
A Management Framework for Secure Multiparty
Computation in Dynamic Environments

Marcel von Maltitz, Stefan Smarzly, Holger Kinkelin and Georg Carle
Technische Universität München, Department of Informatics

Chair for Network Architectures and Services
85748 Garching b. München, Germany

{lastname}@net.in.tum.de

Abstract—Secure multiparty computation (SMC) is a promis-
ing technology for privacy-preserving collaborative computation.
In the last years several feasibility studies have shown its practical
applicability in different fields. However, it is recognized that
administration, and management overhead of SMC solutions are
still a problem [1] [2]. A vital next step is the incorporation of
SMC in the emerging fields of the Internet of Things and (smart)
dynamic environments. In these settings, the properties of these
contexts make utilization of SMC even more challenging since
some vital premises for its application regarding environmental
stability and preliminary configuration are not initially fulfilled.

We bridge this gap by providing FlexSMC, a management and
orchestration framework for SMC which supports the discovery
of nodes, supports a trust establishment between them and
realizes robustness of SMC session by handling nodes failures
and communication interruptions. The practical evaluation of
FlexSMC shows that it enables the application of SMC in
dynamic environments with reasonable performance penalties
and computation durations allowing soft real-time and interactive
use cases.

Index Terms—Cryptography, Secure Multiparty Computation,
Privacy, Internet of Things, Fog Computing, Orchestration

I. INTRODUCTION

The Internet of Things (IoT) and Smart Buildings are
emerging paradigms which aim for joining the physical and
the digital world. An essential step towards this is to deploy a
multitude of sensors in physical environments which then allow
gaining insights into the environment’s current state [3]. This
data can be used to provide a fine-grained understanding of real-
world processes, inform users, and (automatically) influence and
manage the physical environment. State-of-the-art cloud-based
and local but centralized data stores, however, bear similar data
protection problems: They constitute a single point of attack
for all users’ data. Likewise, conformance with data protection
regulations can be a complex and challenging task. They might
even completely prohibit valuable data usage, createing a trade-
off between security and utility of collectable data.

SMC is a technical solution to these conflicts. Its application
is possible due to the following observation: Often, collected
data is only needed in post-processed form. Data points

This work has been supported by the German Federal Ministry of Education
and Research, project DecADe, grant 16KIS0538 and the German-French
Academy for the Industry of the Future.

of different times or different locations are combined and
numerical values are transformed into categorical (or boolean)
decisions. While the raw input data might have been privacy-
critical, often, the final output is not. The technology has
already proved applicable [1] [2] [4]–[7] (cf. Section VIII).
However, publications stress that more focus should be laid
on the practical problems of applying SMC: Administrative
real-world challenges should gain more attention and more
challenging settings like cloud-environments should be consid-
ered. Bogdanov et al. [2] “consider it an important challenge
to reduce the administrative attention required for managing”
a computing node to make “the technology easier to deploy
in practice”. Furthermore, Burkhart et al. [1] recognize that
robustness of computations in the presence of host failures is
a vital challenge which should be considered in future. We
address exactly these problems in our work.

We capture this demand by focusing on smart environments
as use case. They are understood to be dynamic settings where
a completely dependable infastructure cannot be assumed.
Similarly, host and networking failures have to be taken into
consideration when designing software for them. Nevertheless,
the need for privacy-preserving computation is strongly given,
which is preferably performed repeatedly and automatically
without notable overhead of manual management. We use
smart office buildings as running example: Information about
building usage is distributedly collected in every office space. It
is used to provide insights for building managers as well as the
inhabitants (e.g. via public displays). Furthermore the same data
can be forwarded to controllers and actuators influencing the
state of the building (e.g. HVAC). However, privacy-preserving
processing is needed as the collected data especially provides
data about the employees working in the sensed area. It
can contain presence information about individual employees
and give insights about their working and moving behavior.
Tracking and profiling becomes possible. [8]

In the following, we explicitly address the problems which
emerge when trying to apply SMC in these contexts. Our
contribution is the wrapper framework FlexSMC for SMC
implementations which enables managing of participating nodes
and the orchestration of collaborative computation. It facilitates
setup including node discovery and cryptographic bootstrapping.
During computation it performs monitoring and alive checks© 2018 IEEE

ar
X

iv
:1

80
4.

03
91

8v
1 

 [
cs

.C
R

] 
 1

1 
A

pr
 2

01
8



of the peers and provides mechanisms for session recovery in
case of failures. As a result, FlexSMC enhances SMC to be
used as a dependable und self-managing service services in
dynamic and unstable environments.

We structure our work as follows: In Section II we provide
background about SMC. Section III outlines the challenges for
SMC in dynamic contexts while IV discusses how they can be
conceptually approached. In Section V we give an overview
over the architecture which is then described in detail in VI.
Section VII presents our evaluation showing the results of our
performance measurements. Section IX concludes the paper.

II. SECURE MULTIPARTY COMPUTATION

Secure multiparty computation (SMC) is a method which
allows a group of parties P1 . . . Pn to collaboratively compute
a common function f . Hereby, each party Pi can contribute an
input xi to the computation; no other party learns this value
but all learn the result f(xi, . . . , xn).

Yao [9] [10] was the first to question how two parties
Pi and Pj can privately compare their values xi and xj so
that both only learn which one is bigger without sharing the
actual values. Later, this question was generalized to arbitrary
computations. This resulted in the research field of SMC. Since
then, research focused especially on feasibility of SMC in a
variety of contexts, increasing its performance and improving
its security in stronger adversary models.

SMC is executed as protocols between the participants. These
protocols are typically organized in synchronized, sequential
rounds. A round consists of a computation step, where every
node performs the same calculations predefined by the protocol
and often a communication step where some data is exchanged
to proceed with the next round. This communication has to
happen between every pair of participants.

III. CHALLENGES FOR SMC IN DYNAMIC ENVIRONMENTS

The Internet of Things and smart environments bear char-
acteristics which are initially incompatible with SMC. We
consider solving these conflicts as the fundamental requirement
in order to transform SMC into a valuable service in smart
environments. The main conflicts are:

Before executing an SMC protocol, the nodes need to
know each other (R.1). They must have an established trust
relationship in order to create secure authenticated point-to-
point channels (R.2). Compatibility for computation (R.3)
between nodes must be ensured: They must be capable of
the same SMC protocols for being syntactically able to interact
and provide the same type of data for producing semantically
sensible results. Furthermore, during the computation, the set
of participants cannot dynamically change (R.4). Coordination
of the SMC protocol has to be performed from outside (R.5),
at least the initiation of the computation has to be triggered
at each node nearly synchronously. SMC is not necessarily
robust against failing nodes during computation and recovery
of sessions is not trivial. Consequently, the environment
where SMC is executed must be robust itself (R.6). Lastly,
SMC technically uses peer-to-peer protocols, they are initially

Clients Gateway Peers

S
W

 S
ta

ck

SMC Resource

FlexSMC

Figure 1: Overall architecture

incompatible with a client-server architecture (R.7). I.e. clients
cannot trivially request data from such a network. Furthermore,
at the end of an SMC computation the result is available for
each participant and no one outside this group. If other entities
need access to the result it must be forwarded (R.8).

Smart environments on the other side are dynamic, i.e. nodes
are not initially known to each other, no trust relationship
between them exists initially, and nodes can unexpectedly join
and leave the network. Every node might have different sensors
attached, computation compatibility is not trivially given. Lastly,
in an environment where other services shall depend on the
results, a single point of contact is desirable.

IV. APPROACH: VIRTUAL CENTRALITY

When formally proving security and correctness of SMC
protocols, a simulator-based proof approach [11] is used.
Roughly spoken, the proof shows that an adversary cannot
differentiate whether it interacts with an SMC protocol or an
actual Trusted Third Party (TTP).

We use this model as inspiration: TTPs bear characteristics
which are desirable to address the management challenges
mentioned in Section III. Hence we try to incorporate these
properties while using SMC as core. Given by the scenario,
there are distributed nodes acting as data sources. In the
following, we denote them peers. Similarly, data consumers
exist, they are clients of available services, like public displays
or HVAC controller as exemplified before. For our solution, we
now define a special further node – the gateway (GW) – which
acts as a virtual server, shadowing the fact that data is actually
stored in a distribued manner and requests are answered by
collaborative on-the-fly computation by the data sources. The
GW performs centralized coordination and orchestration of
SMC computations but is not trusted with respect to the data.
We call this concept Virtual Centrality.

The main functionality of the GW can be divided into
two parts (cf. Figure 1): Firstly, it provides a unified API
for data consumers, hiding SMC from them. Clients can
request preliminary metadata which nodes and which data
are available. Based on this information, clients can issue



computation requests, i.e. requests of data which is then
newly computed by a corresponding SMC session between
the peers. Clients finally receive their answers via the API.
Secondly, it must coordinate the computations performed by
the data sources. It acts as a discoverable management node
which initially collects metadata about the capabilities of the
connecting peers and establishes control connections to them.
Upon a computation request, it initiates and orchestrates a
corresponding computation, finally receiving the result itself
but nothing else. Due to the mutual trust relationship among all
nodes, and discovery and bootstrapping mechanism, any node
is potentially eligible for the gateway’s leader role. In use cases
where a preliminary infrastructure can be assumed (e.g. smart
offices or homes), the gateway can be assigned rather statically
to a dedicated node. In highly volatile environments like ad-
hoc-networks, the gateway role can be chosen completely
dynamically at runtime.

V. OVERVIEW

In the following section we present the overall architecture of
FlexSMC, our approach to practically realize Virtual Centrality
and address the challenges discussed in Section III.

A. Entities

We elaborate further on the roles of entities implied by our
use case and added by our solution:

1) Peers: Peers are sensor platforms which gather raw
information. They can differ regarding their capabilities, i.e.
the attached sensors. This and other information are available
at the peers as metadata. The peers carry out the SMC sessions.

2) Gateway: The gateway is a central yet untrusted peer-
like node. It functions as described in Section IV. It presents
itself as a monolithic service for all clients and coordinates
and orchestrates the SMC sessions for all participating peers.

3) Clients: Clients are data consumers which request and
finally receive the collected data to perform actions upon them
or make them visible to users.

B. Functionality

We implement a GW which provides functionality to cover
all problems stated before in Section III. It contains an
orchestration module which solves R.1, R.2, and R.3 during
a setup phase for every joining peer. The monitoring module
addresses R.4, R.5, and R.6. The GW will also participate
in the computations and also obtain the final result. I.e, after
having received a request and translated it into an SMC session
(R.7), it is also able to response with the result at the end (R.8).

FlexSMC acts as a wrapper for existing SMC frameworks.
I.e. we do not duplicate SMC functionality but provide an
environment which mitigates the conflicts between dynamic
contexts and the premises of SMC application. FlexSMC then
connects via a local socket to an SMC instance and controls it
via an adapter (cf. Figure 4). This decouples FlexSMC from
specific SMC implementations. This is also beneficial with
respect to improvements on SMC protocols. As long as no
fundamental changes in the structure of sessions are made,
FlexSMC remains compatible.

failure

Operation

Connection EstablishmentDiscovery

Pairing

unknown GW

fail

permanent failure

known GW

success
success

Figure 2: State machine of peers

VI. ARCHITECTURE

In this section, we explain the aforementioned modules of
FlexSMC in detail.

A. Orchestration

When new nodes join they need to find an appropriate GW
instance. This GW then has to gather information about the
new node, and prepare it for later computation sessions. The
peer-side process is depicted in Figure 2.

For discovery of GWs we employ mDNS [12][13]. The
GW acts as a service which announces itself over the network.
Since multiple GWs can be present which may have different
locations, purpose, etc., GWs also send this metadata during
this announcement. This facilitates selection of the right GW
for new peers. Selection can happen manually or automatically
on the peer-side. When a peer has selected a well-suited GW,
it establishes a connection to the GW and starts the pairing.

During pairing, self-signed certificates of the new peer
and the GW are exchanged which provide cryptographically
secure identities for the peers.1 Later, when invoking a
computation, all necessary certificates are distributed among the
participating peers in order to enable computations performed
over secure channels. Furthermore, the peer provides metadata
which enables creation of semantically sensible SMC groups
of peers. Examples for this data are the peer’s location and its
capabilities. Each group gets a label which enables clients to
address this very group by its name. It is the task of the GW to
resolve the name again when a computation is requested. Lastly,
when connecting a permanent control channel is established to
enable the GW to later provide instructions to this peer.

When operation has been started, peers are ready to execute
computations. Incoming requests from clients are preprocessed
by the GW. The group label is resolved and the input data type
and the choice of protocol are extracted. Afterwards, the GW
informs the corresponding set of peers about the upcoming
computation and its metadata. This includes the identities and
connection endpoints of all other participants. Peers can then
prefetch the input data and perform local setup of the SMC
implementation. On each peer, the computation is delegated to a
dedicated SMC implementation. It uses the metadata to connect
to the participants and collaboratively execute the selected
protocol. When the computation has finished, all participants,
including the GW, have obtained the result. The GW forwards
the result to the initially requesting client.

1 This can be substituted by a Public Key Infrastructure if available.



Switch

Isle R Isle S

VLAN Switch

Switch

Figure 3: Topology of the test setup

B. Monitoring

Monitoring mainly observes the state of and the connection
to already joined nodes.

1) State Monitoring: The availability of a joined node is
monitored in a two way fashion: Regularly, peers send heart
beat messages to the GW. When the connection drops, peers
will take notice of it, clean up the connection and transition
back into discovery mode (cf. Figure 2) trying to reestablish
a connection the same or – in case of a permanent error –
to another GW. On the side of the GW, missing heart beat
messages or connection loss in the control channel indicate
errors which also cause the cleanup of the corresponding
channel. The peer is then unlisted as active and available.

2) Computation Monitoring: We delegate the computation
to a SMC framework which we assume to be available on
each peer. As a consequence the actual computation is carried
out via other channels than the channels FlexSMC controls.
Therefore, SMC communication cannot be monitored directly.

However, FlexSMC is connected to the SMC framework so
that exceptions can be retrieved from the computation session.

Assuming that SMC sessions cannot recover themselves,
the GW then instructs to cleanup the failed session and to
begin recovery. Using the information from state monitoring
(Section VI-B1) the GW optionally removes vanished or failed
peers and restarts the computation a predefined, finite time.

VII. PERFORMANCE EVALUATION

In order to assess feasibility of our solution we performed
measurements focusing on absolute durations for the processing
of requests and the overhead induced by FlexSMC.

1) Setup: We used 12 physical hosts in a topology as
depicted in Figure 3. There is a switch per subnet; both are
in turn connected by a central switch. Traffic between subnets
needs to pass the router. The left upper node of Subnet R
acts as a dedicated GW. Each host possesses 16 GB main
memory and an Intel Xeon CPU with 8 cores having 2.50 GHz
and 8192 KB cache size. The operating system is a headless
Debian 8.5 Jessie using a Kernel of version 3.16.0-4. They are
connected via a 1 Gbit ethernet network.

We employed FRESCO [14] (version 0.2) as SMC framework.
The basic computation operations are provided by the BGW
protocol [15]. Being guided by the smart office example, we
perform a simple summation of all participant’s input values as
it is typically necessary for generating statistics from collected

Figure 4: Test metric for the complete communication path

information, e.g. calculating the average. Each measurement
has been repeated 1000 times.

2) Method: We dissect the steps from request to computation
corresponding to Figure 4, gaining different test cases. Here,
T always denotes the time for a bi-directional communication
flow. Dotted edges visualize local communication on a host
while solid edges between FlexSMC instances depict any routed
and switched network. Tflex denotes the time which is needed
to inform peers about an upcoming computation and to invoke
the computation on the peers. Adding the time spent while
communicating via a local socket with the SMC implementation
yields Tflex,fresCon. The full time taken, also including the
actual execution of the SMC protocol, is Ttotal. In this work,
we will provide measurements for Tflex and Ttotal.

Communication is carried out simultaneously with every
peer. However, during the SMC computation each round has to
be synchronized among all peers. Practically, this means that
the slowest peer determines the overall performance. Due to
this reason all our results always depict the maximum duration,
i.e. the time the slowest peer took per measurement.

3) Results: We provide three insights: a) The overall time a
protocol execution costs. b) The fraction FlexSMC adds to this
amount. c) The scaling behavior with respect to the number
of peers, an important parameter in our setting.

Figure 5 shows that a sequence of 10 consecutive “echo”
requests sent to the FlexSMC peers via individual control
channels involving all FlexSMC framework components in an
end-to-end view but without connection to the local adapter
and actual computation costs around 4 ms. This value increases
very slightly when more peers are added. Actual forwarding
of these messages via the local socket adds further 3 ms to
the overall duration. Regarding scaling behavior, the offset is
correspondingly shifted and the slope is increased.

The next measurements included the actual SMC computa-
tion. Figure 6 shows that the corresponding durations have an
essentially higher offset. The setting with 3 peers starts with
1006 ms and increases to 1012 ms for 11 peers. Investigating
this issue, we found out that this is neither SMC-specific nor
directly caused by the performed computation. Instead, the
networking layer of FRESCO always waits a full second before
checking whether all necessary channels between each pair of
peers has been established. This is also the reason why this is
only an offset which does not influence the slope.

Besides absolute durations comparison with a TTP solution
as given in the state-of-the-art is of interest. We can approximate



3.0 5.0 7.0 9.0 11.0
Number of peers

2

3

4

5

6

7

8

9

10

11

12
To

ta
l m

ax
im

um
 r

eq
ue

st
-r

es
po

ns
e 

tim
e 

[m
s]

Tflex

Tflex,fresCon

Figure 5: Total time for 10 consecutive echo requests

3 5 7 9 11
Number of peers

1000
1002
1004
1006
1008
1010
1012
1014
1016
1018
1020
1022
1024

To
ta
lr
eq
ue
st
-r
es
po

ns
e
de
la
y
[m

s]

Figure 6: Computation of a single secure sum per round with
different number of participants

its cost by assuming that the GW would act as a TTP, per-
forming the computations centrally. For this purpose, each peer
would forward its data to the GW. Using this approximation
and neglecting the central computational costs, utilization of
a TTP would then be around Tflex since its corresponding
commmunication is not SMC-specific. It is, however, vital to
see that the costs would be nearly independent of the number of
peers contribution to the computation. All peers would be able
to send their values simultaneously. This is in stark contrast
to the SMC solution: Carrying out the SMC protocol requires
communication between all participating peers. This causes a
linear increase of the duration when adding further peers.2

Due to the waiting time in FRESCO, client requests would
be answered in roughly more than a second. Here, FlexSMC
imposes only minimal overhead, and with further versions
of FRESCO, the overall time can even decrease to some
milliseconds. These performance characteristics enable serveral
use cases: Batch data processing and interactive applications
become feasible. Similarly, continuous applications requiring
soft real-time like public displays or actuators for HVAC control
would be well realizable.

2The initially quadratic overhead is reduced to linear due to parallel
communication.

VIII. RELATED WORK

Over the last decade there have been multiple feasibility
studies demonstrating practical SMC application. However, it
becomes apparent that most solutions presented in related work
have been executed manually in highly controlled environments.
Only few propose architectures for continuous real-world
deployment and automated computations. Among them, some
in turn do not consider realistic constraints of their environment.

In constrast, we deliberately chose dynamic environments
and automated computation as our scenario in order to examine
and address infrastructural challenges for SMC present in smart
environments. We provide a solution which allows continuous
and automatic application of robust SMC computations in
dynamic contexts. We evaluated our prototype in a real network
and proved its feasibility for practical purposes.

The first practical and large-scale application of SMC
happened in 2008 [4]. Its purpose was to perform a multiple
seller multiple bidder auction. Data from 1200 users was
collected and split into shares locally in a Java applet. The
computation has then been performed by three laptops in a
local network. The whole computation, working with 1229 bids
encompassing 9 million individuals numbers took 30 minutes
in an 100Mbps intranet setting. They do not give insights how
the results were distributed to the initial data input parties.

Martin Burkhart developed and applied SEPIA to event
correlation for network data [1] in 2010. The overall goal is
generation of network traffic statistics and anomaly detection.
The collected data stems from 140 input parties while varying
the computation parties between 3 and 9. Their evaluation
was performed in a very controlled setting: Measurements
have been performed in intranet and internet settings (using
PlanetLab), however without real interaction via SMC with the
ISPs which provided the data.

Bogdanov et al. [2] set up SMC in 2012 for computing
statistical financial indicators of companies. Sharemind [16]
was used for realizing ranking operations. They provided a web-
based solution which created the shares locally in the browser
via JavaScript before submitting them to three computational
nodes. These were located in three participating companies.
They successfully deployed it as an application for continuous
use, several computations have been carried out.

Djatmiko et al. [5] reused SEPIA in 2013 to perform
collaborative outage detection. They extended an existing
approach to work privately with multiple inputs. The core
operation is multiset union operation which they realize with
counting bloom filters (CBFs). Their CBF works on an integer
array which has to be generated from equally-shaped, local
arrays. The necessary summations of the interger elements are
performed via SMC. Real-world data from an ISP is used and
evaluated in a controlled and manually setup cloud setting.

In 2016, Zanin et al. [6] applied SMC to transmit CO2

emission allowances between airlines. They used SEPIA im-
plementing the necessary comparison functions. Most notably,
they have realized a real web service interacting with actual
stakeholders. While the interaction is neither fully automated



nor the SMC computations are performed automatically, they
provide an infrastructure which addresses a concrete use case
and allows real interactions. The same is reflected in their
measurements, where also organizational overhead is assessed
which includes peer discovery and authentication.

In 2017, Bonawitz et al. [7] from Google published a
solution for SMC-based privacy-preserving training of neural
networks (NN). A trained model of a NN can be represented as
a (long) integer vector. Training such a model privately means
that a global vector is build from a multitude of local input
vectors without making these available to anyone. In their
approach they address real-world problems like interrupted
connections, vanishing participants, and NAT-shielded devices.
The corresponding talk [17] implies that the system will
be productively used for privately creating auto-suggestion
models for smartphone input trained by the typing history of a
multitude of smartphones. Abstractly, Bonawitz et al. address
Secure Aggregation. This facilitates their use case: They only
need a single server finally holding the global model while
being oblivious to the input data. Furthermore, only integer
summation must be supported.

Thoma et al. [18] present a secure smart metering solution.
They aim for protecting the individual, temporally fine-grained
consumption data of households, providing correct and verifi-
able billing of each individual household and fine-grained (non-
individual) consumption feedback for load management. Here,
SMC is utilized to spatially aggregate temporally fine-grained
consumption data over several households before sending them
to the energy provider. Thereby, they also address a secure
aggregation in a real-world setting and provide a framework
which enables practical application. However, their solution is
rather on the level of a concept. The paper does not discuss how
infrastructural problems like discovery of available households
and interconnection between them are handled.

IX. CONCLUSION

Smart environments and the Internet of Things are emerg-
ing technologies which require the privacy-protection of
distributedly collected data. Secure multiparty computation
(SMC) is a valuable candidate for this purpose. Its practical
feasibility has already been shown in several studies in the
last decade. However, most of them have been carried out
in highly controlled environments and with a lot of manual
intervention. Relevant questions of productive application in
dynamic environments have therefore not yet been answered.

We examine the problems arising for SMC when con-
sidering these contexts: Due to their volatility preliminary
information about possible participants and their identities
are not necessarily known. Similarly, secure channels for
SMC require previously performed trust exchanges between
the participants. Lastly, failing hosts and connections must
be taken into consideration, with which SMC realizations
cannot trivally cope themselves. Our contribution is FlexSMC,
a management and orchestration framework which turns SMC
into a dependable service for these scenarios. Its main paradigm
is Virtual Centrality: A selected node among the data sources

provides management and orchestration functions for enabling
computations while remaining untrusted with regard to data
handling. During setup, it supports node discovery and trust
establishment. It serves as single point of contact for data
requests and translates them into executable SMC sessions.
When performing computations, it monitors them and enables
recovery when node or communication failures occurred.

Our performance evaluation shows that SMC in general is
feasible in dynamic environments and FlexSMC adds only
negligible overhead to it.

REFERENCES

[1] M. Burkhart, M. Strasser, D. Many, and X. Dimitropoulos, “SEPIA:
Privacy-preserving Aggregation of Multi-domain Network Events and
Statistics,” Proceedings of the 19th USENIX Conference on Security,
p. 15, 2010.

[2] D. Bogdanov, R. Talviste, and J. Willemson, “Deploying secure multi-
party computation for financial data analysis,” Financial Cryptography,
pp. 57 – 64, 2012.

[3] J. Gubbi, R. Buyya, S. Marusic, and M. Palaniswami, “Internet of Things
(IoT): A Vision, Architectural Elements, and Future Directions,” Future
Gener. Comput. Syst., vol. 29, no. 1, pp. 1645–1660, 2013.

[4] P. Bogetoft, D. L. Christensen, I. Damgård, M. Geisler, T. Jakobsen,
M. Krøigaard, J. D. Nielsen, J. B. Nielsen, K. Nielsen, J. Pagter,
M. Schwartzbach, and T. Toft, “Secure multiparty computation goes
live,” in Lecture Notes in Computer Science, vol. 5628 LNCS, 2009, pp.
325–343.

[5] M. Djatmiko, D. Schatzmann, X. Dimitropoulos, A. Friedman, and
R. Boreli, “Collaborative Network Outage Troubleshooting with Se-
cure Multiparty Computation,” IEEE Communications Magazine, no.
November, pp. 78–84, 2013.

[6] M. Zanin, T. T. Delibasi, J. C. Triana, V. Mirchandani, E. Álvarez Pereira,
A. Enrich, D. Perez, C. Paşaoğlu, M. Fidanoglu, E. Koyuncu, G. Guner,
I. Ozkol, and G. Inalhan, “Towards a secure trading of aviation CO2
allowance,” Journal of Air Transport Management, vol. 56, pp. 3–11,
2016.

[7] K. Bonawitz, V. Ivanov, B. Kreuter, A. Marcedone, H. B. McMahan,
S. Patel, D. Ramage, A. Segal, and K. Seth, “Practical Secure Aggregation
for Privacy Preserving Machine Learning.” IACR Cryptology ePrint
Archive, vol. 2017, p. 281, 2017.

[8] R. Roman, J. Zhou, and J. Lopez, “On the features and challenges of
security and privacy in distributed internet of things,” COMPUTER
NETWORKS, vol. 57, pp. 2266—-2279, 2013. [Online]. Available:
http://dx.doi.org/10.1016/j.comnet.2012.12.018

[9] A. C. Yao, “Protocols for secure computations,” in Proceedings of
the 23rd Annual Symposium on Foundations of Computer Science.
Washington, DC, USA: IEEE, 1982, pp. 1–5.

[10] ——, “How to generate and exchange secrets,” in Proceedings of the
27th IEEE Symposium on Foundations of Computer Science. IEEE
Computer Society Press, 1986, pp. 162–167.

[11] R. Canetti, “Security and Composition of Multi-party Cryptographic
Protocols,” 1999.

[12] S. Cheshire and M. Krochmal, “Multicast DNS,” RFC 6762 (Proposed
Standard), Internet Engineering Task Force, Feb. 2013.

[13] ——, “DNS-Based Service Discovery,” RFC 6763 (Proposed Standard),
Internet Engineering Task Force, Feb. 2013.

[14] “A FRamework for Efficient Secure COmputation.” [Online]. Available:
https://github.com/aicis/fresco

[15] M. Ben-Or, S. Goldwasser, and A. Wigderson, “Completeness Theorems
for Non-Cryptographic Fault Tolerant Distributed Computation,” Proceed-
ings of the 20th Annual ACM Symposium on the Theory of Computing
(STOC), pp. 1–10, 1988.

[16] D. Bogdanov, “Sharemind: programmable secure computations with
practical applications,” Ph.D. dissertation, 2013.

[17] B. Kreuter, “Secure Multiparty Computation at Google,” in Real World
Crypto Symposium, 2017. [Online]. Available: https://www.youtube.com/
watch?v=ee7oRsDnNNc

[18] C. Thoma, T. Cui, and F. Franchetti, “Secure Multiparty Computation
Based Privacy Preserving Smart Metering System,” 44th North American
Power Symposium (NAPS), pp. 1–6, 2012.

http://dx.doi.org/10.1016/j.comnet.2012.12.018
https://github.com/aicis/fresco
https://www.youtube.com/watch?v=ee7oRsDnNNc
https://www.youtube.com/watch?v=ee7oRsDnNNc

	I Introduction
	II Secure Multiparty Computation
	III Challenges for SMC in Dynamic Environments
	IV Approach: Virtual Centrality
	V Overview
	V-A Entities
	V-A1 Peers
	V-A2 Gateway
	V-A3 Clients

	V-B Functionality

	VI Architecture
	VI-A Orchestration
	VI-B Monitoring
	VI-B1 State Monitoring
	VI-B2 Computation Monitoring


	VII Performance Evaluation
	VII-1 Setup
	VII-2 Method
	VII-3 Results


	VIII Related Work
	IX Conclusion
	References

