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Abstract—In this paper, we propose a decision support process
that is designed to help network and security operators in
understanding the complexity of a current security situation and
decision making concerning ongoing cyber-attacks and threats.
The process focuses on enterprise missions and uses a graph-
based mission decomposition model that captures the missions,
underlying hosts and services in the network, and functional and
security requirements between them. Knowing the vulnerabilities
and attacker’s position in the network, the process employs logi-
cal attack graphs and Bayesian network to infer the probability
of the disruption of the confidentiality, integrity, and availability
of the missions. Based on the probabilities of disruptions, the
process suggests the most resilient mission configuration that
would withstand the current security situation.

Keywords—Cyber situational awareness, Decision support, At-
tack graph, Bayesian network, Mission resilience

I. INTRODUCTION

The rising complexity of today’s communications networks
and information systems makes it more difficult to protect
critical information infrastructures (CII). In particular, it is
difficult to eliminate all the vulnerabilities and to protect all the
components of the CII. When breached (and the breach will
happen), each reconfiguration needs to be carefully considered
as it can impact the mission as well, and the mission operation
interruption consequences can be catastrophic.

Nowadays, we stand in a situation, when the environment
is complex, and fully automated incident response is risky.
Thus, there is a need to keep a human operator in the loop [1].
The operators need to be supported by an analytical system
that would increase their Cyber Situation Awareness (CSA),
i.e., perception of the elements in the environment within a
volume of time and space, the comprehension of their meaning
and the projection of their status in the near future [1]. The
CSA needs to be supported by analytical systems capable of
handling inputs, estimating the state of the network and attack,
and assessing the impacts of attack and defensive actions in
the context of the critical missions.

A promising approach to prioritize cyber threats and find
resilient mission configurations is to focus on mission or
business objectives that must be achieved despite the presence
of threats. In such a case, we refer to mission-centric cyber
situational awareness [2]. The operator is given a task to
find a most resilient mission configuration, which requires
evaluating the effects of the threats on the mission operation.
Such evaluation is difficult because, first, the attack takes effect
on the infrastructure levels, affecting hosts and dependent

on the current network configuration, and there is a need to
estimate how the effects propagate further up to the mission
level, which is more abstract. Second, the projection of the
situation in the future is important. The complexity of the task
is well beyond the ability of a human operator to comprehend.
Therefore, we propose decision support for mission-centric
network security management. To answer the challenge, we
propose a mission-centric approach to decision support for
mission operation management that processes the machine-
readable information on the protected network, vulnerabilities
detected in the network, and description of enterprise missions
of the organization that operates the network. By combining
the three sources of information, we can calculate a potential
impact of vulnerabilities to enterprise mission, and assess the
most resilient mission configurations.

This paper is divided into six sections. In Section II, we
briefly describe the related work on mission-centric decision
support. In Section III, we describe the decision support
process. Section IV provides a more in-depth insight into
the crucial parts of the process, including the equations and
algorithms. Section V concludes the paper and outlines further
research directions.

II. RELATED WORK

The key aspect of the mission-centric approach is the ability
to map the assets to missions. For example, Sun et al. [3]
proposed a mission-task-asset map to associate mission with
its tasks with corresponding assets. This map is built on top of
a system object dependency graph that captures the intrusion
propagation at a very low level. The map is discovered by
pattern mining in the interactions of the tasks with the objects
in the dependency graph. The authors used a Bayesian network
based on the mission-task-asset map and the system object
dependency graph to infer the probability of a mission task
being tainted using intrusion evidence. Guion and Reith [4]
mapped the mission to a cyber terrain that consists of systems,
devices, data, processes, cyber personas, and other network
entities, the control of which offers a marked advantage to
an attacker or defender and as a concept is supportive for
mission-based impact assessment. The author surveys current
methodologies for mission mapping and the existing tools
that seek to provide CSA through mission mapping. Recently,
Silva and Jacob [2] focused on a mission-centric risk assess-
ment methodology. They pointed out the need for switch-
ing from threat-centric and vulnerability-centric to mission-



centric approaches as the focus on a mission gives a more
comprehensive picture from the human operator perspective.
The authors also summarized the proposed risk assessment
methodology required for mission-centric assessment. The
risk assessment preparation requires modeling the enterprise
missions and assets and relations between them, specifying
the risk measurement criteria, and so forth. Subsequently, as
part of conducting the risk assessment, all threats and their
impact on the assets need to be identified. Lastly, linking the
enterprise model to the identified threats is required to estimate
the disruption of the mission.

Jakobson [5] discussed the need to achieve mission re-
siliency and proposed mission resiliency based on two inter-
acting dynamic processes: the process of mission operation
situation management and the process of cyber situation
management. The author discussed architecture and enabling
technologies of such mutually adaptive processes that keep
the mission persisting even if the network that supports the
mission may be compromised by a cyber attack.

There is still a need for an implementation of mission-
centric decision support and impact assessment. The existing
works on impact assessment do not consider the mission
perspective and focus on IT components. The response se-
lection model (REASSESS) [6] allows mitigating network-
based attacks by incorporating a response selection process
that evaluates negative and positive impacts associated with
each countermeasure. The considered negative effects are
the disturbance of the service caused by the action, which
takes into account the importance of the service and the
level of disturbance. The considered positive effects are the
response success rate for a given response and alert. The
concept of response success rate does not require any deep
theoretical analysis of dependencies and is based purely on the
experience, however very imprecise in practice since networks
change too often to derive any meaningful historical data.
Shin et al. [7] developed a cybersecurity risk model based
on Bayesian networks that represents the probability of cyber-
attacks on IT systems. Recently, Huang et al. [8] proposed a
framework for assessing the impacts of cyber attacks in cyber-
physical systems. The risk assessment is based on predicting
the probability of sensors and actuators being compromised
from conditional probabilities captured in a Bayesian network.
The probability distribution is then used by a stochastic hybrid
system model to predict the possible evolution of the physical
system.

III. DECISION SUPPORT PROCESS

The goal of the decision support process is to suggest
the most resilient mission configuration for an ongoing at-
tack endangering established mission security requirements.
In the context of this article, we consider the mission as a
collection of arrangements of mission-supportive processes
enabling to deliver the resulting mission’s functionality. A
mission-supportive process is an essential activity, delivered by
people through cyber components, supplying particular desired
functionalities. Our approach stands on the following four

assumptions. First, the mission usually allows more config-
uration alternatives that meet all functional requirements. The
mission can be supported by various combinations of support-
ive processes, IT services, and cyber components to avoid a
single point of failure in critical systems. Each combination
that enables the mission operation is called mission configura-
tion. The different mission configurations can be derived from
the AND/OR relations between the mission and its depen-
dencies [5], [9]. Second, the mission supportive processes are
regarded as critical assets to be protected. Primarily, we focus
on processes instead of supportive cyber components (network
hosts and services). The critical supportive cyber components,
vulnerabilities discovered on the components, and relevant
interactions are derived consequently in the context of the
specific mission configuration. Third, the mission’s require-
ments on confidentiality, integrity, and availability (CIA), also
referred to as mission security requirements, are maximized
while satisfying the required mission’s functionality. Keep-
ing the mission operational means that all the functional
requirements are fully satisfied. Finally, the decision making
support is built on the mission’s ability to adaptation and
reconfiguration in the face of adversary activities.

Our approach captures both interrelated aspects of the
analyzed mission: its functional requirements, and its security
requirements. All the functional requirements of the mission
must be satisfied all the time in order to keep the mission oper-
ational. First, we need to identify and decompose the missions
and define their functional and security requirements. This
is done only once unless the missions change. Subsequently,
we continuously react to changes in the current security state
and recalculate mission resilience. This consists of updating
the attacker’s position and discovering vulnerabilities, attack
vectors in the network, and creating Bayesian attack graphs
(BAG) to infer the most probable threats to missions. Finally,
decision making takes place. The steps of the process are
discussed in detail in the following subsections.

A. Mission Decomposition and Definition of Requirements

The first phase of the proposed process is mission decom-
position. We covered the first phase in detail in our previous
work [9]. Briefly, the mission decomposition model is a graph
where nodes are mission supportive processes, IT services,
and cyber components. Mission supportive processes represent
the missions and their requirements on CIA attached to them
as a numerical value. IT services are abstract representations
of particular components of the mission supportive processes.
Supportive cyber components are mapped to particular hosts
and services in the network. The directed edges in the graph
are dependencies (functional requirements) between the mis-
sion supportive processes and IT services, and IT services and
cyber components. Further, there might be AND/OR nodes and
edges between them to model more complex dependencies.
For example, if a mission supportive process depends on
two IT services, there is an extra AND node, and the edges
go from the mission supportive process to the AND node,
and from the AND node to the two IT services. The same



principle applies to OR nodes and combinations of nodes.
The mission decomposition model is built after a consultation
with a domain expert or administrator of the mission or the
critical systems. The requirements on CIA must be established
at the level of individual processes. Their settings are the
responsibility of the domain experts.

B. Change of Security State and Resilience Calculation

Resilience calculation reacts to a change in the security
situation, e.g., a discovery of a new vulnerability in the
network and intrusion detection that discloses an attacker’s
position or updates an attacker’s privileges. Discovery of a
vulnerability on a supportive cyber component poses a new
threat to the component and the IT services and mission
supportive processes that depend on it. Attacker’s position and
privileges give us information about the possible action the
attacker may take. The position implies the attacker’s reach,
i.e., the supportive cyber components that are reachable by
the attacker. The attacker’s privileges are the privileges the
attacker has on a controlled system. Such information is mostly
provided by third-party tools, such as vulnerability scanners
and intrusion detection systems.

We employ two principles of recalculation of the mission’s
resilience. First, we calculate the resilience for every individual
mission configuration. We calculate how likely can a particular
mission’s configuration be affected, i.e., the probability of
its successful disruption in terms of endangering established
security requirements. Second, we use the probability as a
measure. The probability function assigns a non-negative real
number to every mission configuration that satisfies established
functional requirements. The number represents the probability
of successful disruption of established security requirements.
The most resilient configuration is the one with the lowest
probability of disruption.

Based on parameters derived from the mission decomposi-
tion model, we employ a logical attack graph to represent the
current security situation, i.e., the position and privileges of
the attacker and enumeration of supportive cyber components
and their vulnerabilities. Subsequently, we employ the statis-
tical inference mechanism of a graphical probabilistic model
(Bayesian network) that reflects the situation. The resulting
Bayesian network provides the capabilities of the inference
mechanisms that allows for calculating the probability of an
attacker reaching the target privilege, i.e., the probability of
disruption of a particular security requirement. The mathe-
matical background of both the above-mentioned tools will be
described in the following sections.

In our work, the selection of possible mission configurations
and the most resilient mission configuration is considered
as a constraint satisfaction and optimization problem [9].
Constraints satisfaction represents the satisfaction of functional
requirements. The formal expression of mission decomposition
model (Boolean formula or Constraint AND/OR tree) enables
an automatic generation and derivation of all mission con-
figurations satisfying established functional requirements, i.e.,
constellations of mission supportive processes, IT services, and

cyber components and their interactions. Constraints optimiza-
tion represents the optimization of CIA requirements. We com-
pare the probabilities of disruption of each satisfying mission
configuration. The calculation of the probability of disruption
of a supportive cyber component is using an exploitability
score of a vulnerability. Such scores are provided, for example,
in CVSS1 scores and metrics. In order to keep the mission
operational, we maximize the mission’s security requirements
while fully satisfying its functionality requirements.

C. Decision Making

When the mission resilience is recalculated, the process
comes to its final stage, the decision making. The output of the
previous stage of the process is the calculation of risks for all
the configurations of the mission’s supportive cyber compo-
nents. In this stage, there is a need to select the most resilient
mission configuration. For each mission configuration, we
consider the worst attack scenario, i.e., the scenario with the
highest probability of a successful exploit. The configuration
with the lowest computed probability is selected as the most
resilient. However, there are three security requirements (CIA)
that may be affected by a vulnerability. If the exploitation
affects only one or two of the requirements, we have to employ
a utility function that would produce a single value out of
three probabilities. There are numerous alternatives to choose
a utility function. Simple, yet reasonable, options would be to
use the sum or maximum of the three values calculated for
CIA. In addition, the utility function may be redefined based
on past experience or priorities of the stakeholders, which
could regard some factors in CIA more important than others.

With a defined utility function, we get a single comparable
value for every mission configuration’s worst-case scenario.
Thus, we can select the most resilient configuration and put it
on the output of the decision support process. Nevertheless, it
is up to administrators and other stakeholders to take the final
decision and reconfigure the network. Automation of network
reconfiguration and incident response is out of the scope of
this work.

IV. IMPLEMENTATION OF THE PROCESS

In this section, we bring insights into the implementation
of the decision support process. First, we take a look at how
to create an attack graph [10] and how to extend it using the
Bayesian networks [11]. Subsequently, we provide algorithms
that constitute the process.

A. Attack Graph

Attack graphs are popular tools for representing cyber
attacks and related phenomena [10]. For example, they may
depict all the possible paths from the attacker’s initial position
to the desired target using the exploitation of vulnerabili-
ties present on the hosts in the network and constituting
a mission. In our concept, we employ a so-called logical
attack graph (LAG) [12]. LAG is defined as a directed
bipartite graph representing dependencies between exploits

1Common Vulnerability Scoring System, https://www.first.org/cvss/



and privileges (security conditions), formally: (Exploits ∪
Privileges, Prerequisities ∪ Postrequisities).
The exploits and privileges constitute the set of vertices, and
prerequisites and postrequisites constitute the set of directed
edges of the graph. Prerequisites represent privileges allow-
ing exploitation of the relevant vulnerability. Postrequisites
represent privileges resulting from a successful exploit of the
relevant vulnerability. Formally:

Prerequisities ⊆ Privileges× Exploits

Postrequisities ⊆ Exploits× Privileges

The above representation is based on an assumption of the
so-called monotonicity principle [12], i.e., the attacker does
not relinquish privilege once obtained. The importance of
this principle is that the attack graph results in a directed
acyclic graph (DAG). To build an attack graph for specific
mission configuration and specific attacker’s position, we need
i) mission decomposition model with the constellation of sup-
portive cyber components and their interactions, ii) knowledge
about the vulnerabilities in the network, namely on supportive
cyber components, and iii) attacker’s position, privileges, and
goals. We chose MulVAL (Multihost, multistage, Vulnerability
Analysis) [13] as the most convenient tool to generate an attack
graph. MulVAL can automatically process vulnerability spec-
ification from publicly available sources. The complexity of
the algorithm for building an attack graph is polynomial. The
resulting attack graph provides information about causality
relationships among involved security entities. The causality
relationship identification provides qualitative (unmeasurable)
information that is necessary for subsequent quantification of
the security state.

B. Bayesian Network

We have employed a Bayesian network (BN) abstraction as
a tool for modeling uncertainties of the cybersecurity situation
and performing the decision support analysis. BN can be
formally defined as BN = (DAG,Q) where DAG is directed
acyclic graph, nodes represent random variables; arcs represent
conditional (in)dependencies among these random variables,
and Q represents the Conditional Probability Distribution
(CPD) for each random variable.

In general, due to its intrinsic complexity, it is not straight-
forward, nor trivial, in any case, to capture all the relevant
uncertainty aspects. The goal of the analytical process is
to describe the probability distribution of random variables
representing the attacker’s target privileges, i.e., the privileges
attacker pursues. The Joint Probability Distribution (JPD)
gives us the desired quantitative picture of the whole situation
and covers all aspects of related random variables necessary
to answer any question. Certain assumptions about conditional
independence among the random variables must be met for
a BN to represent this distribution properly. Each random
variable must be conditionally independent of all its non-
descendants in the graph given its parents. In other words,
knowing the security state of the parents, any additional
information about the other variables gives us no information

about the mentioned variable. These assumptions are naturally
met as a result of the character of the attack graph.

The attack graph gives us prior knowledge about relevant
causal relationships to build a DAG that forms the BN.
We need to calculate the conditional probability distributions
(conditional probability tables) for individual nodes (discrete
random variables) of the BN. The appropriate metric must be
interpretable as a conditional probability. Parameters for the
calculation are derived automatically from trustworthy sources,
such as NVD. We use the exploitability metrics of CVSSv3
to estimate the probabilities of successful exploits.

Two basic situations result from the attack graph. The
corresponding parents’ nodes are in the relation of logical
AND, which means that all the prerequisites for successful
exploit must be met, or the corresponding parents’ nodes are in
the relation of logical OR, which means that at least one of the
prerequisites for successful exploit must be met. Calculation of
probability corresponding to the logical AND can be formally
expressed as:

p(Xi|parents(Xi)) =
∏
E

p(ei) (1)

in the case when all the prerequisites Xi = True, otherwise
the probability is equal to 0. Calculation of probability corre-
sponding to the logical OR can be formally expressed as:

p(Xi|parents(Xi)) = 1−
∏
E

(1− p(ei)) (2)

in the case when at least one of the prerequisites Xi = True,
otherwise the probability is equal to 0. The p(ei) represents
the probability of successful exploit ei connecting Xi with its
parents in the corresponding attack graph, and E represents
the set of these nodes.

The BN enables the compact representation of JPD using
the following equation:

P (X1, . . . , Xn) =

n∏
i=1

P (Xi|parents(Xi)) (3)

For the derivation of resilience metric, we need to calculate
the probability of the successful exploit causing the attacker
will reach mission-critical privileges. Random variables repre-
senting the critical privileges will be marginalized. As the JPD
gives us a complete picture of the situation, the marginalization
enables us to quantify the desired aspect, i.e., the probability
expressing that an attacker reaches desired privilege. Calcula-
tion of the desired unconditional probability, i.e., the quantity
from the distribution we are interested in, can be formally
expressed as:

p(Xa) =
∑

(X1,...,Xa−1,Xa+1,...,Xn)

n∏
i=1

p(Xi|parents(Xi)) (4)

The BAGs and equations listed here are used in the implemen-
tation of the analytical process as described in the following
subsection.



C. The Algorithm of the Process

Herein, we provide the algorithms behind the decision
support process discussed in the previous section. The main
function of the process is depicted in Algorithm 1 as the
analytical process procedure. First, we will get the pos-
sible configurations for each mission in the mission file.
For each configuration, we get its cost. The cost of con-
figuration is the maximal cost among raw costs on which
the utility function was applied. Raw cost is a triple of
probabilities for CIA. The best configuration for the mission
is the one with the minimal cost.

The mission file is the main input for the process. This
JSON file represents constrained AND/OR tree decompos-
ing mission into supportive processes, IT services, and cy-
ber components [9]. Thus, we serialized the trees to JSON
files for the purposes of experimental implementation. The
get possible configurations() procedure reads the mission
description from the input file in search for possible configu-
rations. The configuration consists of cyber components that
together must be running in order to support the requirements
of a mission and, thus, are in the AND logical relationship.

The way how we get all possible configurations is as
follows. For each vertex from the root of the tree (root is
mission node – there are multiple roots) traverse the subtree.
If we approach the AND node, we add all of its successors to
the list of IDs that will be further processed because all of them
must be in the configuration. On the other hand, if we approach
the OR node, we will recursively process all of its successors
separately because one of them must be in the configuration
(and we do not want to have redundant configuration, so we
use only one subtree of such OR node in one configuration).

The generate mulval input() function and
generate attack graph() procedure prepare and run the
processing of the inputs by the MulVAL tool. The analytical
process also requires the data from the environment, such as
a list of annotated vulnerabilities and enumeration of hosts
and vulnerabilities in the network. We used a database based
on a data model for cyber situational awareness proposed
in our previous work [14]. The database structures the data
from various tools to a graph structure. The vulnerabilities
in CVE format2 are taken from NVD3, including the CVSS
scores that are used in the calculations. The presence of
vulnerabilities in the network is checked using common
vulnerability scanners. Attacker’s position is inferred from
intrusion detection alerts processed by a CSIRT team in
a request tracking software that exports the alerts into the
database. The experimental implementation of the process is,
thus, independent of primary data sources, and only requires
the inferred data to be stored in the aforementioned database.
The attack goals (required by MulVAL) are potential losses
of CIA in the cyber components due to the exploitation of a
vulnerability.

2Common Vulnerabilities and Exposures, https://cve.mitre.org/
3National Vulnerability Database, https://nvd.nist.gov/

Fig. 1. Algorithm of the analytical process.
1 procedure analytical_process(mission file)
2 configurations ← get possible configurations(mission file)
3 for mission in configurations do
4 for configuration in configurations[mission] do
5 configuration cost ← 0
6 for goal component in configuration do
7 generate mulval input(goal component, configuration)
8 generate attack graph()
9 raw cost ← create BAG()

10 actual cost ← utility function(raw cost)
11 if actual cost > configuration cost then
12 configuration cost ← actual cost

13 best configuration ← take configuration with minimal cost()

14 procedure create_BAG()
15 if no attack paths then return (0.0, 0.0, 0.0)
16 incidence list← ARCS.CSV
17 vertex set← V ERTICES.CSV
18 model← BayesianModel()
19 for edge in incidence list do model.add edge(edge)
20 for node in vertex set do
21 switch node do
22 case LEAF do
23 if ”vulExists” in node description then
24 cpd ← TabularCPD(variable=node id,
25 variable cardinality=2,
26 values=[[1 - exploitability], [exploitability]] )
27 model.add cpds(cpd)

28 else
29 cpd ← TabularCPD(variable=node id,
30 variable cardinality=2,
31 values=[[0], [1]] )
32 model.add cpds(cpd)

33 case AND do
34 cpd ← TabularCPD(variable = node id,
35 variable cardinality = 2,
36 values=[[1, ..., 1, 0.2], [0, ..., 0, 0.8]],
37 evidence = predecessors,
38 evidence cardinality=[2, ..., 2] )
39 model.add cpds(cpd)

40 case OR do
41 cpd ← TabularCPD(variable=node id,
42 variable cardinality=2,
43 values = [[1, ..., 1, 0], [0, ..., 0, 1]],
44 evidence=predecessors,
45 evidence cardinality=[2, ..., 2] )
46 model.add cpds(cpd)

47 return infer probabilities(model)

When the MulVAL tool processes the inputs and generates
the attack graphs, we proceed with the construction of a
BAG for the final decision, as denoted in the create BAG()
procedure in Algorithm 1. The algorithm first reads the files
ARCS.CSV and V ERTICES.CSV that were created by
previous procedures as outputs of MulVAL and contain the
vertices and edges of the generated attack graph. The attack
graph generated by MulVAL contains nodes with three types
of labels: LEAF, AND and OR. The exploits discussed in
Section IV are the nodes with the AND label. Prerequisite
nodes are either leaves (label LEAF) or not (label OR). When
all the nodes and edges are loaded into a model, the algorithm
continues with the CPD calculation as follows. The nodes
expressing the existence of a CVE are given the probability
of success equal to the exploitability score from CVSS. These
nodes always have the LEAF label, and their description



starts with vulExists. Other nodes with label LEAF have
the probability of being TRUE equal to 1.0 (the same as
in MulVAL). The nodes with AND label have CPD table
with 2number of predecessors rows and all of them have a
conditional probability for TRUE equal to 0.0, but the last one
where all of the parents are TRUE has conditional probability
of being TRUE equal to 0.8 (this probability of successful
exploit is taken from MulVAL [13]). If a node has the OR
label, then it joins two paths in a graph. The number of rows
in the CPD table is 2number of predecessors. All of the rows
have the probability of success equal to 1, but the row where
all of the parents are FALSE has 0 probability of success. The
Tabular CPD() function constructs the CPD tables for the
nodes in the BAG for later computations.

The create BAG() procedure in Algorithm 1 implements
the equation introduced in Section IV-B. Namely, equation (1)
is used in AND switch case on line 35 and equation (2) in
OR switch case on line 42. Further, it uses the JPD explained
in equation (3) and calculation of unconditional probability
explained in equation (4) in infer probabilities() function
once the BAG is built. In our experimental implementation, the
infer final probability() function calls pgmpy [15], which
implements inference over Bayesian model. The inference of
final unconditional probability is computed for each type of
goal (CIA) separately using equation (4).

When we go back to the Algorithm 1, we need to calculate
the actual cost for the combination of probabilities related
to the CIA using the utility function. In the experimental
implementation, the utility function is a sum. However, the
utility function may be suited to fit the needs and priorities of
the organization. To select the most resilient network configu-
ration, i.e., the configuration with the minimal cost, we use
the take configuration with minimal cost() procedure.
The selection of the most resilient configuration terminates
the process, and it is up to the operators to reconfigure the
network, which is out of the scope of this work.

V. CONCLUSION

We described a mission-centric approach to decision support
for network security management that allows for calculating
and selecting the most resilient mission configuration concern-
ing mission requirements and current threats. The selection
of the most resilient network configuration may be achieved
by selecting the configuration with the lowest probability of
mission disruption through the exploitation of its supportive
cyber components in terms of confidentiality, integrity, and
availability. While mission modeling and process overview
were outlined in our previous work [9], here we described
the remaining phases of the decision support process, i.e.,
calculating mission impacts and selecting the resilient config-
urations using attack graphs and Bayesian networks. Within
the description, we pinpointed the most intriguing parts of the
process, such as fundamental equations for the computation
and potentially computationally intensive tasks.

In our future work, we are going to evaluate the analytical
process in operational settings to infer the computation times

and reliability of the calculations with respect to real-world
missions and network configurations. We expect the evaluation
in a live environment to be a challenging problem due to the
need for modeling a sufficient number of illustrative missions.
The results will also depend on the current security situation
and the capabilities of the network operators to discover
vulnerabilities.
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