
Industrial Grade Methodology for Firewall
Simulation and Requirements Verification
Ramon Barakat, Faruk Catal, Nikolay Tcholtchev, Yacine Rebahi and Ina Schieferdecker

Fraunhofer Institute for Open Communication Systems (FOKUS), Berlin, Germany
{firstname.lastname}@fokus.fraunhofer.de

Abstract—Firewalls are a critical part in any security frame-
work.Most firewalls consist of a large amount of sequential rules
that are unstructured and confusing. Unfortunately, because a
lot of rules configuration work is done manually by the network
administrators, misconfigurations are very common and can
affect the reliability of the firewall. Identifying such anomalies
is a challenging task. In this paper, we propose a tree based
simulation and verification model to verify if the implemented
firewall of a system is in compliance with the belonging firewall
requirements. The proposed methodology was developed in
relation with the H2020 FORTIKA project and was evaluated
in the scope of case studies with industrial partners. The case
studies in question related to large scale telecom infrastructures
involving critical scenarios in the scope of Smart Cities in general
and SME cyber-security protection. Thereby, the executed case
studies demonstrate how our approach can lead to improved
structuring of firewalls and belonging rules, to the comfortable
visualization of firewall structures and decision patterns, and
finally to the verification of system and context requirements
imposed by the firewall operation environment.

Index Terms—firewall, verification, simulation, requirements
traceability, quality assurance, model-checking, model testing.

I. INTRODUCTION

It is a common practice to implement a firewall based on the
configuration of a set of sequential rules which are triggered
for each packet or (tracked) connection. Based on packet fields
such as protocol type, source IP address or port number a
rule decides whether to accept or to decline a packet or to
continue the processing with a following rule. Depending on
the complexity of the system and the number of requirements,
the amount of sequential rules becomes large and difficult to
comprehend very quickly. Therefore, the firewall configuration
is hard to understand. Possible security problems, leaks and
firewall misconfigurations are very difficult to analyse and de-
tect. Misconfigurations inside the firewall can block legitimate
packages or even worse, lead to potential security gaps that
can have fatal consequences in safety-critical systems.

To ensure that the configured rule set fulfills the require-
ments is a very important but challenging task. Unfortunately
the established firewall tests are usually not sufficient, mostly
for combinatorial reasons since it is impossible to test all
combinations of parameters for the packets and connections
to be blocked. Even with methods like fuzzing [1] it is not
possible to completely explore the input space for firewalls
given the large amount of invalid test data that needs to be

generated, in order to verify the proper firewall functioning
according to relevant system requirements.

Our approach is to extract an abstract representation of
the implemented firewall of a system. We developed an
algorithm that can reverse engineer an abstract decision tree
from the belonging firewall implementation. This tree provides
a better understandable overview and transparency relating to
the implemented firewall. Additionally, this tree can be used
for simulation and various model checking and verification
procedures.In this line of thought, our methodology uses the
abstract decision tree to verify if the firewall satisfies the
operational and functional requirements. If a requirement is not
satisfied, the simulation and model-checking facilities provide
and describe a counterexample showing the violation of the
specific requirement. For the simulation and verification, we
are using the Uppaal [2] model-checker. However, any other
tree or automata1 based model-checking tool can be used.

The proposed verification methodology was developed
within the FORTIKA project. The FORTIKA project [3]
funded by the European Union’s Horizon 2020 Framework
Program for Research and Innovation works on effective
cyber-security solutions for trusted SMEs IT Ecosystem. The
firewall verification methodology proposed in this paper was
applied in a project with large scale telecommunication in-
dustrial partners. Within the project, the Internet-connected
system that should be checked uses nftables [4] to configure
the firewall and had to be verified against more than 150
requirements.

II. RELATED WORK

For the firewall design several high-level firewall languages
like FLIP [5], Firmato [6] or the Abstract Firewall Policy
Language (AFPL) [7] have been developed. In the industry
however, these are used only rarely so far [7]. High-level
firewall languages are helpful, but they are still rule-based
and do not avoid misconfigurations at all. Gouda and Liu
[8] propose a method for the structured firewall design by
using a Firewall Decision Diagram (FDD) to construct a
complete, conflict-free and compact sequence of firewall rules.
Furthermore, Liu presents in [9] a tool that verifies whether a
property is satisfied by the firewall policy by using decision
diagrams. To verify the designed firewall, the query concept
introduced in [10] is used. Approaches to identify anomalies

1A tree can be seen as a special form of an automata.978-1-7281-4973-820$31.00 © 2020 IEEE

in a policy are proposed is [11], [12], [13]. However, these
verification methods are only examining the firewall policies
and not the implemented firewall.

The most common method to identify errors in an im-
plemented firewall is the firewall testing. Thereby, different
packets that do or do not satisfy the firewall policy are fired to
the firewall to check if they will be processed correctly. In [14]
a specification-based method is proposed to derive test cases
for firewall testing. An automated testing paradigm is proposed
by [15]. Regression and conformance testing for firewalls
are described in [16], [17], [18]. However, testing in general
is not able to ensure that the system fulfills the predefined
firewall policy and goals. Because of the complexity and large
input space, a suitable amount of test cases is hard to define.
Elmallah and Gouda are presenting in [19] that the firewall
verification problem is NP-hard, whilst testing alone is by far
not enough to satisfy the increased cyber-security requirements
for critical infrastructures.

In our approach, we extract an abstract representation of
the firewall to reduce the complexity and to be able to
execute model-checking algorithms. The firewall policy and
requirements are used to derive the queries that should be
executed against the extracted firewall model, in order to verify
its integrity with model-checking techniques.

[20] proposes an approach for extracting state automata
from firewall policy rules based on an intermediate step of
representing the firewall design in a table form. Subsequently,
the automata is analyzed and various types of quality issues
recognized and removed (e.g. redundancy constructs). [21]
demonstrates a technique for the analysis of iptables based
firewalls within the Isabelle/HOL theorem prover. In this line
of tought, a presumed formal semantics for the behaviour
of firewalls is used to define proper conditions and logical
statements witin the theorem prover and to iteratively improve
the general quality and readability of a firewall implementa-
tion. [22] provides a comprehensive recent survey and analysis
of various IPsec/firewall policies and discusses on possible
quality improvement options and security policy verification
approaches.

During the past years, the protection of network nodes
and infrastructures has been increasingly realized through
different network function automations realizing the notions
of Intrusion Detection Systems (IDS) and Intrusion Prevention
Systems (IPS). For example, the domain of autonomic net-
working has come up with various efforts and architectures to
automatically monitor network traffic and issue corresponding
intrusion detection/prevention actions when required. Thereby,
[23] [24] [25] constitute such example research and develop-
ment efforts from autonomic networking, which are defined
in the scope of an autonomic networking architecture being at
the heart of related ETSI standardization efforts [26]. Beyond
the autonomics domain, the intrusion detection/prevention
through the usage of Virtual Network Functions (VNF) is
a hot topic nowadays. Thereby, virtualized network nodes
and functions are distributed across the network infrastructure
and equipped with the belonging intelligence and logic as to

automatically and collaboratively monitor, identify and block
network attacks and anomalies [27] [28]. [29] proposes a
framework for the trusted and authorized distribution of short-
lived VNF based firewalls in a distributed network infrastruc-
ture. The framework facilitates the integrity of the network
infrastructure based on a blockchain ledger, allowing to verify
and track the quality of the provided short-lived VNF, e.g.
based on the vendor/provider of the belonging functions and
his reputation/record.

III. CONTEXT ANALYSIS

It is very often the case in industrial settings that firewall
implementations are put in place in a straight manner, i.e.
existing iptables [30] or nftables [4] scripts are installed
on a device and are correspondingly being adapted to the
specific security situation. Furthermore, network experts tend
to kick start a firewall project by directly coding/configuring
the firewall rules (e.g. iptables, nftables, ...). Hence, it is hard
to determine the amount of requirements coverage because
there is no link between a requirement and the corresponding
firewall rule. If the system has to be approved by a certification
authority, then the firewall behaviour should be depicted in a
comprehensible way, which is hard to achieve given the large
amount of rules and belonging configurations.

An unstructured approach, combined with the lack of proper
requirements management, often leads to a situation where
a firewall is already in place but cannot be fully trusted –
especially in critical infrastructures – provided the lack of
clear traceability between requirements and firewall artefacts,
as well as the combinatorial difficulties to fully test a firewall
implementation.

IV. VERIFICATION METHODOLOGY

To overcome the issue described in the previous section,
a model-checking approach can be very helpful. An abstract
reverse engineered model of the implemented firewall supports
the transparency and enables the verification of the firewall
against the system requirements. Fig. 1 describes the steps
required for achieving the formal model-based verification of
a firewall.

A. Reverse Engineered Abstract Decision Tree

Provided that a set of implemented firewall scripts exists
(Implemented Firewall at the top in Fig. 1), then various
reverse engineering scripts (e.g. Python based) can parse the
grammar of the firewall implementation (e.g. iptables, nftables
or netfilter), extract the logic behind and transfer it to an
abstract decision tree. This tree represents the firewall design
architecture in a more structured way. Also the system and
packet properties (e.g. IP-ranges, interfaces, protocols and so
on) considered by the firewall can be derived and transferred
to individual structural templates that will be used to configure
and simulate certain conditions of the system.

The resulting trees can be stored (as XML) and thus can be
prepared for a model-checking environment such as the Uppaal
[2] model-checker. The corresponding Uppaal systems - i.e.the

Fig. 1. Overview of the Process leading to Firewall Verification and
Simulation

XML file with corresponding context and variable definitions
- are automatically generated and loaded into the model-
checking environment. Thanks to the structural templates,
different system states and network packages can be simulated.
The ability to simulate the firewall significantly improves the
transparency, requirements traceability and quality assurance
relating to the implemented firewall.

B. Requirement Constraints

From the System Requirements (upper right corner in Fig. 1)
a set of logical constraints is generated semi-automatically.
These logical constraints are described in CTL (computation
tree logic) [31] - a query language used for model-checking
in Uppaal2. CTL is a widely used logic for formulating
model queries in the scope of tree based model-checking
frameworks and tools. In our case, the CTL queries are derived
automatically from the system requirements imposed on the
firewall implementation in terms of traffic matrix and access
control rules. This matrix specifies for each requirement if
a package with the given properties in combination with the
specific system settings - that are also given in the matrix -
should be accepted or dropped.

C. Verification Process

The Abstract Decision Tree (ADT) and the requirements
based CTL constraints can be given to a model-checker (at the
bottom in Fig. 1) like Uppaal and a model-checking procedure
can be started, in order to verify and examine whether the
systems requirements - being continuously updated - are
fulfilled. The model-checker checks for each path of the
abstract decision tree and each possible configuration (except
for those that are specified by the requirement itself) if the
CTL expression holds or not. If not, the expression - and
so the system requirement - is not satisfied. The firewall
implementation can be corrected and verified again until all
requirements are satisfied.

2Uppaal uses a subset of CTL.

V. ABSTRACT DECISION TREE

An exemplary firewall implementation that uses nftables and
illustrates the rules and jumps during the packet processing
chain can be found in Listing 1. Based on the packet properties
that will be monitored by the firewall, a so called packet
context can be defined. A packet context P is a n-tuple of
packet properties examined by the firewall. The packet context
can look, for example, like Pex that contains the source IP
address (srcIP), the destination IP address (dstIP), the port
and the protocol of a data packet.

Pex = (srcIp, dstIP, port, protocol)

table ip filter {
chain IN {
ip saddr @VPN_SRV_IP goto IN_SRC_VPN
ip saddr @OWN_IP goto IN_SRC_OWN

5 goto IN_SRC_ELSE
}

chain IN_SRC_VPN {
ip protocol ipsec goto IN_SRC_VPN_ACC

10 goto IN_SRC_VPN_PROTO_ELSE
}

chain IN_VPN_ACC {
ACCEPT Packet

15 accept
}
...

Listing 1. Exemplary nftables Implementation

The resulting ADT is referred abstract because of the
abstraction of the processed network packets. For instance,
instead of using concrete IP-Addresses, generic variables will
be used that indicate the segment the IP is coming from, or
the general (physical) network which relates to corresponding
network/system interfaces. Therefore, the destination IP of
a packet will be, for example, LOCAL HOST IP instead of
192.168.x.x . Similarly to the packet context a system context S
can be defined that specifies the state of key system parameters
(e.g. if a VPN connection is enabled).

In this paper, the ADT is defined as follows: An abstract
decision tree T = (V, E , C) is a triple with a finite and non-
empty set of nodes V , a set of conditions C : P ∪ S → bool
and a set of transitions E ⊂ V x C x V for which the following
holds:

1) There exists a unique element r ∈ V (called root) such
that @v ∈ V, (v, r) ∈ E

2) ∀v ∈ V, there is exactly one path from the root node to
node v.

A path to a node xn is a set of transitions with
path(xn) = {(x0, c1, x1), (x1, c2, x2), ..., (xn−1, cn, xn) |
(xi−1, ci, xi) ∈ E ∧ ∀ci, ci is satisfied ∧ x0 = r}.

The length n = |path(xn)| of a path is the number of
transitions in the path. A level of the tree T is the set of
nodes with the same path length. Node y ∈ child(x) is called
child of x if (x, c, y) ∈ E . We will call each node with at least
one child a decision node. A node without a child is called a

leaf. The ADT representing a firewall implementation should
satisfy the following properties:

(a) Given r ∈ V as the root node of the ADT, then we
specify child(r) = {IN,OUT, FWD} where IN is
the ”root node” of the subtree for the incoming traffic,
OUT is the ”root node” of the subtree for the outgoing
traffic and FWD is the ”root node” of the subtree for
traffic that should be forwarded3.

(b) Each level of a subtree checks a specific property of P
or S.

(c) ∀(x, c1, y1) ∈ E ,∀(x, c2, y2) ∈ E , ctx ∈ P ∪ S
with y1 6= y2, c1 6= c2, c1(ctx)⇒ ¬ c2(ctx)
It means that for each decision node there is at most one
reachable child according to a particular system state and
packet context.

(d) The set of leaves can be separated in accepting and non-
accepting leaves.

Fig. 2 shows a section of such an ADT resulting from the
reversed engineered nftable implementation from Listing 1
in Uppaal. The subtrees mentioned in (a) provide an initial
distinction of the traffic to check. Property (b) describes the
structure of the ADT. In this way, the order of packet and
system properties to check can be defined. By a suitable
arrangement of this order, the state space can be reduced and
the verification can be accelerated. This arrangement mostly
depends on the system and type of traffic. For some systems it
makes sense to check the source IP address on a higher and the
protocol of the package on a lower level in the ADT. But for
a system that only accepts a specific protocol, it makes more
sense to check the protocol type first. Hence, each subtree of
(a) can have a different order as well. Fig. 2 shows that, for
example the first level of the input subtree (IN L1) can be
checking the source IP address, whereas the first level of the
output subtree (OUT L1) would be checking the VPN state.
Moreover, property (c) ensures the unambiguity of the paths
where the separation in (d) is needed to decide how to handle
the packet within the firewall. If the simulation reaches an
accepting leaf (e.g. node IN VPN ACC), then the given packet
will be accepted by the firewall. If the simulation reaches a
non-accepting leaf (e.g. node IN SRC OWN) or gets stuck in
a decision node (e.g. a packet with protocol type UDP in node
IN SRC ELSE), then the packet will be dropped.

VI. QUERIES GENERATION AND VERIFICATION

As described in the previous section, it is required to trace
and verify that relevant requirements are indeed fulfilled by
a firewall implementation (be it an iptables or nftables one).
Two examples of such requirements are given as follows:

REQ 1: Incoming packets should not have the IP address of the
system as the source IP address.

REQ 2: If VPN is enabled the system shall allow to send packets
with destination IP is VPN SRV IP.

3Of course, the amount of subtrees given here may vary depending on the
specifics of the firewall system.

Fig. 2. Exemplary Section of an ADT

Thereby, it is important to formalize the requirement as a
set of parameters and values to be set in the packet context,
reflecting the various environmental variables with their values
in the course of firewall packet processing. Having captured
these aspects (e.g. in an office packet table handling software),
it is easy to generate verification constraints for a model-
checker such as Uppaal [2]. Here, it is important to mention
that not every single property has to be specified. Only those
which are covered by the specific requirement need to be
handled with their concrete values. For properties that are not
specified in the matrix (see TABLE I for an example) the
model-checker will examine each value that can be configured.
For the two requirements mentioned above, the belonging
specification matrix can be viewed in TABLE I.

TABLE I
EXEMPLARY REQUIREMENTS MATRIX

ID Accept
Package System
context settings

srcIP dstIP ... VPN

REQ 1 false not(OWN IP)

REQ 2 true VPN SRV IP enabled

The following shows the CTL4 representation of the above
requirements in a form which can be directly loaded in Uppaal
and checked against the firewall model extracted from the
nftables/iptables implementation within the device in question.

(1) REQ 1: A[] not(srcIP.OWN IP & dstIP.OWN IP & Firewall.accept)

(2) REQ 2: VPN.enabled & dstIP.VPN SRV IP −→ Firewall.accept

The first expression (1) can be read as follows: On all
paths of the tree there should never be a state where the
source IP and the destination IP address is OWN IP and
the firewall accepts the packet. Accordingly, expression (2)
can be described as: If there is a configuration C where VPN
is enabled and destination IP is VPN SRV IP, then on any
path of the decision tree a state should be reached where the
firewall accepts the packet. Thanks to an initialization phase,

4Computation Tree Logic

we ensure that a configuration C stays unchanged during the
simulation/examination/verification.

Based on such checking of requirements against the firewall
decision tree, it is possible to ensure that all requirements
are addressed within the selected firewall design architecture,
and that way to establish traceability between the firewall
architecture and system requirements accumulated over time.
Fig. 3 shows the user interface for model checking in Uppaal
with both requirement queries loaded and examined. Here
REQ 1 is satisfied (green bullet) and REQ 2 is not satisfied
(red bullet).

Fig. 3. User Interface of the Uppaal Verifier

The Uppaal verification engine can be either executed in
the Uppaal GUI (see Fig. 3) or started on the command line.
Moreover, each CTL expression (i.e. each system requirement)
is verified separately. This gives us the possibility to distribute
the verification on different powerful machines and integrate
the firewall model-checking process in different DevOps ar-
chitectures.

VII. VERIFICATION RESULTS AND MEASUREMENTS

The following diagrams show the measurements of the
verification process for a set of requirements within an in-
dustrial case study. These measurements provide indications
regarding the operational settings and parameters of the pro-
posed methodology. We deliberately relate to an early work-
in-progress version of the verification process with a firewall
tree which is far from accomplished, in order to illustrate
the overall iterative process. This implies the various results
observed and depicted later on in the discussion and leads to
clarification regarding the iterative procedures.

Based on the firewall implemented in the industrial case
study in question, the individual structural templates shown in
TABLE II have been extracted. As a structural template we
denote a basic structure relating to a parameter or variable in
the processing of a packet (or tracked connection) through
the firewall. This parameter/variable steers the decisions at
different levels in the ADT and basically resembles the condi-
tions from the formal firewall tree definition presented before.
For example, in the current case study there are six boolean
system settings (first line of TABLE II) which can take one
of two values (Enabled or Disabled). A further example can

be illustrated based on the IP-Address Template that is used
twice in the case study - once for the source and once for the
destination IP of a packet - and can take 24 different values
which relate to the different network segments involved in the
network scenario in question.

TABLE II
INDIVIDUAL STRUCTURAL TEMPLATES

Usage Frequency Structure Number of Possible Values

6 Boolean Template 2

2 IP-Address Template 24

2 Interface Template 6

1 Protocol Template 10

3 Others Templates 3

The decision tree itself - resulting from the case study -
consist of about 260 nodes separated in two subtrees (IN and
OUT). The verification has been executed on the command
line of a virtual machine with the following technical parame-
ters: Intel(R) Xeon(R) CPU E5-2680, 2,4 GHz, 4 cores and 32
GB RAM. It is important to mention that although the virtual
machine provides four cores, Uppaal is running with only one
core at full capacity. Hence, additional optimization may be
achieved by employing more sophisticated versions of Uppaal
if available in the future.

In order to examine the operational parameters of the pro-
posed methodology, 80 requirements with their belonging CTL
queries have been evaluated. The results of the verification
can be found in Fig. 4. As we can observe, a large number
of rules (47%) fail to conclude due to memory issues, whilst
other 34% find mistakes in the firewall design and end with a
NOT Satisfied verdict. Indeed, the illustrated situation depicts
a typical work-in-progress state towards the refinement of a
firewall design within our iterative methodology as depicted in
Figure 1. The NOT Satisfied CTL rules will be communicated
to the firewall developers and an analysis of the problems
will be started. The rules which cannot run due to memory
issues are further processed in two different ways - either
(1) a firewall redesign is considered at crucial structural point
that allows these rules to execute within reasonable resource
setting, or (2) the rules have to be split in multiple rules of
more simple structure that can run against the ADT. The above
described tasks and processes run iteratively in close collab-
oration with the firewall developers until a verifiable firewall
tree is achieved, which can be traced and quality assured with
regard to fulfilling the identified system requirements.

Coming back to Fig. 5, we can observe the different times
required for the execution of the CTL rules with different
outcomes. Thereby, the curves relating to the consequent exe-
cution are placed on top of each other, in order to give a better
feeling regarding the experienced verification time scales. We
observe that in general rules ending with a memory issue
require much significantly more time than the rules, which end
with a defined outcome (be it positive or negative). This stems
from the fact that the solver experiences a space explosion

Fig. 4. Verification Results of the Experimental Requirements/CTL Set

and has to load more and more states, which takes larger
amount of time, until finally running out of allocated memory.
Regarding the rules with positive and negative outcome, we
observe that the verification times are of similar magnitude,
which is expected given the ability of the solver to reach a
conclusion based on the underlying firewall tree structure.

Fig. 5. Verification Time Comparison for the Different Outcomes of the
Experimental Requirements/CTL Set

Finally, Fig. 6 and Fig. 7 give further indications for the
performance of the verification procedure. Fig. 6 shows the
number of states that have been loaded (in memory) for
processing during the verification of the belonging CTL rules,
while Fig. 7 shows the corresponding throughput in states
per second. With some small exceptions the throughput is
constantly between 350000 and 400000 states per second. The
two figures characterize the operations of the model-checker
within the large tree that we examined in our scenario.

A. Verification Problems

Unfortunately, for complex systems with a high amount of
firewall rules, memory problems arise during the verification
process. Based on the complexity of a firewall and the high
number of configuration states (package context and system
configurations), the size of the verification state spaces grows
exponentially and leads to a lack of memory even when using
special Uppaal techniques to reduce the size of the input space.

Fig. 6. States Loaded during the Verification

Fig. 7. State Processing Throughput during the Verification

For example, the structure templates in TABLE II will lead to
358.318.080 possible input states5 for the verification.

In general, model-checkers always face the challenge to
efficiently handle the so-called ”state explosion problem” [32].
But in case of Uppaal the reason for running out of memory
space is the relatively low memory that Uppaal is able to
allocate and address. At the moment ”there is no way that
Uppaal can address more than 4GB of memory” [33]. One
approach to overcome this issue could be to split a requirement
into multiple CTL expressions. For example, if the incoming
interface is irrelevant for the requirement, there could be one
expression for each interface. This will reduce the state space
at the expense of verification time.

VIII. CONCLUSIONS AND FUTURE WORK

The proposed tree based verification method gives the
possibility to verify if an implemented firewall satisfies the
system requirements with the help of model-checking tools
like Uppaal. The given approach cannot only be used to
verify the implemented firewall, there is also the possibility
to verify the firewall architecture design before implementing
it - e.g. a Firewall Decision Diagram (FDD) can be verified.
Furthermore, the reversed engineered decision tree can be
used to check if the implemented firewall corresponds to the
designed one. The proposed methodology in general is also

5358.318.080 = 26 · 242 · 62 · 101 · 33

suitable for other rule-based systems and is not restricted to
firewalls at all.

We described how to reverse engineer an abstract decision
tree from a firewall implementation. The reverse engineered
tree enables the simulation of a system’s firewall and the
verification of the compliance to the identified firewall re-
quirements. Firewall requirements can be translated in CTL
expressions and queried against the tree. By running the
model-checker in batch mode on a powerful machine and
integrating the firewall model-checking process in a DevOps
architecture, a large number of firewall requirements can be
comfortably verified. In addition, the requirements can be
verified independently such that the model-checking process
can run on different machines in parallel.

As mentioned above, future activities will investigate the
reduction of memory consumption and evaluate the perfor-
mance of the verification (e.g. time consumption) depending
on splitting and limiting the logic of the queries. Furthermore,
it is possible to automatically analyze the firewall requirements
and generate the formalized CTL queries. The usage of AI/ML
(Artificial Intelligence/Machine Learning) techniques for nat-
ural language processing (NLP) in this scope is a promising
approach that requires investigation in the near future. Finally,
there is a need for the extension of the methodology to other
components (e.g. routing tables) that address some additional
vital security requirements.

REFERENCES

[1] I. Schieferdecker, J. Grossmann, and M. Schneider, “Model-based secu-
rity testing,” arXiv preprint arXiv:1202.6118, 2012.

[2] J. Bengtsson, K. Larsen, F. Larsson, P. Pettersson, and W. Yi, “Up-
paal—a tool suite for automatic verification of real-time systems,” in
International hybrid systems workshop, pp. 232–243, Springer, 1995.

[3] E. Markakis, Y. Nikoloudakis, G. Mastorakis, C. X. Mavromoustakis,
E. Pallis, A. Sideris, N. Zotos, J. Antic, A. Cernivec, D. Fejzic, et al.,
“Acceleration at the edge for supporting smes security: The fortika
paradigm,” IEEE Communications Magazine, vol. 57, no. 2, pp. 41–47,
2019.

[4] J. Corbet, “Nftables: a new packet filtering engine,” 2009.
[5] B. Zhang, E. Al-Shaer, R. Jagadeesan, J. Riely, and C. Pitcher, “Speci-

fications of a high-level conflict-free firewall policy language for multi-
domain networks,” in Proceedings of the 12th ACM Symposium on
Access Control Models and Technologies, SACMAT ’07, (New York,
NY, USA), pp. 185–194, ACM, 2007.

[6] Y. Bartal, A. Mayer, K. Nissim, and A. Wool, “Firmato: A novel firewall
management toolkit,” in Proceedings of the 1999 IEEE Symposium on
Security and Privacy (Cat. No. 99CB36344), pp. 17–31, IEEE, 1999.

[7] S. Pozo, R. Ceballos, and R. M. Gasca, “Afpl, an abstract language
model for firewall acls,” in Computational Science and Its Applications
– ICCSA 2008 (O. Gervasi, B. Murgante, A. Laganà, D. Taniar, Y. Mun,
and M. L. Gavrilova, eds.), (Berlin, Heidelberg), pp. 468–483, Springer
Berlin Heidelberg, 2008.

[8] M. G. Gouda and A. X. Liu, “Structured firewall design,” Computer
networks, vol. 51, no. 4, pp. 1106–1120, 2007.

[9] A. X. Liu, “Firewall policy verification and troubleshooting,” Computer
Networks, vol. 53, no. 16, pp. 2800 – 2809, 2009.

[10] A. X. Liu, M. G. Gouda, H. H. Ma, and A. H. Ngu, “Firewall queries,”
in Principles of Distributed Systems (T. Higashino, ed.), (Berlin, Hei-
delberg), pp. 197–212, Springer Berlin Heidelberg, 2005.

[11] M. Madhuri and K. Rajesh, “Systematic detection and resolution
of firewall policy anomalies,” Int. J. Res. Comput. Commun. Tech-
nol.(IJRCCT), vol. 2, no. 12, pp. 1387–1392, 2013.

[12] E. S. Al-Shaer and H. H. Hamed, “Modeling and management of firewall
policies,” IEEE Transactions on network and service management,
vol. 1, no. 1, pp. 2–10, 2004.

[13] K. Karoui, F. B. Ftima, and H. B. Ghezala, “Formal specification,
verification and correction of security policies based on the decision tree
approach,” International Journal of Data & Network Security, vol. 3,
no. 3, pp. 92–111, 2013.

[14] J. Jürjens and G. Wimmel, “Specification-based testing of firewalls,” in
Perspectives of System Informatics (D. Bjørner, M. Broy, and A. V.
Zamulin, eds.), (Berlin, Heidelberg), pp. 308–316, Springer Berlin
Heidelberg, 2001.

[15] Adel El-Atawy, K. Ibrahim, H. Hamed, and Ehab Al-Shaer, “Policy seg-
mentation for intelligent firewall testing,” in 1st IEEE ICNP Workshop
on Secure Network Protocols, 2005. (NPSec)., pp. 67–72, Nov 2005.

[16] D. Hoffman, D. Prabhakar, and P. Strooper, “Testing iptables,” in
Proceedings of the 2003 Conference of the Centre for Advanced Studies
on Collaborative Research, CASCON ’03, pp. 80–91, IBM Press, 2003.

[17] D. Hoffman and K. Yoo, “Blowtorch: A framework for firewall test
automation,” in Proceedings of the 20th IEEE/ACM International Con-
ference on Automated Software Engineering, ASE ’05, (New York, NY,
USA), pp. 96–103, ACM, 2005.

[18] D. Senn, D. Basin, and G. Caronni, “Firewall conformance testing,” in
Testing of Communicating Systems (F. Khendek and R. Dssouli, eds.),
(Berlin, Heidelberg), pp. 226–241, Springer Berlin Heidelberg, 2005.

[19] E. S. Elmallah and M. G. Gouda, “Hardness of firewall analysis,” IEEE
Transactions on Dependable and Secure Computing, vol. 14, pp. 339–
349, May 2017.

[20] A. Khoumsi, M. Erradi, and W. Krombi, “A formal basis for the
design and analysis of firewall security policies,” Journal of King Saud
University - Computer and Information Sciences, vol. 30, no. 1, pp. 51
– 66, 2018.

[21] C. Diekmann, L. Hupel, J. Michaelis, M. Haslbeck, and G. Carle, “Ver-
ified iptables firewall analysis and verification,” Journal of Automated
Reasoning, vol. 61, pp. 191–242, Jun 2018.

[22] R. Khelf and N. Ghoualmi-Zine, “Ipsec/firewall security policy analysis:
A survey,” in 2018 International Conference on Signal, Image, Vision
and their Applications (SIVA), pp. 1–7, Nov 2018.

[23] N. Tcholtchev and R. Chaparadza, “Autonomic fault-management and
resilience from the perspective of the network operation personnel,” in
2010 IEEE Globecom Workshops, pp. 469–474, Dec 2010.

[24] A. Liakopoulos, A. Zafeiropoulos, C. Marinos, M. Grammatikou,
N. Tcholtchev, and P. Gouvas, “Applying distributed monitoring tech-
niques in autonomic networks,” in 2010 IEEE Globecom Workshops,
pp. 498–502, Dec 2010.

[25] T. Kastrinogiannis, N. Tcholtchev, A. Prakash, R. Chaparadza, V. Kalda-
nis, H. Coskun, and S. Papavassiliou, “Addressing stability in future
autonomic networking,” in Mobile Networks and Management (K. Pen-
tikousis, R. Agüero, M. Garcı́a-Arranz, and S. Papavassiliou, eds.),
(Berlin, Heidelberg), pp. 50–61, Springer Berlin Heidelberg, 2011.

[26] R. Chaparadza, M. Wodczak, T. Ben Meriem, P. De Lutiis,
N. Tcholtchev, and L. Ciavaglia, “Standardization of resilience amp;
survivability, and autonomic fault-management, in evolving and future
networks: An ongoing initiative recently launched in etsi,” in 2013
9th International Conference on the Design of Reliable Communication
Networks (DRCN), pp. 331–341, March 2013.

[27] L. N. Tidjon, M. Frappier, and A. Mammar, “Intrusion detection
systems: A cross-domain overview,” IEEE Communications Surveys
Tutorials, vol. 21, pp. 3639–3681, Fourthquarter 2019.

[28] M. A. Lopez, A. G. P. Lobato, O. C. M. B. Duarte, and G. Pujolle, “An
evaluation of a virtual network function for real-time threat detection
using stream processing,” pp. 1–5, Feb 2018.

[29] A. Basu, T. Dimitrakos, Y. Nakano, and S. Kiyomoto, “A framework
for blockchain-based verification of integrity and authenticity,” in Trust
Management XIII (W. Meng, P. Cofta, C. D. Jensen, and T. Grandison,
eds.), (Cham), pp. 196–208, Springer International Publishing, 2019.

[30] O. Andreasson et al., “Iptables tutorial 1.2. 2,” Copyright© 2001–2006
Oskar Andreasson, GNU Free Documentation License, 2001.

[31] M. Chiari, D. Mandrioli, and M. Pradella, “Temporal logic and
model checking for operator precedence languages,” arXiv preprint
arXiv:1809.03100, 2018.

[32] A. Valmari, “The state explosion problem,” in Advanced Course on Petri
Nets, pp. 429–528, Springer, 1996.

[33] “Bug 63 - st9 bad alloc exception.” https://bugsy.grid.aau.dk/bugzilla/
show bug.cgi?id=63. Accessed: 2019-08-30.

