone, however, a de-
authentication is even not necessary. Hence, it is possible to
connect to the drone and issue commands to it even when
the drone is mid-flight, thereby shutting down the drone or
deleting important files from the drone’s operating system. The
Telnet connection to the Parrot drone is not password protected
and any connected client is granted the root privilege on the
FS. In our scenario, a Telnet connection has been established
with the drone after connecting to the drone’s Wi-Fi network.
Once connected, the command ”ls -l” is issued, to list the
contents of the directory. Figure 4, depicts the output of the
list command issued on the root directory of the Parrot drone.
Figure 4, also shows that the attacker has write privileges on
every file; this allows, for instance, to alter and/or delete these
files.

The same attack scenario is repeated on the HoneyDrone
which is configured to run on the same IP address, as used by
the Parrot Drone and an open Wi-Fi access point has been set
up. Upon establishing a Telnet connection to the HoneyDrone,
the same listing command is issued in the root directory. In
addition, a second command (”rm -r bin”) is issued to delete
the bin folder completely from the root directory. Figure 4,
shows the results of the aforesaid commands issued to the
HoneyDrone.

From Figure 4, it can be seen that the FS of the Parrot
drone and the HoneyDrone are almost indistinguishable. Fur-
thermore, the deletion of the folder does not cause any harm
to the HoneyDrone as the FS is not real. HoneyDrone logs
all the information about the attack in its database. In the
scenario discussed above, the honeypot records information
about the attacker. In particular, the IP address, the type of
connection and the ports used by the attacker as well as
the issued commands along with their timestamps. Figure 3,



Fig. 4. Telnet attack scenario: i) Successful Telnet connection to Parrot AR Drone 2.0 (left) ii) Successful Telnet connection to HoneyDrone (right)

shows the logs inserted in to the database. There are three
events recorded, one for the new connection establishment
and two events for the commands issued by the attacker. Note
that when the issued command is not implemented by the
HoneyDrone, the attacker is shown a default error message
(”Command not found”) and the issued command is logged in
the database.

2) MAVLink attack: The second scenario is an attack using
the MAVLink protocol. Such an attack can be carried out on
any drone with a weakly secured access point and with the
support for MAVLink communication. Using a Ground Con-
trol Station (GCS) application that supports MAVLink (namely
QGroundControl5), the attacker can issue new mission way-
points to the drone and steer the drone away from its owner.
In this scenario, it is assumed that the drone’s Wi-Fi network
has been compromised and an attacker can connect the drone’s
Wi-Fi network after de-authenticating the original controller.

Upon connecting to the HoneyDrone’s Wi-Fi network, the
adversary establishes a connection to the honeypot’s MAVLink
service through the UDP port 14550 using the GCS appli-
cation. Since the HoneyDrone runs the SITL simulator, the
QGroundControl application gets the simulated parameters
such as pitch, GPS coordinates, speed, etc., from the Hon-
eyDrone, just like it would receive from a real drone. From
the QGroundControl application, telemetry commands have
been issued to the drone using the MAVLink protocol. Figure
5, shows the QGroundControl application connected to the
HoneyDrone. It can be seen that the QGroundControl has
received the new way-point co-ordinates from the attacker and
started its mission along the received path. From the adver-
sary’s perspective, the drone appears to fly over a fake location

5qgroundcontrol.com

Attacker
stealing UAV

Fig. 5. HoneyDrone QGroundControl connection via MAVLink

as specified in the configuration file of the HoneyDrone. The
application behaves in the same way as it would behave when
it is connected to a real drone.

In our evaluation, new mission tasks, e.g., way-points, have
been created and uploaded as a mission to the HoneyDrone
(also highlighted in Figure 5). Once uploaded, the arm and
takeoff commands have been sent to the HoneyDrone. The
honeypot responds by sending the fake GPS coordinates as
per the uploaded mission tasks. The QGroundControl soft-
ware shows the movement of the drone using the parameters
received from HoneyDrone. All the MAVLink messages ex-
changed between the GCS and the HoneyDrone are logged into
the MongoDB database. Lastly, Figure 6, presents a subset
of the logging, containing the GPS coordinates exchanged
between the honeypot and the QGroundControl, as saved in
the DB of the honeypot.



{"timestamp" : "2017-12-20 21:54:06.900751",
"event" : "MISSION_ITEM {

target_system : 1, target_component : 190,
seq : 0, frame : 0, command : 16,
current : 1, autocontinue : 1,
param1 : 0.0, param2 : 0.0, param3 : 0.0,
param4 : 0.0, x : 49.8767967224,
y : 8.65258693695, z : 50.0

}"
}, {"timestamp" : "2017-12-20 21:54:07.022121",
"event" : "MISSION_ITEM {
target_system : 1, target_component : 190,
seq : 1, frame : 3, command : 21,
current : 0, autocontinue : 1,
param1 : 0.0, param2 : 0.0, param3 : 0.0,
param4 : 0.0, x : 49.8753738403,
y : 8.65268516541, z : 0.0

}"

Fig. 6. MongoDB log for MAVLink attack

V. CONCLUSION

In this paper, we propose HoneyDrone, a honeypot for the
detection of attacks in the UAV ecosystem. HoneyDrone is
the first honeypot that emphasizes solely on drones and their
protocols. In addition, it is lightweight in the sense that it
can be deployed in small low-cost devices and, hence, can
be easily deployed in various locations. We have studied
the performance of the honeypot and presented a number of
experiments that show the ability of HoneyDrone to cope with
realistic attack scenarios.

With respect to future work, we plan to further improve
HoneyDrone by focusing on the improvement of protocols’
emulation as well as on tackling a number of limitations that
we have identified. For instance, one challenge that we plan
to study is the ability of the honeypot to emulate changes in
its signal power. In a real-world scenario, an attacker who is
connected to a drone would expect a continuously changing
behavior in the Wi-Fi connectivity, due to the fact that the
drone is usually in movement; this is not the case with the
current implementation of HoneyDrone. That is, in the current
state and considering a static placement of the honeypot the
adversary might be able to identify that HoneyDrone is a
honeypot by examining the signal power of the drone. Finally,
we also plan to further evaluate the performance as well as the
ability of the honeypot to handle a large amount of connections
simultaneously.

VI. ACKNOWLEDGMENTS

The research leading to these results has received funding
from the European Union’s Horizon 2020 Research and In-
novation Program, TAKEDOWN, under Grant Agreement No
700688, as well as by the DFG as part of project D.4 within
the RTG 2050 “Privacy and Trust for Mobile Users”.

REFERENCES

[1] Honeywrt honeypot. https://github.com/CanadianJeff/honeywrt, 2015.
[2] Heralding honeypot. https://github.com/johnnykv/heralding, 2016.
[3] Honeypy honeypot. https://github.com/foospidy/HoneyPy, 2017.
[4] Justin C. Klein Keane. Kojoney2 honeypot. https://github.com/madirish/

kojoney2.

[5] Yin Pa Minn, Shogo Suzuki, Katsunari Yoshioka, Tsutomu Matsumoto,
and Christian Rossow. IoTPOT : Analysing the Rise of IoT Compro-
mises. In 9th USENIX Workshop on Offensive Technologies (WOOT).
USENIX Association, 2015.

[6] Marcin Nawrocki, Matthias Wählisch, Thomas C Schmidt, Christian
Keil, and Jochen Schönfelder. A survey on honeypot software and data
analysis. arXiv preprint arXiv:1608.06249, 2016.

[7] Michel Oosterhof. Cowrie honeypot. https://github.com/
micheloosterhof/cowrie, 2014.

[8] Johann-Sebastian Pleban, Ricardo Band, and Reiner Creutzburg. Hack-
ing and securing the ar. drone 2.0 quadcopter: investigations for im-
proving the security of a toy. In IS&T/SPIE Electronic Imaging, pages
90300L–90300L. International Society for Optics and Photonics, 2014.

[9] Niels Provos and Thorsten Holz. Virtual honeypots: from botnet tracking
to intrusion detection. Addison-Wesley Professional, 2007.

[10] Lukas Rist, Daniel Haslinger, John Smith, Johny Vestergaard, and
Andrea Pasquale. Conpot honeypot, 2013.

[11] Nils Miro Rodday, Ricardo de O Schmidt, and Aiko Pras. Exploring
security vulnerabilities of unmanned aerial vehicles. In Network Oper-
ations and Management Symposium (NOMS), 2016 IEEE/IFIP, pages
993–994. IEEE, 2016.

[12] Hichem Sedjelmaci, Sidi Mohammed Senouci, and Nirwan Ansari.
Intrusion detection and ejection framework against lethal attacks in
uav-aided networks: A bayesian game-theoretic methodology. IEEE
Transactions on Intelligent Transportation Systems, 18(5):1143–1153,
2017.

[13] Andrew Smith. Bluepot: Bluetooth honeypot. https://github.com/
andrewmichaelsmith/bluepot, 2013.

[14] Emmanouil Vasilomanolakis, Shankar Karuppayah, Mathias Fischer,
Max Mühlhäuser, Mihai Plasoianu, Lars Pandikow, and Wulf Pfeiffer.
This network is infected: Hostage-a low-interaction honeypot for mobile
devices. In Proceedings of the Third ACM workshop on Security and
privacy in smartphones & mobile devices, pages 43–48. ACM, 2013.

[15] Emmanouil Vasilomanolakis, Shankar Karuppayah, Panayotis Kikiras,
and Max Mühlhäuser. A honeypot-driven cyber incident monitor: lessons
learned and steps ahead. In International Conference on Security of
Information and Networks, pages 158–164. ACM, 2015.

[16] Emmanouil Vasilomanolakis, Shankar Karuppayah, Max Mühlhäuser,
and Mathias Fischer. Hostage: a mobile honeypot for collaborative
defense. In Proceedings of the 7th International Conference on Security
of Information and Networks, page 330. ACM, 2014.

[17] Emmanouil Vasilomanolakis, Shreyas Srinivasa, Carlos Garcia Cordero,
and Max Mühlhäuser. Multi-stage attack detection and signature
generation with ics honeypots. In NOMS, pages 1227–1232, 2016.

[18] Matthias Wählisch, Sebastian Trapp, Christian Keil, Jochen Schönfelder,
Jochen Schiller, et al. First insights from a mobile honeypot. In
Proceedings of the ACM SIGCOMM 2012 conference on Applications,
technologies, architectures, and protocols for computer communication,
pages 305–306. ACM, 2012.


