
Network Monitoring and Enumerating
Vulnerabilities in Large Heterogeneous Networks

Martin Laštovička∗†, Martin Husák∗, Lukáš Sadlek∗
∗Masaryk University, Institute of Computer Science, Brno, Czech Republic
†Masaryk University, Faculty of Informatics, Brno, Czech Republic
lastovicka@ics.muni.cz, husakm@ics.muni.cz, sadlek@mail.muni.cz

Abstract—In this paper, we present an empirical study on
vulnerability enumeration in computer networks using common
network probing and monitoring tools. We conducted active
network scans and passive network monitoring to enumerate
software resources and their version present in the network.
Further, we used the data from third-party sources, such as
Internet-wide scanner Shodan. We correlated the measurements
with the list of recent vulnerabilities obtained from NVD using the
CPE as a common identifier used in both domains. Subsequently,
we compared the approaches in terms of network coverage and
precision of system identification. Finally, we present a sample
list of vulnerabilities observed in our campus network. Our
work helps in approximating the number of vulnerabilities and
vulnerable hosts in large networks, where it is often impractical
or costly to perform vulnerability scans using specialized tools,
and in situations, where a quick estimate is more important than
thorough analysis.

I. INTRODUCTION

Keeping track of assets in a computer network, enumerating
hosts and services, and assessing vulnerabilities are everyday
tasks in the operations of computer security incident response
teams (CSIRT) and security operation centers (SOC). These
tasks are perceived as prerequisites to what is referenced
in the literature as cyber situational awareness (CSA), or
network-wide situational awareness when discussing computer
networks specifically [1]. CSA is an application of general
situational awareness, which is a continuous process of per-
ceiving the environment, understanding the processes in it,
and projecting future changes in the situation [2]. Although
the research and development in the field of CSA brought
numerous results [1], most of the proposed approaches and
processes depend on high-quality inputs, such as reliable
observation of a computer network.

Observing large networks is a problem of its own [3],
especially when the administration of the network is dis-
tributed among numerous departments and the infrastructure
is continuously changing and heterogeneous in terms of used
hardware and software. For example, a campus network of a
university with many departments, desktops, servers, research
equipment, and numerous students and employees connecting
with their own devices is a challenging environment for
keeping CSA [1]. Even though important assets are typically
known, it is hard to keep track of other devices and systems
in the network. Thus, when a new vulnerability appears, or

we want to know how harmful can a certain vulnerability be
for a given network, it is hard to make even a rough estimate.
Numerous vulnerability scanners are available for detecting
vulnerabilities in the network, but they are often highly spe-
cialized or impractical for use in the large scale. They come
useful when performing a detailed measurement, but they are
also expensive, may not scale well, and the tools for discov-
ering particular vulnerabilities may take time to be delivered
or may not exist at all. Thus, we are looking for methods and
tools that may cover the empty space between casual network
monitoring and vulnerability assessment. Specifically, we want
to know, for any given vulnerability, how many devices in
a large network may be vulnerable because even a rough
estimate helps in prioritizing the threats the vulnerabilities
posses.

To formalize the scope of our work, we pose the following
research questions:

1) How precise are network monitoring tools in recognizing
software and its version on hosts in a computer network?

2) How precise are descriptions of vulnerabilities with
regards to name and version of the vulnerable software?

3) How precisely can we estimate the number of vulnerable
hosts for a given vulnerability?

To resolve these problems, we propose an approach based on
common network monitoring methods and the combination
of their outputs with vulnerability databases. First, active and
passive network monitoring methods are evaluated from the
perspective of host and service assessment, e.g., OS finger-
printing and service discovery. We used active approach using
Nmap [4], and passive approach using flow-based monitor-
ing (NetFlow) [3] and corresponding data analytics. NVD1

is a de facto standard database of vulnerabilities in CVE
(Common Vulnerabilities and Exposures) format. Although
other databases exist, they are not comparable in terms of
popularity, size, and access to the data. The data from NVD
are combined with the outputs of network monitoring using
a CPE as a common identifier. CPE (Common Platform
Enumeration) is a system descriptor consisting of the software
vendor, name, version, and other entries, which is found in
CVE description and can be constructed from the outputs of
network monitoring. Matching CPEs are the primary indicators
of potentially vulnerable device that we use in this work.

1National Vulnerability Database, https://nvd.nist.gov/978-1-7281-4973-820$31.00 c© 2020 IEEE

The rest of this paper is organized as follows. Section II
summarizes technical background and related work. Section III
presents measurements conducted to answer the research ques-
tions, i.e., assessment of recent vulnerabilities from NVD and
processing the results of campus network monitoring using
passive and active approaches. The data from vulnerability as-
sessment and network monitoring are correlated and discussed
in Section IV. Section V concludes the paper.

II. BACKGROUND AND RELATED WORK

The background for this work is in two main areas, vulnera-
bility assessment and network monitoring. First, we briefly dis-
cuss vulnerability databases, the main source of information on
vulnerabilities. Subsequently, we discuss various approaches
to assess potentially vulnerable hosts in the network. In this
paper, we focus on network-based approaches applicable on
a large scale and, thus, omit host-based agents and other
approaches that discover vulnerabilities only locally.

Vulnerability assessment is commonly understood as a pro-
cess of identifying and prioritizing the vulnerabilities in a sys-
tem, such as in a computer network. However, identification of
vulnerabilities in information systems and computer networks
is a hard problem of its own. However, in this paper, we are
not interested in the discovery of particular vulnerabilities and
calculating their impact, but instead on one of its fundamentals
steps, enumerating potentially vulnerable hosts. Such network-
wide awareness of hosts and vulnerabilities is a cornerstone
for any further assessments [1]. Vulnerabilities in cyber secu-
rity are fortunately documented by the community [5]. The
information on vulnerabilities may be obtained from various
sources, such as NVD. Although many other databases exist,
their content usually overlaps with NVD. Interesting data
can be found in vulnerability databases operated by various
vendors, who publish information on vulnerabilities related to
their products, but with more detailed descriptions, including
vulnerable system versions and patches.

Passive monitoring of network traffic allows continuous
assessment of the network and identification of assets. Using
the NetFlow technology [3] enables this monitoring even
on high-speed backbone network by aggregating the packets
into flows without the loss of information necessary for
identification of the software producing the traffic. Goodall
et al. [6] proposed using NetFlow to map assets in the
network for the needs of cyber situational awareness. An
example of a tool for network assessment based on NetFlow
is Nfsight [7]. Lippmann et al. [8] proposed a method for
operating system identification from TCP/IP packet headers
and their normalization for use in different networks. these
characteristics were complemented by analysis of application
layer headers of DNS traffic [9] or update procedures [10]
or user-agent field [11]. The following work showed that
passive identification is possible even in encrypted traffic [12]
and that combination or the approaches [13] can enhance
the results in heterogeneous networks. In this paper, we are
interested in practical applications of the theoretical methods

in combination with machine learning algorithms [14] to build
the identification models semi-autonomously.

Active network monitoring has an advantage over passive
methods that it can create requests as needed and analyze the
response. Hence, it can easily identify known services running
on the hosts in the network. However, active probing heavily
relies on the host availability during the scan and firewall
settings allowing scans. The most widespread tool for active
scanning is currently Nmap [4]. It offers a wide range of
scanning techniques and the ability to identify service running
on a scanned port. Beside internal fingerprinting a human-
readable name of the software, it can map the software to
the corresponding CPE identifier. This allows us to match
vulnerabilities with the host providing service with the same
software without the need to create special request to identify
new vulnerabilities.

There is a plethora of specialized vulnerability scanners that
are mostly based on using active probing to find potentially
vulnerable hosts and services and verify the vulnerability. We
are mostly interested in network-based scanners in contrary
to host-based scanners and agents that need to be installed
on hosts. However, network-based vulnerability scanners have
their limitations, too. They are hindered by firewalls and might
be imprecise. Nessus2 is a commercial vulnerability scanning
tool that scans for vulnerabilities such as buffer overflows,
directory traversals, default password, known backdoors, and
misconfigurations. OpenVAS3 is an independent open source
project forked from Nessus before it became a proprietary
license. Retina4 is another commercial vulnerability scan-
ner. It searches for vulnerabilities and helps to prioritize
the remediations. Open Vulnerability Assessment Language
(OVAL) is an XML-based language for specifying machine
configuration. For some vulnerabilities, the vulnerable config-
uration is specified in OVAL. The language standardizes the
configuration information of systems, analyzing the system for
the presence of the specified state (vulnerability, configuration,
etc.), and reporting the results of this assessment. Finally, given
the specific nature of web application, there are numerous
vulnerability scanners focused on finding vulnerabilities in
web pages and popular content management systems (CMS)
and their plugins. Examples of such tools are CMSscan5,
CMSeeK6, and WhatWeb7. It is worth noting that almost all of
them are primarily vulnerability scanners, although they might
be used as CMS identification tools as well.

Apart from the approaches presented above, there are also
third-party tools and activities with similar intentions. These
activities are typically based on Internet-wide active network
scanning. The results of such scans are collected, processed,
and distributed under varying conditions, including commer-
cial interest. A well-known organization performing Internet-

2https://www.tenable.com/products/nessus/nessus-professional
3http://www.openvas.org
4https://www.beyondtrust.com/products/retina/
5https://github.com/ajinabraham/CMSScan
6https://github.com/Tuhinshubhra/CMSeeK
7https://github.com/urbanadventurer/WhatWeb

wide scans is Shadowserver8. Shodan9 has become a popular
tool among threat analysts as it provides various information
on scanned hosts using the techniques of device fingerprinting
for various purposes, such as discovery of specific devices [15]
and vulnerability assessment [16]. Research on active network
measurements led to the development of Censys, another pop-
ular tool that utilizes the data from Internet-wide scans [17].
The limitations of scanning by third-parties are significant. The
scanned devices need to be running and responding to scans,
many networks are protecting themselves from attackers by
firewalls and detecting and mitigating the scans [18], other
networks may drop the responses due to overload caused by
the scan, and the scans themselves are difficult to perform in
such a large scale.

III. MONITORING AND MEASUREMENTS

In this section, we present the necessary measurements and
data retrievals conducted to answer the research questions. We
conducted the measurements in the week starting on March
18, 2019 in our campus network described further in the text.
First, we assessed the information on recent vulnerabilities to
enumerate vulnerable system identifiers. Then, we conducted a
series of measurements, both active and passive, to enumerate
the system identifiers present in our campus network. The
active and passive measurements are accompanied by the
data obtained from third-party tools with similar functionality.
The processes and preliminary results are presented here; the
correlations of the data are presented in the following section.

We performed all measurements in the campus network of
Masaryk University. The network has more than 40,000 users
and consists of one /16 network segment in CIDR notation.
From this pool of 65,535 IPv4 addresses, roughly 25,000 are
actively used, and around 19,000 unique IP addresses actively
communicate each day. Altogether, they produce 6.91k net-
work flows per second on average with peaks to 11k flows
per second in rush hours.

The active scans suffer from probe discarding and filtering
on firewalls. Only moderate filtering rules are applied globally
to preserve the network neutrality of the academic environ-
ment, and the scanning itself was carried out from within the
university network. However, each department might have its
own independent firewall rules, and the endpoint departments
or segments can apply their rules on the routers or hosts which
hinders the active scan activity.

A. Vulnerability Assessment
We used the NVD as a source of information on vulnerabil-

ities. Following our proposed use cases, we focused on recent
vulnerabilities, specifically those published or updated from
the start of the year 2019 to the beginning of an experiment
(March 17, 2019). From this period, we downloaded informa-
tion on 1,441 vulnerabilities identified by their CVE number.
Out of those number, 1,422 CVEs contained at least one CPE
identifier. CPE describes a system affected by a vulnerability
using the string of the following structure:

8https://www.shadowserver.org/
9https://www.shodan.io/

TABLE I
LEVEL OF DETAIL IN CPES IN CVES PUBLISHED FROM JANUARY 1 TO

MARCH 17, 2019.

Vendor Product Version Update Edition Count
X * * - - 0
X X * - - 184
X X X - - 1,105
X X X X - 132
X X X X X 1

cpe:/<part>:<vendor>:<product>:<version>:
<update>:<edition>:<language>

The <part> field designate if the CPE relates to an operating
system, hardware platform, or application. Other fields are
self-explanatory.

We decomposed the CPE content in Table I. As we can see,
the vast majority of CPEs present in recent CVEs describe
a system’s vendor, product, and version. In some cases,
CPEs include identifiers of the system’s update and edition,
which might be hard to distinguish from other, non-vulnerable
instances. Information on product name and version are not
always included. However, an asterisk is used instead, denoting
that the vulnerability affects all the vendor’s products or all
products’ versions. Thus, we may assume that the precision
of CPEs is sufficient to identify a vulnerable system.

B. Passive Monitoring

At first, we inspected the university traffic to get a baseline
of how many devices communicated during the experiment.
We mark an IP address as active if it sent at least one UDP
packet or a TCP packet with SYN flag set during the one-
day interval. By this heuristic, we estimate that 18,749 IP
addresses were active. All measurements were conducted on
the backbone network connecting the university to the Internet.
Hence, we omit hosts that communicate only within campus
internal network, and their traffic is not routed through the
main backbone router with monitoring point.

Operating system identification runs continually and pro-
cesses data in 5-minute batches which is a typical interval for
NetFlow monitoring [3]. In each batch, an OS was assigned
to every IP from the university range according to classifi-
cation result. The logic of identification followed the process
described in [13] with the TCP/IP parameters method updated
according to [14] to use machine learning model instead of a
manually created dictionary. The results were then stored in a
database for further evaluation. At the end of our measurement,
the total number of 18,018 IP addresses were assigned at least
one operating system. From this, 43 IPs were assigned to OS
"Unknown" and nothing else. Otherwise, the classification was
able to identify at least the vendor of OS for the hosts. To
quantify the classifier usability in vulnerability assessment, we
inspect the level of detail for each IP address. Only the vendor
and nothing else was identified in 166 cases. The vendor and
product without version were identified for 7,813 addresses.
For the highest number of 10,039 addresses, the operating
system was identified with its version. Our classifier is unable

to detect update or edition of the software; hence, we cannot
compare its results this precisely.

C. Active Scanning

We have used Nmap 6.47 wrapped in Python-nmap library
version 0.6.1 to scan the university network. The arguments
for scanning were -sV to detect services running on ports
including their CPE, and arguments -n and -T5 were used to
speed up the scan.

The scan started on March 18, took 16 hours and 9 minutes
to finish, and found a total number of 5,771 hosts with state up
in Nmap terminology. From those, 3,152 hosts were detected
with all ports closed or filtered which means they are behind a
firewall and we cannot detect the services running and evaluate
them for vulnerabilities. The rest of this paper thus work only
with the hosts with at least one port with status open. Next, we
inspected the Nmap capability to identify the software behind
an open port. Nmap scanner can identify the product, version,
and CPE, where in some cases the CPE is missing even though
the product was identified. The number of hosts with the
product identified without a version is 252. Both product and
version were identified for 1,620 hosts.

Similarly, we have used specialized tool WhatWeb version
0.4.9 to detect specific software of university websites. We
have created a list of all domains registered and run the scanner
on them. This procedure discovered 382 active IP addresses
from the campus network running a webserver. From those,
only in 19 cases, the web scan was unable to identify any
CPE. The identified CPEs were 3 with the vendor only, 56
with the product and 304 IPs with a CPE to the level of the
software version.

D. Third-Party Tools

The usage of third-party scanners is quite straightforward.
Shodan Search Engine periodically scans the whole internet to
detect any potentially vulnerable devices and stores the results.
One of their scanning activity is aimed to discover known
vulnerabilities from CVEs on the targets, which is directly our
goal. Shodan allows querying its database to discover all hosts
in specified IP range on which a specific CVE was detected.

IV. DATA EVALUATION AND DISCUSSION

In this section, we correlate the data retrieved from measure-
ments and vulnerability assessments presented in the previous
section. First, we compare and discuss the monitoring cover-
age and precision of active and passive network monitoring
approaches. This summarizes the first and second research
questions of this paper that were partially answered in the
previous section. Subsequently, we correlate system identi-
fiers (CPEs) from vulnerabilities and network monitoring to
enumerate potentially vulnerable hosts in the network, which
answers the third research question of this paper. Finally, we
discuss the results and their usability for large-scale network
security assessment.

TABLE II
COVERAGE OF MONITORING TOOLS.

Method Vendor Product Version Update Total
NetFlow 0,89 % 41,67 % 53,54 % 0,00 % 96,10 %
Nmap 0,00 % 1,34 % 8,64 % 0,00 % 9,98 %
WhatWeb 0,02 % 0,30 % 1,62 % 0,00 % 1,94 %

A. Monitoring Coverage

Our first research question aims for the precision of software
recognition on hosts. To answer this, we take a look at
coverage of the methods in the sense of how many hosts
they can identify the software and on which level of detail.
The results are summarized in Table II, and the percentage
represents the fraction of hosts with SW identified to the
corresponding level taken to the total number of active hosts
in the network. We have omitted the Edition column as no
method could identify any edition neither update. Nmap was
evaluated separately for the identification of product and Nmap
produced CPE.

The active scanning methods can discover only a small
fraction of hosts, but when they do, the result is usually with
software version included. The web scan was limited only to
web servers; hence, its results are not directly comparable.
The passive methods have much higher coverage as they can
continuously monitor the network and iteratively hone the
results to identify software on almost every active host in the
network. However, passive monitoring relies on the captured
traffic and cannot influence the data processed, which hinders
its identification accuracy. As shown in the related work, the
accuracy of flow-based passive fingerprinting is 85.8 % [13],
and we need to take it into account when expressing the results
as they contain such volume of error.

B. Enumerating Vulnerable Hosts

After having done software identification and vulnerability
evaluation, the next logical question is how can we join the
results to discover vulnerable hosts in the network. We mapped
the CVEs to hosts according to a few simple rules:

• Full match of CVE CPE and detected CPE.
• Match of the vendor, product, and version with CVE,

including update and edition.
• Match of detected vendor and product with CVE for a

specific version.
• Match of the detected vendor with CVE for a product.

Doing this, we tried to avoid mapping of a vulnerability of a
specific build of a product version to a general detection of a
product. Generally, we allowed the detection to have one level
of detail less than the CVE. By this procedure, out of the 1441
CVE disclosed in 2019, we have assumed 223 CVEs to be
present on the hosts in the network. Those CVEs were mapped
on 40 distinct CPEs, where a CVE could map to multiple
CPEs or multiple CVEs map to a single CPE. The mapping is
summarized in Table III. AV/N denotes the number of CVEs
that have network as their attack vector. Finally, vulnerabilities
discovered by Shodan scanner are directly mapped on the

IP addresses without any CPE. The overlap between the
Nmap and passive monitoring was only in six CPEs which
demonstrates their different scope in found hosts and software.

TABLE III
MAPPING VULNERABILITIES TO HOSTS.

Method Unique CPEs CVEs AV/N Hosts
NetFlow 71 221 118 17,418
Nmap 169 37 13 815
WhatWeb 223 29 29 136
Shodan N/A 19 19 38

Table IV presents top vulnerabilities according to the num-
ber of affected hosts for each detection method. The results fol-
low the coverage of methods. The passive monitoring discov-
ered significantly more vulnerable hosts than active scanning.
The lower accuracy of passive methods does not does influence
mapping of generic CPEs like cpe:/o:linux:linux_kernel:* or
cpe:/o:microsoft:windows_10:*. Both methods identified simi-
lar numbers of linux-based systems, while Microsoft operating
systems were rarely seen in the results of active scanning, but
prominent in the results of passive monitoring. This might
be explained by the differences in the behavior of desktops
(mostly Windows stations) and servers (mostly linux-based)
on the network. However, when comparable, the two methods
provided similar results. The third-party scanner, Shodan,
discovered a very limited number of vulnerable hosts com-
pared to active scanning performed locally. This was expected
as it might be hindered by firewalls and other obstacles.
Interestingly, Shodan provided very similar results to an active
scan of webs using WhatWeb. Thus, we may conclude that
Shodan is a complement, rather than an alternative, to Nmap.
Overall, the results of passive monitoring can be considered
as a superset of all the other results, while the results of Nmap
do not overlap with results of Shodan, which overlaps with the
results of WhatWeb. Finally, CPEs related to operating systems
are present more often than CPEs related to applications, with
the exception of scanning with WhatWeb.

C. Discussion

The coverage of monitoring methods is the most striking
difference. Passive network monitoring can enumerate almost
every active device in the network, and even a low number of
observed packets is enough for its identification with tolerable
accuracy. Active scanning, in comparison, only provides a
view of the network in a specific moment and is influenced
by settings of all firewalls on the route between the scanner
and the target host. This result in the enumeration of a small
fraction of hosts. To increase the coverage, active scans can
be performed repeatedly at distinct times to cover the hosts
which are up for a limited amount of time during the day.
A solution for this could be a hybrid approach which detects
active devices using passive monitoring and then run the active
scan only for the hosts that are confirmed to be turned on.

The reliability of identification can be expressed by standard
metrics of accuracy, precision, and recall, but is usually very
hard to measure in large scale experiments. Passive monitoring

methods generally have lower accuracy as they depend on the
traffic they observe. They match the captured packets with a
predefined pattern or machine learning model and aims for
the highest probability of correct identification which results
in a special case of false positives important for vulnerability
assessment. A popular system, such as Windows, will suppress
an obscure system with similar traffic characteristics by dom-
inating the identification probability. However, such popular
systems are more likely to obtain patches, and we would prefer
different behavior of passive identification for vulnerability
enumeration. Active monitoring has the advantage of sending
probes crafted specially to identify the selected service, which
is reflected in their high accuracy. However, the scope of
the scan is limited by the capabilities of available tools.
Furthermore, the results depend on the settings of active
scanner whether it scans only top used ports (e.g., top 1000
used ports identifies around 93 % of ports [4]) or the whole
port range. One must always balance the scan speed and
precision when using the active approach.

The next criterion of the quality of vulnerability enumer-
ation is the level of detail of software identification. It is
understandable that passive or active measurements have limits
and are not capable of providing a specific build of the
software. On the other hand, when disclosing a vulnerability
as a CVE, the author should know exactly where he found
the vulnerability and fill in the CPE accordingly. However, as
shown in Section III-A, the majority of published CVEs con-
tain CPEs that identify only the software and its version, thus
making the usability of such CVEs and CPEs questionable.
With such generic CPE, the mapping of vulnerabilities to hosts
will always end up identifying thousands of false positives,
i.e., already patched systems. Thus, there is a need to either
identify the particular version of the system or at least find
out if the system is being updated or not.

The last topic for discussion is what kind of vulnerabilities
is interesting to enumerate in large networks. With the large
numbers of hosts and their vulnerabilities, the administrator
needs to prioritize their work. The first step could be to focus
the remotely exploitable vulnerabilities as they are more likely
to be exploited. From the 223 unique CVEs that we found in
the campus network, 120 have remote exploitability in CVSS
score. Similarly, CVEs could be prioritized by their severity
or expected impact [5]. Apart from these static metrics, we
could also use the results of enumeration which are sufficient
for rough estimates and network-wide situational awareness.
Then, the top priority might be assigned to a vulnerability in
the most hosts or to a host with most vulnerabilities.

V. CONCLUSION AND FUTURE WORK

In this paper, we demonstrated and compared several ap-
proaches to vulnerability enumeration in large heterogeneous
networks. We used a list of vulnerabilities published in NVD
for almost three months before the measurements. Using the
CPE identifiers, we were able to match vulnerabilities to hosts
in a campus network. Methods based on passive network traffic
monitoring provided the most results, but are also more likely

TABLE IV
TOP-5 VULNERABILITIES DISCOVERED IN THE NETWORK BY EACH METHOD.

Method Vulnerability CPE Nmap WhatWeb NetFlow Shodan

NetFlow CVE-2019-0663, CVE-2019-0662, CVE-2019-
0660, and more than 5 others

cpe:/o:microsoft:windows_10:*
cpe:/o:microsoft:windows_7:*
cpe:/o:microsoft:windows_8.1:*

0 0 12,626 0

Nmap

CVE-2019-9003, CVE-2019-7308 cpe:/o:linux:linux_kernel:* 739 0 2,011 0

CVE-2019-8912 cpe:/o:redhat:enterprise_linux:*
cpe:/o:linux:linux_kernel:* 729 0 2,010 0

CVE-2019-9213 cpe:/o:linux:linux_kernel:* 729 0 2,010 0
CVE-2019-8980 and 5 others cpe:/o:linux:linux_kernel:* 728 0 2,010 0

WhatWeb CVE-2019-0190 cpe:/a:apache:http_server:* 75 55 0 2
CVE-2019-9024, CVE-2019-9023 cpe:/a:php:php 0 52 2,012 18
CVE-2019-9638, CVE-2019-9637 and 5 others cpe:/a:php:php 0 52 470 13

Shodan CVE-2019-9024, CVE-2019-9023, CVE-2019-
9021, CVE-2019-9020, CVE-2019-6977 N/A 0 52 2,012 18

to be imprecise. Active network scanning achieved quite good
precision, but its scope is limited to unfiltered and responding
hosts. Both methods can be used for rough vulnerability
enumeration. Finally, third-party scanners like Shodan turned
out to be limited in scope and detection capabilities and are not
suitable for estimating the security situation in the network.

In our future work, we are going to focus more on the
correlation of outputs of passive network monitoring. Enumer-
ating hosts in the network, identifying their operating system,
and estimating which hosts are vulnerable could be further
improved by estimating which hosts are patched or running
antivirus software. Using passive monitoring, we can infer
such information using one of the approaches to passive OS
fingerprinting, i.e., detecting communication between hosts
and update servers of OS and antivirus vendors. Patched hosts
that run an updated antivirus software may then be excluded
from the enumeration of vulnerable hosts, while unpatched
hosts without an antivirus may be located more easily. Thus,
we may achieve more detailed network-wide situational aware-
ness using only passive network monitoring. Our results may
also serve as a benchmark for testing vulnerability assessment
and scanning tools, including network-wide scanners (Shodan,
Censys, etc.) and dedicated vulnerability scanners. These tools
offer many interesting features, but their scope and precision
were not yet properly measured.

ACKNOWLEDGMENT

This research was supported by the Security Research
Programme of the Czech Republic 2015 - 2020 (BV III / 1
VS) granted by the Ministry of the Interior of the Czech Re-
public under No. VI20172020070 Research of Tools for Cyber
Situational Awareness and Decision Support of CSIRT Teams
in Protection of Critical Infrastructure. Martin Laštovička is
Brno Ph.D. Talent Scholarship Holder – Funded by the Brno
City Municipality.

REFERENCES

[1] A. Kott, C. Wang, and R. F. Erbacher, Cyber defense and situational
awareness. Springer, 2014.

[2] M. R. Endsley, “Situation awareness global assessment technique
(SAGAT),” in Aerospace and Electronics Conference, 1988. NAECON
1988., Proceedings of the IEEE 1988 National. IEEE, 1988, pp. 789–
795.

[3] R. Hofstede, P. Čeleda, B. Trammell, I. Drago, R. Sadre, A. Sperotto,
and A. Pras, “Flow Monitoring Explained: From Packet Capture to
Data Analysis with NetFlow and IPFIX,” Communications Surveys &
Tutorials, IEEE, vol. 16, no. 4, pp. 2037–2064, Fourthquarter 2014.

[4] G. F. Lyon, Nmap Network Scanning: The Official Nmap Project Guide
to Network Discovery and Security Scanning. USA: Insecure, 2009.

[5] J. Komárková, L. Sadlek, and M. Laštovička, “Community based plat-
form for vulnerability categorization,” in NOMS 2018 - 2018 IEEE/IFIP
Network Operations and Management Symposium, April 2018.

[6] J. R. Goodall, A. D’Amico, and J. K. Kopylec, “Camus: Automatically
mapping cyber assets to missions and users,” in MILCOM 2009 - 2009
IEEE Military Communications Conference, Oct 2009.

[7] R. Berthier, M. Cukier, M. Hiltunen, D. Kormann, G. Vesonder, and
D. Sheleheda, “Nfsight: netflow-based network awareness tool,” in
Proceedings of LISA’10: 24th Large Installation System Administration
Conference, 2010.

[8] R. Lippmann, D. Fried, K. Piwowarski, and W. Streilein, “Passive op-
erating system identification from TCP/IP packet headers,” in Workshop
on Data Mining for Computer Security, 2003.

[9] T. Matsunaka, A. Yamada, and A. Kubota, “Passive OS fingerprinting
by DNS traffic analysis,” in Advanced Information Networking and
Applications (AINA), 2013 IEEE 27th International Conference On.
IEEE, 2013, pp. 243–250.

[10] S. Mossel, “Passive OS detection by monitoring network flows,” 2012.
[11] S. Shah, “HTTP Fingerprinting and Advanced Assessment Techniques,”

BlackHat Asia, 2003. [Online]. Available: http://www.blackhat.com/
presentations/bh-asia-03/bh-asia-03-shah/bh-asia-03-shah.pdf

[12] M. Husák, M. Čermák, T. Jirsík, and P. Čeleda, “HTTPS traffic anal-
ysis and client identification using passive SSL/TLS fingerprinting,”
EURASIP Journal on Information Security, vol. 2016, no. 1, p. 6, Feb
2016.

[13] M. Lastovicka, T. Jirsik, P. Celeda, S. Spacek, and D. Filakovsky,
“Passive OS fingerprinting methods in the jungle of wireless networks,”
in NOMS 2018 - 2018 IEEE/IFIP Network Operations and Management
Symposium, April 2018.

[14] M. Laštovička, A. Dufka, and J. Komárková, “Machine learning fin-
gerprinting methods in cyber security domain: Which one to use?” in
2018 14th International Wireless Communications Mobile Computing
Conference (IWCMC), June 2018, pp. 542–547.

[15] R. Bodenheim, J. Butts, S. Dunlap, and B. Mullins, “Evaluation of the
ability of the shodan search engine to identify internet-facing industrial
control devices,” International Journal of Critical Infrastructure Protec-
tion, vol. 7, no. 2, pp. 114 – 123, 2014.

[16] B. Genge and C. Enăchescu, “Shovat: Shodan-based vulnerability as-
sessment tool for internet-facing services,” Security and communication
networks, vol. 9, no. 15, pp. 2696–2714, 2016.

[17] Z. Durumeric, D. Adrian, A. Mirian, M. Bailey, and J. A. Halderman,
“A search engine backed by internet-wide scanning,” in Proceedings of
the 22Nd ACM SIGSAC Conference on Computer and Communications
Security, ser. CCS ’15. ACM, 2015, pp. 542–553.

[18] S. Lee, S. Shin, and B. Roh, “Abnormal behavior-based detection of
shodan and censys-like scanning,” in 2017 Ninth International Con-
ference on Ubiquitous and Future Networks (ICUFN), July 2017, pp.
1048–1052.

