
Towards delay-aware container-based Service
Function Chaining in Fog Computing

José Santos∗, Tim Wauters∗, Bruno Volckaert∗ and Filip De Turck∗
∗ Ghent University - imec, IDLab, Department of Information Technology

Technologiepark-Zwijnaarde 126, 9052 Gent, Belgium
Email: josepedro.pereiradossantos@UGent.be

Abstract— Recently, the fifth-generation mobile network (5G)
is getting significant attention. Empowered by Network Func-
tion Virtualization (NFV), 5G networks aim to support diverse
services coming from different business verticals (e.g. Smart
Cities, Automotive, etc). To fully leverage on NFV, services must
be connected in a specific order forming a Service Function
Chain (SFC). SFCs allow mobile operators to benefit from the
high flexibility and low operational costs introduced by net-
work softwarization. Additionally, Cloud computing is evolving
towards a distributed paradigm called Fog Computing, which
aims to provide a distributed cloud infrastructure by placing
computational resources close to end-users. However, most SFC
research only focuses on Multi-access Edge Computing (MEC)
use cases where mobile operators aim to deploy services close
to end-users. Bi-directional communication between Edges and
Cloud are not considered in MEC, which in contrast is highly
important in a Fog environment as in distributed anomaly
detection services. Therefore, in this paper, we propose an SFC
controller to optimize the placement of service chains in Fog
environments, specifically tailored for Smart City use cases.
Our approach has been validated on the Kubernetes platform,
an open-source orchestrator for the automatic deployment of
micro-services. Our SFC controller has been implemented as
an extension to the scheduling features available in Kubernetes,
enabling the efficient provisioning of container-based SFCs while
optimizing resource allocation and reducing the end-to-end (E2E)
latency. Results show that the proposed approach can lower
the network latency up to 18% for the studied use case while
conserving bandwidth when compared to the default scheduling
mechanism.

Index Terms—Resource Provisioning, Service Function Chain,
Fog Computing, IoT, Kubernetes

I. INTRODUCTION

In recent years, the fifth-generation mobile network (5G)
rapidly started gaining popularity due to the wide adoption of
network virtualization and Cloud technologies. Augmented re-
ality, tactile Internet, autonomous vehicles are among the envi-
sioned 5G use cases. These services will have stringent quality
of service (QoS) requirements in terms of network bandwidth,
mobility coverage, end-to-end (E2E) latency, among others
[1]. To fully leverage from this kind of services, researchers
have introduced Network Function Virtualization (NFV) [2],
[3] since traditional hardware is unable to meet the high
demanding requirements introduced by these use cases. NFV
decouples network functions from the physical devices on
which they run to be executed by software running on Virtual
Machines (VMs), thus achieving the purpose of reducing
Operational Expenditures (OPEX) and Capital Expenditures

(CAPEX) while easing the deployment of new services [4].
Nevertheless, several challenges still remain to fully benefit
from NFV. One important challenge is called Service Function
Chain (SFC) [5], [6]. SFC encompasses an emerging set of
technologies aiming to enable mobile operators and cloud
providers to dynamically reconfigure softwarized Network
Services (NSs) without having to implement changes at the
hardware level. Thus, providing a flexible and cost-effective
alternative to today’s static network environment. Services
must be connected in a specific order forming an SFC that
each user has to traverse to achieve a particular NS as shown
in Fig. 1. All circles represent different service functions while
the arrows show how traffic is steered in the network. Users are
then routed through the SFC according to the service graph,
which results in optimized resource provisioning and reduced
operational costs.

Recently, Cloud computing is also evolving towards a dis-
tributed paradigm called Fog Computing [7] due to the massive
impact of the Internet of Things (IoT). Smart Cities [8] pow-
ered by IoT are transforming different domains of urban life,
such as public transportation, environmental monitoring, and
health-care to improve citizen welfare. Fog Computing aims
to provide computing resources at the edges of the network,
thus helping to meet the demanding constraints introduced by
IoT (e.g. low latency, high mobility). Service providers may
benefit from Fog Computing by deploying their applications
across geographically distributed clouds, so that real-time pro-
cessing, storage procedures and data analytics can be brought
closer to end users, overcoming the limitations of traditional
centralized cloud infrastructures [9]. Autonomous vehicles
and environmental monitoring are among the envisioned Fog
use cases benefiting from these architectures. Furthermore,
container-based micro-services are currently revolutionizing
the way developers build their software applications [10]. An
application is decomposed in a set of small, self-contained
containers deployed across a large number of servers instead of
the traditional code-heavy monolithic application. Nowadays,
containers are the de facto alternative to the conventional VMs,
due to their low overhead and high portability.

In this paper, an SFC controller is presented to optimize the
placement of container-based service chains in Fog Computing
environments, since most SFC studies only focus on Multi-
access Edge Computing (MEC) use cases. The main differ-
ence between MEC and Fog Computing is in the considered



Fig. 1: An example of a Service Function Chain deployment.

interactions (i.e. between Edges and Cloud). MEC focuses
on deploying services close to end-users to reduce latency
and avoid congestion in the network core. In Fog Computing,
bi-directional communications between Edges and Cloud are
crucial due to the hierarchical architecture. For instance, a
service is allocated in the cloud due to high computational
requirements but needs to interact with another service, which
may be located in the Fog. These interactions (e.g. necessary
bandwidth) must be guaranteed. MEC is currently not taking
these bi-directional communications into account. The pro-
posed SFC controller has been implemented as an extension to
the default scheduling feature available in Kubernetes [11], an
open-source container management platform originally devel-
oped by Google, which simplifies the deployment of scalable
distributed systems by managing the complete orchestration
life-cycle of containerized applications. Finally, evaluations
have been performed to validate our approach, specifically
for container-based Smart City use cases. The proposed SFC
controller enables Kubernetes to efficiently allocate container-
based SFCs while maintaining bandwidth conservation and
reducing the E2E latency.

The remainder of the paper is organized as follows. In the
next Section, related work is discussed. Section III highlights
the importance of SFC in Fog-Cloud environments and in-
troduces the proposed SFC controller and its provisioning
algorithm. In Section IV, the evaluation setup is described
which is followed by the evaluation results in Section V.
Finally, conclusions are presented in Section VI.

II. RELATED WORK

In recent years, SFC allocation and resource provisioning
issues gained significant attention in the fields of NFV, MEC
and Cloud computing. In [12], the challenge of allocating
Virtual Network Functions (VNFs) has been addressed. Their
approach focused on finding the required number of VNF
instances and their optimal placement while minimizing op-
erational costs and maximizing network utilization, without
violating service level agreements. The authors presented an
Integer Linear Programming (ILP) formulation for finding the
optimal solutions for small scale networks, while a heuristic-

based algorithm has been proposed for larger-scale networks
instead. In [13], the SFC allocation problem has been stud-
ied. The authors focused on determining the optimal VNF
placement while minimizing the E2E latency and maximizing
resource efficiency. In [14], the SFC orchestration problem in
5G virtualized infrastructures has been addressed. The authors
modeled the problem as a robust binary optimization. Further-
more, in [15], a mixed ILP model has been presented as a
solution to ease the SFC orchestration in a Cloud environment.
The model finds the optimal VNF placement while deciding
whether to re-instantiate or migrate the VNFs and minimizing
the SFC delays. In [16], an ILP formulation has been presented
to solve the SFC allocation problem, while considering E2E
latency and data rate requirements. The authors also proposed
a heuristic algorithm to address the scalability issue of the ILP-
based solution. Our work goes beyond the state-of-the-art since
the SFC orchestration problem has not been addressed for Fog
Computing environments, where considering the interactions
between Fog and Cloud is highly important for a proper SFC
allocation.

Recently, a handful of research efforts has been performed
in the context of resource provisioning in Fog Computing envi-
ronments that combine aspects coming from Cloud computing,
network virtualization and sensor networks. In [17], a resource
management approach based on demand predictions has been
presented. Their work focused on allocating resources based
on users’ demand fluctuations by using cost functions, differ-
ent types of services and pricing models for new and existing
customers. Simulation results showed that the suggested model
achieves a fair performance by preallocating resources based
on user behavior and future usage predictions. In [18], the
IoT resource provisioning issue has been modeled as an ILP
formulation. Application QoS metrics and deadlines for the
provisioning of each type of application have been considered
in their approach. Additionally, in [19], the Fog resource pro-
visioning problem has been addressed. The authors studied the
trade-off between maximizing the reliability and minimizing
the overall system cost. A highly computationally complex
ILP model has been presented. Then, the authors presented
simulation results coming from a heuristic-based algorithm
able to find suboptimal solutions, albeit achieving better time
efficiency. Nevertheless, none of the aforementioned studies
considered realistic latency-sensitive services with actual E2E
latency demands envisioned to be supported by future 5G net-
works or considered the strict requirements coming from SFC
or container-based applications. Furthermore, most research
has only been focused on theoretical modeling and simulation
studies, which limit their applicability to real deployments.

Previously, in [20], we have tackled the problem of resource
provisioning in Fog Computing. The present work builds
further on our previous one since the SFC placement issue
has now been addressed. SFC capabilities for Fog-Cloud
environments are still quite unexplored. To the best of our
knowledge, our approach goes beyond the current state-of-the-
art by extending a well-known platform called Kubernetes with
SFC controlling mechanisms enabling the efficient allocation



of container-based SFCs, specifically tailored for Smart City
use cases. Furthermore, a practical implementation of the
proposed SFC controller has been evaluated to show the full
applicability of our approach. By combining Fog Computing
alongside SFC concepts, our work paves the way towards an
efficient resource provisioning of SFCs in softwarized Fog
Computing infrastructures.

III. TOWARDS SFC IN FOG COMPUTING

This section introduces the proposed SFC controller mecha-
nism followed by the discussion of its provisioning algorithm.

A. The SFC Controller

The SFC controller has been implemented as an extension
to the Kubernetes platform, based on previous work presented
in [22]. Although Kubernetes makes use of containers as the
underlying mechanism to deploy micro-services, additional
layers of abstraction exist over the container runtime environ-
ment to provide scalable life-cycle orchestration features. In
Kubernetes, micro-services are often tightly coupled together
forming a group of containers. This is the smallest work-
ing unit in Kubernetes, which is called a pod [23]. A pod
represents the collection of containers and storage (volumes)
running in the same execution environment. Additionally, Ku-
bernetes provides a feature called Service, which is an abstract
way to define a logical set of Pods and expose applications
running on them as an NS [24]. By using this abstraction, there
is no need to use a service discovery mechanism since pods
have their own IP address and a single Domain Name System
(DNS) name is assigned to a set of pods, which makes load-
balancing a straightforward process across them. The rationale
behind this abstraction process comes from the pods’ volatility
as they may be terminated, meaning that pods running at a
certain moment may be different than the ones which are pro-
viding the service a few days later. This could lead to service
disruptions. For instance, imagine two services, a frontend and
a backend service. If pods are constantly being terminated
and rescheduled, how could the frontend service keep track of
which IP address it needs to connect to the backend service?
Thus, the actual pods that compose the backend service may
change, but users should not need to be aware of that, nor
should they need to keep track of them. The SFC controller
logic solves the issue of routing between different services in
the SFC. An example of a container-based SFC in Kubernetes
is shown in Fig. 2. Nevertheless, Kubernetes does not provide
scheduling features to properly allocate SFCs. Kubernetes
allocates pods based only on available resources (e.g. CPU and
RAM usage rates), without making any consideration about
the complete E2E service or even any concern about latency
or bandwidth limitations. Furthermore, Kubernetes provisions
pods, one by one, without taking into account previous pod
allocations. In fact, the component that assigns pods to specific
nodes in Kubernetes is called Kube–Scheduler (KS). The KS
is the default scheduling feature in the Kubernetes platform,
which is responsible for deciding on which adequate nodes
pods should be allocated. The SFC controller logic has been

Fig. 2: An example of a container-based Service Function
Chain deployment in Kubernetes.

Fig. 3: The detailed Pod architecture of the SFC controller.

implemented as a “scheduler extender” process that the KS
calls out as a final step when a scheduling decision is needed,
which makes use of previous pod provisioning information to
optimize the SFC allocation. The presented approach has been
implemented in Go and deployed in the Kubernetes cluster as
a pod. The pod architecture of the SFC controller is illustrated
in Fig. 3. Essentially, every pod requiring allocation is added
to a waiting queue, which is continuously monitored by the
KS. If a pod is added to the waiting queue, the KS searches
for an adequate node for the placement. Firstly, KS executes
the node filtering operation, where KS verifies which nodes
are capable of running the pod by applying a set of filters.
The purpose of filtering is to solely consider nodes meeting
all specific pod requirements further in the scheduling process.
Thus, inadequate nodes are already removed from the list of
possible candidates by applying these filters. Then, KS calls
out the SFC controller to make the final decision on which
cluster node the service must be provisioned based on the
remaining set of nodes. Each scheduling request is handled
by the SFC controller, where a suitable node is selected based
on two provisioning strategies: Latency-aware and Location-
aware. Both algorithms are detailed next.

B. Provisioning Algorithm of the SFC controller

The main procedure of the SFC controller is stated in
Alg. 1. First, the SFC controller gathers allocation information
through pod labels defined on the pod configuration file. These
pod labels are listed in Table I. Second, the provisioning
algorithm is selected based on the Policy label. Two policies
are currently supported: Latency-aware and Location-aware.
Both algorithms are shown in Alg. 2 and Alg. 3, respectively.
On one hand, if Latency-aware is preferred, the SFC controller



TABLE I: Extending pod labels with SFC information.

Label Description
Network Service Header The specific SFC identifier (String).
Chain Position The position of the given pod in the SFC.
Total Services The total number of services in the SFC.
Target Location The preferred location for the deployment.
Policy The preferred allocation policy.
Min Bandwidth The minimum expected bandwidth.
Prev Service The previous service in the SFC.
Next Service The next service in the SFC.

Algorithm 1 Main procedure of the SFC controller

Input: Remaining Nodes after Filtering Process in
Output: Node for the service placement out

1: // Return the best candidate Node
2: selectNode(nodes, pod):
3: policy = getPolicy(pod)
4: minB = getBandwidth(pod)
5: nsh = getServideHeader(pod)
6: if policy == Latency
7: node = getLatencyNode(nodes, pod,minB, nsh)
8: if node 6= null then
9: // Store pod info in Hash Table

10: addPod(getKey(pod), node)
11: // update available Link bandwidth
12: updateB(getNodeB(node)−minB, node)
13: return node
14: else if policy == Location then
15: node = getLocationNode(nodes, pod)
16: if node 6= null then
17: addPod(getKey(pod), node)
18: updateB(getNodeB(node)−minB, node)
19: return node
20: // Otherwise → max residual bandwidth Link
21: node = getLinkNode(nodes);
22: if node 6= null then
23: addPod(getKey(pod), node)
24: updateB(getNodeB(node)−minB, node)
25: return nodeLink
26: else
27: return null, Error(”No suitable node!!”)

selects the best candidate node based on the calculation of
Dijkstra’s shortest path algorithm [25]. Provisioning records
are kept of the previously allocated pods based on the Network
Service Header label. If any of those corresponds to the same
NS, the shortest paths will be calculated for each of the
possible nodes. Otherwise, if not a single pod has been already
allocated in the network corresponding to the same NS, the
node selection is made as if the Location-aware policy was se-
lected. Regarding bandwidth, each candidate node is checked
to confirm that it has enough bandwidth to support the given
pod based on the Min Bandwidth label. Thus, the node with
the lowest combined shortest paths and enough bandwidth
will be selected for pod deployment. On the other hand, if

Algorithm 2 Latency-aware algorithm of the SFC controller

Input: Remaining Nodes after Filtering Process in
Output: Node for the service placement out

1: // Return the best candidate Node based on Latency
2: getLatencyNode(nodes, pod, minB, nsh):
3: // Find pods belonging to this nsh
4: podList = getPodList(nsh, pod)
5: if podList 6= null then // Calculate Shortest Paths
6: node = getNodeDelaySP (nodes, podList)
7: else // Select Node as if Location-aware was selected
8: node = getLocationNode(nodes, pod)
9: return node

Algorithm 3 Location-aware algorithm of the SFC controller

Input: Remaining Nodes after Filtering Process in
Output: Node for the service placement out

1: // Return the best candidate Node based on Location
2: getLocationNode(nodes, pod):
3: copy = nodes;
4: loc = getLocation(pod)
5: minD = getMinDelay(nodes, loc)
6: // Node selected based on min delay & Bandwidth
7: for node in range nodes do
8: if minD == getDelay(node, loc) then
9: if minB ≤ getNodeB(node)

10: return node
11: else
12: copy = removeNode(copy, node)
13: if copy == null then
14: return null
15: else // Repeat the Process (Recursive)
16: return getLocationNode(copy, pod)

the Location-aware policy is chosen, the node selection is
based on minimizing latency depending on the Target Location
label, since certain pods may be preferred to be deployed on
a certain Fog location or even in the Cloud, as they require a
high amount of resources. Additionally, it is verified whether
each candidate node has enough bandwidth to support the
given service. After completion of each scheduling request,
pod allocation information is stored as a provisioning record
to be consulted in further scheduling requests and the node’s
available bandwidth is updated. Thus, the SFC controller
knows exactly the available bandwidth between scheduling
requests, which allows it to make informed decisions based
on latency and bandwidth information. Finally, if no suitable
node is found after policy execution, link costs are calculated
for each possible node. The node with the maximum residual
bandwidth link adequate to support the expected minimum
bandwidth is selected to allocate the pod. Otherwise, it is
not possible to allocate the service without compromising
bandwidth. Thus, similar to the KS, an event is triggered due
to the failed pod deployment (i.e. pod eviction).

In summary, the proposed SFC controller filters inappropri-



TABLE II: Software Versions of the Evaluation Setup.

Software Version
Kubeadm v1.13.4
Kubectl v1.13.4

Go go1.11.5
Docker docker://18.09.2

Linux Kernel 4.4.0-34-generic
Operating System Ubuntu 16.04.1 LTS

ate nodes based on the KS filtering step and then makes use
of the implemented pod labels to choose the best candidate
node from the filtered ones to the desired scheduling policy.
The SFC controller supports two policies, latency-aware and
location-aware, upon which it can select nodes based on min-
imizing latency established by the calculation of the shortest
paths or based on the target location for the pod deployment,
respectively. Similar to the KS, the SFC controller optimizes
the allocation of each pod, one by one. Thus, our implementa-
tion can find a sub-optimal solution when compared with ILP-
based solutions, however, in smaller execution time. It should
be noted that a dynamic SFC controller suitable for dealing
with bandwidth fluctuations and delay changes is required.
This, however, is out of the scope of this paper.

IV. EVALUATION SETUP

In this section, the testbed infrastructure used for the
Kubernetes setup is described. Then, the two use cases for
the evaluation are introduced. First, the Waste Management
scenario is presented, which is followed by the Surveillance
Camera use case.

A. Testbed Infrastructure

The Kubernetes cluster has been set up on the imec Virtual
Wall infrastructure [26] at IDLab, Belgium. The Fog-Cloud
infrastructure illustrated in Fig. 4 has been implemented with
Kubeadm [27]. The software versions of all the components
used to set up the Kubernetes cluster are listed in Table II.

B. Waste Management Use Case

Waste Management is viewed as one of the key services
enabled by IoT technology in future Smart Cities [28]. Waste
bins are located everywhere (e.g. restaurants, office buildings,
retail stores), but picking up garbage has been traditionally
an inefficient service for years. Garbage trucks follow a given
route without knowing if bins are empty or full. Another issue
is that waste bins may get overloaded before the planned
cleaning. This results in high maintenance and fuel costs. IoT
can tackle this issue by collecting waste bin data. For instance,
sensors can be installed into waste bins to tell which bins
are full. Furthermore, by sending the collected data to a fog-
Cloud infrastructure, route planning services can be executed
to find the optimal route for each truck based on bin fill levels.
Thus, drivers do not waste time driving to empty bins and
broken bins may be repaired quickly. Trucks and drivers can
access this service through a dashboard available as a mobile
application, enabling them to improve their customer service.

Therefore, an IoT-based waste management service provides a
more efficient waste collection through route optimization and
higher driver productivity. The objective of this use case is to
enable the real-time access to waste bin information. In Fig. 5,
the container-based SFC for the waste management use case
is illustrated and the correspondent deployment requirements
are shown in Table III.

C. Surveillance Camera Use Case
Over the last few years, crowd surveillance has become

increasingly important due to the possibility of identifying
individuals or even objects in highly crowded areas. Neverthe-
less, several issues still need to be addressed, including data
transfer over limited bandwidth and high latency in sensor-
Cloud communication. For instance, imagine a surveillance
camera requiring a continuous streaming bandwidth of 15
Mb/s. Sending the entire data from the video camera to the
Cloud translates into approximately 4.86 TB/monthly for a
single camera. Therefore, it is essential to adopt Fog infrastruc-
tures to perform data analysis operations locally, thus reducing
the amount of data transferred to the Cloud. Surveillance
cameras placed on particular streets or crowded areas send
continuous video streams to a Fog-Cloud infrastructure where
face recognition algorithms are performed in a distributed
manner. Fog nodes located close to the surveillance cameras
receive their video streams and perform a first-level analysis,
such as face detection and feature extraction tasks. Then,
Fog nodes send the results to the Cloud for global analysis
operations, such as face matching and recognition operations.
Afterwards, global outcomes can be presented in a central
dashboard in a control room. Additionally, police officers
may access the detection results through a mobile application.
This distributed approach has been previously presented in
[29], as a proper manner to enable anomaly detection in
Fog Computing architectures for delay-sensitive IoT services.
An IoT-based surveillance camera service provides a more
efficient way of recognizing individuals in crowded areas by
distributing tasks between Fog and Cloud. The objective of this
use case is to provide a near real-time face detection system.
In Fig. 6, the container-based SFC for the surveillance camera
use case is illustrated and the correspondent deployment
requirements are shown in Table IV.

D. Use Case Deployment in Kubernetes
The deployment of both use cases has been performed

to compare the performance of our SFC controller with the
default KS. All services have been deployed based on a pod
configuration file. For example, the pod configuration file for
the api service is shown in Fig. 7. It should be noted that
a pod anti-affinity rule has been added to each service so
that pods belonging to the same service cannot be deployed
together, meaning that a node can only allocate one instance
of a particular pod for a certain service.

V. EVALUATION RESULTS

In this section, the evaluation results are detailed. First,
the execution time of the different approaches is presented,



Fig. 4: A Fog-Cloud Infrastructure based on the Kubernetes architecture.

TABLE III: Deployment properties of the Waste Management Use Case.

Network
Service
Header

Pod Name Chain
Position

Total
Services Policy Target

Location

Min.
Bandwidth

(Mbit/s)

CPU
Req/Lim (m)

RAM
Req/Lim (Mi)

Replication
Factor

Waste

api 1

4

Latency-aware Any 4.0 250/500 256/512 3
waste-db 2 Latency-aware Any 5.0 500/1000 1024/2048 4

route-planner 3 Location-aware Brussels 8.0 500/1000 1024/2048 4
server 4 Latency-aware Any 4.0 250/500 256/512 3

TABLE IV: Deployment properties of the Surveillance Camera Use Case.

Network
Service
Header

Pod Name Chain
Position

Total
Services Policy Target

Location

Min.
Bandwidth

(Mbit/s)

CPU
Req/Lim (m)

RAM
Req/Lim (Mi)

Replication
Factor

Camera

fd-ext 1

4

Latency-aware Any 8.0 500/1000 512/1024 4
fm-recog 2 Location-aware Brussels 8.0 1000/2000 2048/4096 2
cam-db 3 Latency-aware Any 2.5 500/1000 1024/2048 2

dashboard 4 Latency-aware Any 5.0 250/500 256/512 4

Fig. 5: The container-based Service Function chain envisioned
for the Waste Management Use Case.

Fig. 6: The container-based Service Function chain envisioned
for the Surveillance Camera Use Case.



Fig. 7: The pod configuration file for the api Service.

TABLE V: The execution time of the different approaches.

Scheduler Extender
decision

Scheduling
decision

Pod Startup
Time

KS - 3.21 ms 2.83 s
SFC controller 6.08 ms 8.38 ms 2.96 s

followed by the average latency expected for each use case.
Finally, the service bandwidth per node for the different
scheduling approaches is shown.

A. Execution Time

In Table V, the execution time of the different schedulers
is shown. The execution time has been averaged over 15
consecutive runs. The KS does not issue an extender call
and, thus, the scheduling decision for each pod deployment
is made on average on 3.2 ms, while the SFC controller
requires on average 6.08 ms because of the extender procedure.
The pod startup time corresponds to the duration between the
deployment command until the moment it takes to allocate and
instantiate the given containers in the cluster. Both KS and the
SFC controller require on average between 2 and 3 seconds to
allocate the required containers, since the main difference in
execution time is only determined by the extender procedure
and how the final node is chosen.

B. Pod Allocation Scheme

In Table VI, the different allocation scheme for each of
the schedulers is shown. As expected, the KS deployment
scheme is not optimized for the service’s desired location

Fig. 8: The expected service latency for each of the schedulers.

or service latency, since no considerations are made about
location or latency in its scheduling algorithm. Thus, KS
allocates multiple pods on a single node since it tries to balance
the load in the cluster according to CPU and RAM usage rates.
For instance, the KS allocation scheme for the route planner or
the fm-recog service is fairly poor since no pods are deployed
in the preferred location (Brussels).

C. Network Bandwidth

In Table VII, the expected service bandwidth per node for
the different scheduling approaches is presented. It should be
noted that bandwidth values in bold mean that the cluster node
is overloaded based on the available bandwidth previously
shown in Fig. 4. As shown, KS allocates pods on nodes already
compromised in terms of network bandwidth. For instance, KS
overloads worker 1 and 4 by allocating to them at least 4 pods
leading to service bandwidths of 26.0 Mbit/s and 36.5 Mbit/s
for the workers 1 and 4, respectively, which surpasses the
available bandwidth of 10.0 Mbit/s. This provisioning scheme
may lead to service disruptions due to bandwidth fluctuations.
In contrast, the proposed SFC controller takes into account the
available bandwidth while making scheduling decisions, which
leads to informed decisions not only in terms of latency but
also in terms of bandwidth.

D. Network latency

In Fig. 8, the expected service latency for each of the
schedulers is detailed. As shown, the proposed SFC-controller
achieves lower delays for each of the deployed services when
compared with the default KS. In spite of overloading several
nodes, KS is not able to find optimal paths for the SFCs. The
proposed SFC controller can optimize the SFC latency while
conserving network bandwidth. In this particular allocation
scheme, the SFC-controller improves the performance of the
default KS by reducing the network latency by 18%.

E. Scalability

In Fig. 9, the execution time per Pod of the SFC controller
extender call is shown. The number of service replicas is



TABLE VI: The pod allocation scheme of the different schedulers.

Scheduler
Use Case Service KS SFC controller

Waste Management

api [Worker 5, Worker 11, Worker 12] [Worker 3, Worker 5, Worker 7]
waste-db [Worker 1, Worker 4, Worker 10, Master] [Worker 4, Worker 10, Worker 11, Worker 14]

route-planner [Worker 1, Worker 4, Worker 11, Master] [Worker 6, Worker 13, Worker 14, Master]
server [Worker 6, Worker 10, Master] [Worker 13, Worker 14, Master]

Surveillance Camera

fd-ext [Worker 1, Worker 4, Worker 5, Worker 12] [Worker 1, Worker 2, Worker 12, Master]
fm-recog [Worker 3, Worker 4] [Worker 13, Master]
cam-db [Worker 3, Worker 4] [Worker 7, Worker 8]

dashboard [Worker 1, Worker 4, Worker 10, Master] [Worker 8, Worker 9, Worker 10, Worker 11]

TABLE VII: The expected service bandwidth per node for the
different scheduling strategies.

Node KS SFC-controller
Worker 1 26.0 Mbit/s 8.0 Mbit/s
Worker 2 - 8.0 Mbit/s
Worker 3 10.5 Mbit/s 4.0 Mbit/s
Worker 4 36.5 Mbit/s 5.0 Mbit/s
Worker 5 12.0 Mbit/s 4.0 Mbit/s
Worker 6 4.0 Mbit/s 8.0 Mbit/s
Worker 7 - 6.5 Mbit/s
Worker 8 - 7.5 Mbit/s
Worker 9 - 5.0 Mbit/s

Worker 10 14.0 Mbit/s 10.0 Mbit/s
Worker 11 12.0 Mbit/s 10.0 Mbit/s
Worker 12 12.0 Mbit/s 8.0 Mbit/s
Worker 13 - 20.0 Mbit/s
Worker 14 - 17.0 Mbit/s

Master 22.0 Mbit/s 28.0 Mbit/s

Fig. 9: The average execution time per Pod of the SFC
controller extender call.

increased to evaluate how the SFC controller handles the
allocation of a high number of service instances in the Service
Chain. As shown, the extender decision time decreases while
the number of service replicas increases, since only a small
amount of nodes will still be free in terms of resources,
specifically in terms of bandwidth based on the previously
presented infrastructure. Increasing the number of replicas
will also lead to pod evictions since nodes will already be
exhausted and no node will be available for the service

allocation. Nevertheless, the SFC controller can cope with a
high number of replicas without compromising the decision
time as long as resources are available.

In summary, the proposed SFC-controller optimizes the
resource provisioning in Kubernetes according to network
latency and bandwidth, which is currently not supported by
the default KS.

VI. CONCLUSIONS

In recent years, Cloud computing is evolving towards a
distributed paradigm called Fog Computing, which aims to
provide a distributed cloud infrastructure by placing com-
putational resources close to end-users. Additionally, mobile
operators are researching efficient ways of connecting different
services in a specific order forming an SFC to fully benefit
from network virtualization. The deployment of SFCs will
allow mobile operators to profit from the high flexibility
introduced by network softwarization. Nevertheless, SFC re-
search only focuses on MEC use cases and only a few studies
consider Fog-Cloud environments. Therefore, in this paper, an
SFC controller has been presented as a scheduling approach to
efficiently place container-based service chains in Fog-Cloud
environments, specifically tailored for Smart City use cases.
The popular open-source project Kubernetes has been used to
validate the proposed approach. The SFC controller has been
implemented as an extension to the scheduling features avail-
able in Kubernetes, enabling the allocation of container-based
SFCs while optimizing resource provisioning and reducing the
E2E latency. Evaluations have been performed to compare the
proposed solution with the default scheduling feature available
in Kubernetes. Results show that the proposed approach can
significantly reduce the network latency while conserving
bandwidth just by increasing the scheduling decision time by
only 6ms per pod. As future work, dynamic strategies will be
added to our SFC controller to further refine the allocation
scheme in terms of bandwidth fluctuations and delay changes.

ACKNOWLEDGMENT

This research was performed within the project ”Intelligent
DEnse And Longe range IoT networks (IDEAL-IoT)” under
Grant Agreement #S004017N, from the fund for Scientific
Research-Flanders (FWO-V).



REFERENCES

[1] M. Agiwal, A. Roy, and N. Saxena, “Next generation 5g wireless
networks: A comprehensive survey,” IEEE Communications Surveys &
Tutorials, vol. 18, no. 3, pp. 1617–1655, 2016.

[2] R. Mijumbi, J. Serrat, J.-L. Gorricho, N. Bouten, F. De Turck, and
R. Boutaba, “Network function virtualization: State-of-the-art and re-
search challenges,” IEEE Communications Surveys & Tutorials, vol. 18,
no. 1, pp. 236–262, 2015.

[3] S. Abdelwahab, B. Hamdaoui, M. Guizani, and T. Znati, “Network
function virtualization in 5g,” IEEE Communications Magazine, vol. 54,
no. 4, pp. 84–91, 2016.

[4] B. Yi, X. Wang, K. Li, M. Huang et al., “A comprehensive survey
of network function virtualization,” Computer Networks, vol. 133, pp.
212–262, 2018.

[5] D. Bhamare, R. Jain, M. Samaka, and A. Erbad, “A survey on service
function chaining,” Journal of Network and Computer Applications,
vol. 75, pp. 138–155, 2016.

[6] Y. Xie, Z. Liu, S. Wang, and Y. Wang, “Service function chaining
resource allocation: A survey,” arXiv preprint arXiv:1608.00095, 2016.

[7] R. Mahmud, R. Kotagiri, and R. Buyya, “Fog computing: A taxonomy,
survey and future directions,” in Internet of everything. Springer, 2018,
pp. 103–130.

[8] H. Arasteh, V. Hosseinnezhad, V. Loia, A. Tommasetti, O. Troisi,
M. Shafie-Khah, and P. Siano, “Iot-based smart cities: a survey,” in
2016 IEEE 16th International Conference on Environment and Electrical
Engineering (EEEIC). IEEE, 2016, pp. 1–6.

[9] M. Chiang and T. Zhang, “Fog and iot: An overview of research
opportunities,” IEEE Internet of Things Journal, vol. 3, no. 6, pp. 854–
864, 2016.

[10] S. Newman, Building microservices: designing fine-grained systems. ”
O’Reilly Media, Inc.”, 2015.

[11] B. Burns, B. Grant, D. Oppenheimer, E. Brewer, and J. Wilkes, “Borg,
omega, and kubernetes,” 2016.

[12] F. Bari, S. R. Chowdhury, R. Ahmed, R. Boutaba, and O. C. M. B.
Duarte, “Orchestrating virtualized network functions,” IEEE Transac-
tions on Network and Service Management, vol. 13, no. 4, pp. 725–739,
2016.

[13] A. Alleg, T. Ahmed, M. Mosbah, R. Riggio, and R. Boutaba, “Delay-
aware vnf placement and chaining based on a flexible resource allocation
approach,” in 2017 13th International Conference on Network and
Service Management (CNSM). IEEE, 2017, pp. 1–7.

[14] A. Marotta, F. D’Andreagiovanni, A. Kassler, and E. Zola, “On the
energy cost of robustness for green virtual network function placement
in 5g virtualized infrastructures,” Computer Networks, vol. 125, pp. 64–
75, 2017.

[15] H. Hawilo, M. Jammal, and A. Shami, “Orchestrating network function
virtualization platform: Migration or re-instantiation?” in 2017 IEEE
6th International Conference on Cloud Networking (CloudNet). IEEE,
2017, pp. 1–6.

[16] D. Harutyunyan, S. Nashid, B. Raouf, and R. Riggio, “Latency–aware
service function chain placement in 5g mobile networks,” in IEEE
Conference on Network Softwarization (NetSoft 2019), 2019.

[17] M. Aazam and E.-N. Huh, “Dynamic resource provisioning through fog
micro datacenter,” in 2015 IEEE international conference on pervasive
computing and communication workshops (PerCom workshops). IEEE,
2015, pp. 105–110.

[18] O. Skarlat, M. Nardelli, S. Schulte, and S. Dustdar, “Towards qos-aware
fog service placement,” in 2017 IEEE 1st international conference on
Fog and Edge Computing (ICFEC). IEEE, 2017, pp. 89–96.

[19] J. Yao and N. Ansari, “Fog resource provisioning in reliability-aware iot
networks,” IEEE Internet of Things Journal, 2019.

[20] J. Santos, T. Wauters, B. Volckaert, and F. De Turck, “Resource provi-
sioning in fog computing: From theory to practice,” Sensors, vol. 19,
no. 10, p. 2238, 2019.

[21] N. Mohan and J. Kangasharju, “Edge-fog cloud: A distributed cloud for
internet of things computations,” in 2016 Cloudification of the Internet
of Things (CIoT). IEEE, 2016, pp. 1–6.

[22] J. Santos, T. Wauters, B. Volckaert, and F. De Turck, “Towards network-
aware resource provisioning in kubernetes for fog computing applica-
tions,” in Proceedings of the IEEE Conference on Network Softwariza-
tion (NETSOFT), Paris, France, 2019, pp. 24–28.

[23] K. Hightower, B. Burns, and J. Beda, Kubernetes: up and running: dive
into the future of infrastructure. ” O’Reilly Media, Inc.”, 2017.

[24] (2019) Kubernetes, automated container deployment, scaling, and
management. [Online]. Available: https://kubernetes.io/

[25] Y. Y. G. Jianya, “An efficient implementation of shortest path algorithm
based on dijkstra algorithm [j],” Journal of Wuhan Technical University
of Surveying and Mapping (Wtusm), vol. 3, no. 004, 1999.

[26] (2019) The virtual wall emulation environment. [Online]. Available:
https://doc.ilabt.imec.be/ilabt-documentation/index.html

[27] (2019) Overview of kubeadm. [Online]. Available:
https://kubernetes.io/docs/reference/setup-tools/kubeadm/kubeadm/

[28] A. Medvedev, P. Fedchenkov, A. Zaslavsky, T. Anagnostopoulos, and
S. Khoruzhnikov, “Waste management as an iot-enabled service in
smart cities,” in Internet of Things, Smart Spaces, and Next Generation
Networks and Systems. Springer, 2015, pp. 104–115.

[29] J. Santos, P. Leroux, T. Wauters, B. Volckaert, and F. De Turck,
“Anomaly detection for smart city applications over 5g low power wide
area networks,” in NOMS 2018-2018 IEEE/IFIP Network Operations
and Management Symposium. IEEE, 2018, pp. 1–9.


