
5G QoS: Impact of Security Functions on Latency
Sebastian Gallenmüller∗, Johannes Naab∗, Iris Adam†, Georg Carle∗

∗Technical University of Munich, †Nokia Bell Labs
∗{gallenmu, naab, carle}@net.in.tum.de, †iris.adam@nokia-bell-labs.com

Abstract—Network slicing is considered a key enabler to
5th Generation (5G) communication networks. Mobile network
operators may deploy network slices—complete logical networks
customized for specific services expecting a certain Quality of Ser-
vice (QoS). New business models like Network Slice-as-a-Service
offerings to customers from vertical industries require negotiated
Service Level Agreement (SLA) contracts, and network providers
need automated enforcement mechanisms to assure QoS during
instantiation and operation of slices. In this paper, we focus on
ultra-reliable low-latency communication (URLLC). We propose
a software architecture for security functions based on off-
the-shelf hardware and open-source software and demonstrate,
through a series of measurements, that the strict requirements of
URLLC services can be achieved. As a real-world example, we
perform our experiments using the intrusion prevention system
(IPS) Snort to demonstrate the impact of security functions on
latency. Our findings lead to the creation of a model predicting
the system load that still meets the URLLC latency require-
ment. We fully disclose the artifacts presented in this paper
including pcap traces, measurement tools, and plotting scripts
at https://gallenmu.github.io/low-latency.

Index Terms—5G, network slicing, URLLC, IPS, QoS, latency,
Linux, DPDK, operating system (OS)

I. INTRODUCTION

The flexibility and adaptability of 5G are considered its
main features enabling the creation of dedicated wireless net-
works customized for specific applications with a certain level
of QoS. The International Telecommunication Union (ITU)
identified three distinct services for 5G networks [1]: enhanced
mobile broadband (eMMB): a service comparable to LTE
networks optimized for high throughput; the massive machine
type communication (mMTC): a service designed for spanning
large IoT networks optimized for a large number of devices
with low power consumption; and the ultra-reliable low-
latency communication (URLLC): a service for safety-critical
applications requiring high reliability and low latency. These
different services can be realized by slicing the network into
distinct independent logical networks which can be offered as
a service adhering to customer-specific SLAs, called Network
Slice-as-a-Service. A cost-efficient way to realize network
slices is the shared use of network resources among customers,
e.g. virtualization techniques used on off-the-shelf servers.
This makes virtualization and its implications on performance
one of the crucial techniques used for 5G. Virtualization is the
natural enemy of predictability and low latency [2] posing a
major obstacle when realizing URLLC. In this paper, we in-
vestigate if and how the seemingly contradictory optimization
goals virtualization and resource sharing on the one side and
low latency and high predictability on the other side can go

together. The goals of our investigation are threefold: (i) cre-
ating a low-latency packet processing architecture for security
functions with minimal packet loss, (ii) conducting extensive
measurements applying hardware-supported timestamping to
precisely determine worst-case latencies, and (iii) introducing
a model to predict the capacity of our low-latency system for
overload prevention. Our proposed system architecture relies
on well-known applications and libraries such as Linux, the
Data Plane Development Kit (DPDK), and Snort. Besides the
specific measurements for the Snort IPS, we investigate the
performance of the underlying operating system (OS) and
libraries in use, namely Linux and DPDK, which emphasizes
that our results are not limited to Snort but are highly relevant
to other low-latency packet processing applications.

The remainder of the paper is structured as follows: Sec-
tion II demonstrates the need for a new system design of
security functions. Background and related work are presented
in Section III. In Section IV we describe our novel system
architecture which is evaluated in Section V. In Section VI
we present our model for overload prediction. Considerations
about the limitations and the reproducibility of our system
architecture are given in Sections VII and VIII. Finally,
Section IX concludes the paper by summarizing the most
relevant findings and proposes enhancements for future work.

II. MOTIVATION

The ITU [1] defines the requirements for the URLLC
service as follows: the one-way delay of 5G radio access
networks (RAN) from source to destination must not exceed
1 ms and the delivery success rate must be above 99.999%.
We demonstrate how security functions facing input/output
(IO) events, interrupts, and CPU frequency changes behave
concerning the challenging URLLC requirements.

The following example uses Snort as an inline intrusion
prevention system, i.e. every packet has to pass through Snort
which subsequently influences the delay of every packet. For
this example, all filtering rules are removed turning Snort
into a simple forwarder which is not influenced by any rule
processing. Therefore, the observed behavior represents a best-
case scenario providing a lower latency bound for Snort IPS
execution. Snort runs in a Virtual Machine (VM) providing
a realistic multi-tenant setup for 5G networks. The packet
rate is set to 10 kpackets/s, a moderate system load without
any packet drops. The measurement runs 30 s. As we are not
interested in the latency spikes caused by the application start-
up, we exclude the first second of measurements from Figure 1
and Table 1.

https://gallenmu.github.io/low-latency


TABLE I: Latencies of a Snort Forwarder

n-th percentiles

50 99 99.9 99.99 99.999

Fwd 69 µs 88 µs 107 µs 1.7 ms 2.5 ms

0 5 10 15 20 25 30
0

1

2

Measurement time [s]

L
at

en
cy

[m
s]

Fig. 1: Snort forwarder worst-case latencies

Table I shows the percentiles of latency we measured. Up
to the 99.9th percentile, the observed latency budget is low
enough to allow additional packet processing tasks while still
meeting URLLC requirements. For higher percentiles, the
latency budget is already exceeded by the basic forwarder.
Figure 1 shows a scatter plot displaying the 5000 worst-case
latencies measured over 30 s. We see that latencies exceeding
the 1 ms latency budget are not only occurring at the beginning
of a measurement due to cache warm-up or other ramp-up
effects but in an irregular and unpredictable pattern throughout
the entire measurement. The latency spike pattern did not
change over time, therefore, we consider this being the steady-
state behavior of our investigated application.

Thus, a different system design for security functions is
needed to meet the strict requirements of URLLC services.
In the following, we demonstrate techniques and frameworks
creating a low-latency software stack to show that meeting
URLLC requirements is possible while using the same hard-
ware as for this motivating example.

III. BACKGROUND AND RELATED WORK

After introducing the challenges of 5G, this section focuses
on techniques impacting the delay and jitter caused by soft-
ware packet processing systems.

a) URLLC in Industry 4.0: 5G has a strong focus on
industrial Internet of Things (IoT) like Industry 4.0. These
industrial networks will be highly heterogeneous in the sense
of functionality, performance, and security protection. Net-
work slicing is considered as a mechanism to handle the
diverse set of requirements to the network and it is a challenge
to construct slices with strict end-to-end (e2e) latency and
reliability guarantees: industrial applications like control and
alarm systems may require an e2e-latency in the range of
0.5 to 5 ms [3]. To address the problem, wireless URLLC
is introduced in 5G and requires a new system design for
the radio access network, called new radio (NR). The 3rd
Generation Partnership Project (3GPP) standardization orga-
nization studied the URLCC requirements for NR [4]. But
URLLC is not just about new radio. Besides the importance

of latency and jitter, URLLC use cases like factory automation,
remote robotics, and smart city automation have stringent
requirements on availability [5]. Thus, URLLC is reflected in
new concepts for operation and maintenance (O&M) including
intelligent monitoring of network failures and cybersecurity
attacks, surveillance, and instant actions.

Today, solutions to perform automated security management
in and across slices while guaranteeing performance and
security requirements are missing. Our target is the definition
of an architecture and mechanisms for security (monitoring)
functions to guarantee the QoS during design, deployment,
and modification of slices for URLLC use cases.

b) Polling vs. interrupts: One possible cause for inter-
rupts in an OS is the occurrence of IO events, such as arriving
packets, to be handled by the OS immediately. This may
cause short-time disruptions for currently running processes
due to interrupt handling. The ixgbe network driver and Linux
employ moderation techniques to minimize the number of
interrupts and therefore the influence on processing latency [6].
Both techniques were introduced as a compromise between
throughput and latency optimization. For our low-latency
design goal, neither technique is optimal, as the interrupts—
although reduced in numbers—still lead to irregular variations
in the processing delay which should be avoided. DPDK [7],
a framework optimized for high-performance packet process-
ing, prevents triggering interrupts for network IO entirely.
It ships with its own userspace driver avoiding interrupts,
instead packets must be polled actively. This leads to a more
predictable performance with little variation for execution
times. Execution times are stabilized further due to DPDK’s
preallocation of memory and a lack of costly context switches
between userspace and kernelspace. However, active polling
requires the CPU to wake up regularly increasing energy
consumption.

c) CPU features: Numerous guides list CPU and OS
features leading to unpredictable behavior for application
performance on which the following recommendations are
based on [8]–[10]. HyperThreading (HT) or simultaneous
multithreading (SMT) is a feature of modern CPUs which
allows addressing physical cores (p-cores) as multiple virtual
cores (v-cores). Each p-core has its own physically separate
functional units (FU) to execute processes. However, multiple
v-cores are hosted on a p-core sharing FUs between them.
Zhang et al. [11] demonstrate that sharing FUs between v-
cores can impact application performance when executing
processes on v-cores instead of the physically separate p-cores.
Another feature of modern CPUs are sleep states which lower
CPU clock frequency and power consumption. Switching the
CPU from an energy-saving state to an operational state leads
to wake-up latencies. Schöne et al. [12] measured wake-up
latencies between 1 µs and 40 µs for Intel CPUs depending on
the state transition and the processor architecture.

Despite having physically separate FUs, p-cores share a
common last level cache (LLC). Therefore, processes running
on separate p-cores can still impact each other competing on
the LLC. Herdrich et al. [13] observed a performance penalty

https://gallenmu.github.io/low-latency/web/motivation.html


of 64% for a virtualized, DPDK-accelerated application when
running in parallel with an application utilizing LLC heavily.
The uncontended application performance can be restored
for the DPDK application by dividing the LLC statically
between CPU cores utilizing the cache allocation technology
(CAT) [13] of modern Intel CPUs.

d) OS features: Besides interrupts caused by IO events,
an OS uses interrupts for typical tasks such as scheduling or
timers. Patches for the Linux kernel [14] were introduced to
create a more predictable behaving kernel, e.g. by reducing
the interrupt processing time. Major distributions, such as
Debian, provide this, so-called PREEMPT RT kernel as part
of their package repository. In addition, the Linux kernel offers
several command line arguments influencing latency behavior.
Cores can be excluded from the regular Linux scheduler via
isolcpu. Isolated CPU cores should be set to rcu_nocb
lowering the number of interrupts for the specified cores.

e) Low-latency VM IO: Transferring packets into/out of
a VM leads to significant performance penalties compared
to bare-metal systems. Emmerich et al. [2] compared packet
forwarding in bare-metal and VM scenarios, demonstrating
that VMs can introduce high tail latencies of 350 µs and
above. They also demonstrated that DPDK can help improving
forwarding latencies but must be used on the host system and
the VM. Furthermore, modern network interface cards (NICs)
supporting single root IO virtualization (SR-IOV) can be split
into several independent virtual functions, which can be used
as independent NICs and can be bound to VMs exclusively.
In this case, virtual switching is done on the NIC itself,
minimizing the software stack involved in packet processing.
In an investigation by Lettieri et al. [15] SR-IOV, among other
techniques for high-speed VM-based network functions, is
one of the fastest techniques with the lowest CPU utilization.
Therefore, latency performance of SR-IOV is superior to
software switches, e.g. Xu and Davda [16] measured an almost
10-fold increase of worst-case latencies for a software switch.
Xiang et al. [17] create and evaluate an architecture for low
latency network functions. Their architecture provides sub-
millisecond latencies, but they do not investigate the worst-
case behavior. Zilberman et al. [18] give an in-depth latency
analysis of various applications and switching devices. They
stress the need for tail-latency analysis to comprehensively
analyze application performance.

The topic of VM-based network functions has been exten-
sively researched in literature [15]–[17]. However, given our
motivating example in Section II and the importance of the
URLLC service, we argue, similar to Zilberman et al. [18],
that the crucial worst-case behavior needs close attention.
In this work, we aim to create the lowest latency system
achievable utilizing available applications running on off-the-
shelf hardware.

There are also embedded systems such as jailhouse [19] or
PikeOS [20] being able to partition the available hardware
providing real-time guarantees for user processes or VMs.
However, they are either not compatible with standard Linux
interfaces such as libvirt or replace the host OS entirely.

Host

P-core 0

VM

P-core 1 P-core 2 P-core 3

unused

NIC

VF

N H

N H

Fig. 2: Architecture overview

Therefore, the tool support for these specialized hypervisors
is worse compared to the more widespread solutions such as
Xen or KVM utilizing the libvirt software stack. Thus, we do
not consider these specialized solutions for this work but rely
on well-established software tools and hardware.

IV. ARCHITECTURE DESIGN

Figure 2 shows the design of our low-latency VM running
on a CPU with four physical cores (p-cores). To avoid any
influence of v-cores, SMT is disabled for this system. A
PREEMPT RT kernel runs on the host and the VM to min-
imize interrupt latencies for the virtualized packet processing
application. We use the core isolation feature of Linux to
dedicate cores to specific processes aiming to minimize the
QoS impact between cores and applications running on them.
The OS of the host is running on p-core 0 exclusively, with
kernel arguments isolating p-cores 1 and 2 for exclusive VM
usage. On the VM itself, the OS is running on p-core 1
exclusively, with its kernel arguments set to p-core 2 being
isolated. P-core 2, isolated from both host and VM, runs the
application relying on DPDK and Snort. The core isolation
feature complements DPDK’s design philosophy of statically
pinning packet processing tasks to cores. Utilizing SR-IOV,
the NIC is split into virtual functions (VF). One VF is passed
through to the VM being attached to p-core 2. The critical
network path and its associated CPU resources are isolated
from OS operation to provide a stable service for latency-
critical processes. We disable the energy-saving states in the
bios or set them to the most reactive state to avoid any delays
caused when waking up the CPU. Additionally, we use CAT
to statically assign LLC to cores.

V. EVALUATION

The following measurement series characterizes the latency
behavior of the proposed architecture.

A. Setup

Figure 3 shows the setup used for testing based on three
machines. The Device under Test (DuT) runs Snort forwarding
traffic between its physical interfaces, the other two machines
run the packet generator MoonGen [21]. The load generator
(LoadGen) acts as traffic source/sink generating/receiving the
test traffic, the third machine (timestamper) is monitoring
the entire traffic received/sent by the DuT. The timestamper
monitors the traffic between DuT and LoadGen via passive
optical Terminal Access Points (TAP), timestamping every



DuT LoadGen
J

I

J

I

Timestamper

J J

Fig. 3: Setup with Snort as a Device under Test (DuT),
MoonGen as a LoadGen, and a Timestamper

packet in hardware with a 12.5 ns resolution [22]. Being
passive, the optical TAPs do not introduce variation to the
timestamping process. Timestamping every single packet only
works for receiving ports. Therefore, we timestamp on a
separate host instead of the LoadGen itself.

The three servers are equipped with Supermicro mainboards
(X10SDV-TP8F) featuring an Intel Xeon D-1518 CPU (4
cores, 2.2 GHz) and on-board Intel X552 NICs (dual-port
SFP+, 10G Ethernet). On the DuT we use Debian buster
(kernel v4.19) as OS, KVM as hypervisor, and the current
beta of Snort (v3.0.0) [23] together with a DPDK-enabled
data acquisition plugin (daq, v2.2.2) [24]. Section VIII lists
the repositories, commit ids of the investigated applications,
configuration data, and used measurement tools. The VM
configuration is shown in Figure 2. Via Intel CAT [13], we pin
4 MiB of the LLC to the core running the packet processing
application, the remaining 2 MiB are shared among the other
cores.

We opt for UDP-only test traffic to prevent TCP conges-
tion control from impacting the measured latency. The UDP
destination port is set to 53 to trigger Snort’s rules for DNS
processing. The payload of our generated traffic does not
contain DNS information but a counter to efficiently track
packet loss and forwarding latency. We use constant bit rate
traffic (CBR) for testing and dedicate Section V-D to measure
the impact of bursty traffic.

B. Measurements

The following measurements investigate the performance of
our proposed architecture regarding the URLLC requirements.
Therefore, we aim for a packet delivery rate above 99.999 %
and a latency below 1 ms. We do not replicate the entire e2e
communication path of 5G but only a security function located
in the 5G backend network, therefore we aim for a lower
latency goal. Faced with a similar problem Xiang et al. [17]
calculated a latency goal of 350 µs for their network function
chain. In this paper, we apply the same latency goal to our
measurements quantifying the performance of Snort. We try
to isolate the influence of the IO framework (DPDK), Snort
overhead, and rule processing through separate measurements.
Therefore, we test three related packet forwarding applica-
tions: (i) DPDK-l2fwd, being the most simple forwarder in our
comparison, representing the minimum latency of IO without
any processing happening; (ii) Snort-fwd, forwarding packet
with Snort on top of DPDK, which quantifies the overhead
caused by Snort without any traffic filtering happening; and

(iii) Snort-filter, applying the Snort 3 community ruleset [25]
to the forwarded traffic. The filter scenario does not drop any
packet, because we are only interested in the overhead caused
by rule application.

We measure between 10 and 120 kpackets/s incremented in
10 kpackets/s steps. Due to space limitations, we only show
three selected rates for every scenario in Table II. For each
scenario, we list the minimal rate of 10 kpackets/s, the last
rate before overloading the DuT, and the first rate when
the DuT was overloaded. The actual packet rates depend on
the individual scenario. Being able to process millions of
packets per second without overloading, we could not overload
the DPDK forwarder within the selected packet rates [26].
Therefore, we present 10, 60, and 120 kpackets/s representing
low, medium, and maximum load in this case.

1) Hardware: Initially, we test the forwarding applications
in a non-virtualized setup to measure the performance baseline
(cf. Table II, mode: HW).

a) DPDK-l2fwd: We measure the behavior of the DPDK
forwarder for packet rates of 10, 60, and 120 kpackets/s. The
median forwarding latency is 3.1 µs and increases slightly to
a maximum of 3.4 µs for the 99th percentile indicating a
stable latency behavior. Only the rare tail latencies, i.e. ≥
99.9th percentile increase to a maximum value of 16.0 µs.
The overall latency values do not differ significantly between
measurements. We did not observe any packet loss for the
three tested rates.

b) Snort-fwd: Running Snort on top of DPDK in-
creases latency significantly. The median for rates of 10
and 80 kpackets/s is almost the same with 14.5 and 14.4 µs
respectively. This new median is almost as high as the worst-
case latency for the DPDK forwarder. Tail latencies increase
further and seem to depend on the packet rate, i.e. tail latencies
increase for higher packet rates. At a rate of 80 kpackets/s,
packet drops can occur. A closer analysis showed that a
consecutive sequence of packets was lost only at the beginning
of the measurement, despite the previous warm-up phase.
As packet loss did not occur later we do not consider this
configuration as an overload scenario. We consider the rate of
90 kpackets/s as an overload scenario which is characterized by
the noticeable packet loss (3.3%) and the over thousandfold la-
tency increase compared to the median latency of the previous
measurements. The latency increase in the overloaded scenario
is the result of packets not being processed fast enough leading
to buffers filling up. Therefore, the worst-case latency remains
at this high level for all observed percentiles.

c) Snort-filter: For this measurement, the Snort for-
warder applies the community ruleset. Rule application in-
troduces additional costs resulting in a latency offset of
roughly 3 µs compared to the previous measurement at 10 and
60 kpackets/s. Only the worst-case latencies differ noticeably
for the latter. The overload scenario already occurrs at a lower
rate of 70 kpackets/s due to the higher processing complexity
indicated by the high tail latencies. Loss rates and median
would still be tolerable, however, the tail latencies show an
increase by a factor of over 1000 compared to the median.



TABLE II: Latencies of different software systems

Mode Rate Loss n-th percentiles

[kpackets/s] [%] 50 99 99.9 99.99 99.999 Max.

DPDK-l2fwd

HW 10 - 3.1 µs 3.4 µs 7.7 µs 12.2 µs 13.4 µs 13.6 µs
HW 60 - 3.1 µs 3.3 µs 8.3 µs 13.5 µs 14.4 µs 16.0 µs
HW 120 - 3.1 µs 3.3 µs 8.1 µs 13.2 µs 14.3 µs 14.6 µs

VM 10 - 3.3 µs 4.0 µs 14.7 µs 17.6 µs 19.0 µs 19.2 µs
VM 60 - 3.3 µs 4.0 µs 15.4 µs 18.9 µs 19.9 µs 21.5 µs
VM 120 - 3.3 µs 3.9 µs 16.6 µs 20.2 µs 21.3 µs 22.9 µs

Snort-fwd

HW 10 - 14.5 µs 24.7 µs 29.7 µs 32.4 µs 33.1 µs 33.1 µs
HW 80 0.1 14.4 µs 29.9 µs 43.7 µs 46.2 µs 47.7 µs 50.6 µs
HW 90 3.3 30 609.5 µs 30 834.8 µs 30 882.7 µs 30 915.3 µs 30 936.1 µs 30 959.1 µs

VM 10 - 15.9 µs 37.6 µs 58.6 µs 66.8 µs 68.0 µs 68.6 µs
VM 80 0.1 18.8 µs 73.9 µs 98.8 µs 115.6 µs 117.7 µs 121.9 µs
VM 90 7.1 2469.6 µs 2657.9 µs 2679.8 µs 2692.2 µs 2700.6 µs 2708.3 µs

Snort-filter

HW 10 - 17.4 µs 28.2 µs 33.1 µs 35.8 µs 36.4 µs 36.6 µs
HW 60 0.0 17.1 µs 29.0 µs 34.1 µs 36.1 µs 50.4 µs 51.5 µs
HW 70 0.0 79.0 µs 24 897.2 µs 27 521.2 µs 27 847.0 µs 27 947.1 µs 27 992.9 µs

VM 10 - 18.4 µs 40.9 µs 63.1 µs 71.8 µs 73.4 µs 73.7 µs
VM 60 0.1 17.5 µs 62.2 µs 92.9 µs 101.1 µs 114.7 µs 115.7 µs
VM 70 3.0 3036.9 µs 3270.2 µs 3294.4 µs 3313.1 µs 3326.8 µs 3342.5 µs

Note that when comparing the load scenarios before overload
this forwarder processes packets with a lower latency than its
respective counterpart for the Snort forwarder. We attribute
this to the relative load which is higher for the Snort-fwd, i.e.
it is more overloaded at 90 kpackets/s than the Snort-filter at
a rate of 70 kpackets/s.

2) Virtualization: Processing packets in virtualized environ-
ments can have a significant impact on latency. To measure
the impact, we repeated the previous measurements in a
virtualized environment (cf. Table II (Mode: VM), Figure 2).

a) DPDK-l2fwd: In the virtualized environment, latency
increases compared to the non-virtualized measurements. The
median latency increases by 6%, but the tail latencies can
increase by almost 60%. Table II shows that up to the 99th
percentile packet rate has little influence on latency. For higher
percentiles, a trend towards higher latencies seems to manifest.

b) Snort-fwd: Compared to its hardware counterpart la-
tency increases by 30% for the median and up to more than
100% for the tail latencies. We observe the same initial packet
loss in the non-overloaded case. Packet loss in the overloaded
case is higher, as packet processing is more expensive in
the VM for the same packet rate. In the overloaded case
latencies are over 10 times lower compared to the hardware
measurements still violating the 1 ms goal. Measurements
show that enabling SR-IOV leads to the decrease for worst-
case latencies due to smaller buffers, an observation confirmed
by Bauer et al. [27].

c) Snort-filter: Comparing Snort-filter in virtualized and
non-virtualized environments shows that the median latency
increase is ≤ 1 µs. The values for the tail latencies increase
by a factor of two or more for the virtualized environment.

Looking at Table II we can conclude that URLLC-compliant
latency is only violated if the DuT is overloaded. Overload
latencies rise by a factor of 1000 for the HW scenario and

by a factor of 100 for the VM scenario. Without overloading
the system the latencies are below URLLC requirements even
for the most challenging scenario. When considering the
worst-case scenario, Snort-filter (HW), a latency of 50.4 µs
at the URLLC-required 99.999th percentile was measured.
The overall observed worst-case latency for the VM scenario
for the 99.999th percentile is 117.7 µs. Despite the latency
difference of over 100% between HW and VM, both worst-
case scenarios—HW and VM—do not violate our latency goal
of 350 µs. In fact, the remaining latency budget allows for even
more complex packet processing tasks.

C. Tail latencies

Previously, we have shown that the measured tail latencies
in the non-overloaded scenario do not impair URLLC latency
goals. In this section, we want to investigate the effects causing
the tail latencies to exclude potentially harmful consequences
such as latency spikes or even short-term overload. Increased
tail latencies are already present in the DPDK-l2fwd scenario
indicating that their causes are already part of the basic packet
processing steps. We investigate the differences between the
bare-metal deployment and the virtual environment.

a) HW: We analyze the tail latencies in the non-
overloaded scenarios. Figure 4a shows a scatter plot of the
5000 highest latency events measured over 30 s. The figure
shows a horizontal line at approx. 3.4 µs, the area where the
majority of latency events happen matching the 99th percentile
given in Table II, Line 1. Above this horizontal line, a linear
regular pattern over the 30-second measurement period is
visible. We assume that the latency events above the horizontal
line of 3.4 µs are a result of packets being delayed due to
interrupt processing in the OS.

A closer investigation identified this pattern above the
horizontal line as an interplay of two clocked processes—



OS interrupt generation on the DuT and generated CBR
traffic pattern on the LoadGen. The pattern is created by an
effect known as aliasing. Here we use the generated traffic as
sampling process trying to detect interrupts. As the interrupts
are too short (≤ 13.6 µs) to be correctly detected at the
generated traffic rate (100 µs inter packet gap) we undersample
leading to the observed pattern. The OS interrupt counters
(/proc/interrupts) revealed local timer interrupts (loc)
and IRQ work interrupts (iwi) to be the only interrupts
triggered on the packet processing core of the DuT during
operation. We measured, using the time stamp counter (TSC)
of our CPU, constant execution times of 8.2 µs for the iwi and
5.5 µs for the loc. The two different execution times are visible
in Figure 4a as longer and shorter lines. Their maximum values
of 10.9 and 13.6 µs differ because additional tasks such as
packet IO and context switches are included. Packets were
generated at a rate of 10 kHz, and we measured interrupts
being generated at a rate of 250 Hz. Locs and iwis happen in
a regular pattern, an iwi is triggered after every second loc.

To verify if the interrupts are the cause of the observed
pattern, we create a script simulating the described process
using the measured frequencies and processing times. Fig-
ure 4a shows similar patterns for the simulation confirming our
assumptions. Measurement and simulation are highly sensitive
to the measured maximum values, the traffic rates, and the
interrupt rate. Even little parameter changes, e.g. restarting
the load generator, can lead to changes in the generated traffic
rate and therefore lead to different patterns. The same happens
if the traffic rate is increased or lowered. This means that
repeating the same measurements may lead to patterns with
different shape and orientation. However, a regular pattern can
be observed as long as the interrupt process is undersampled.

b) VM: Figure 4b shows the 5000 highest latency events
measured for the DPDK-l2fwd (VM) scenario. The entire
graph is shifted, the horizontal line is shifted to approx.
4.4 µs, the long interrupt latency is approx. 19 µs, the shorter
approx. 16 µs, indicating the higher overhead when running in
a VM. The number of events above the horizontal line roughly
doubled. This can be explained that now two OSes (VM host
and VM) trigger interrupts. We observed the same interrupts
for the VM host as in our HW measurement, for the VM OS
we only observed loc interrupts triggered at a rate of 250 Hz.

Despite our efforts to lower the number of interrupts by
applying DPDK, there still remain a number of interrupts
triggered by the OS itself causing latency spikes. Due to their
scarcity and limited duration we do not consider them being
harmful to our pursuit of building a latency-optimized system,
when considering the URLLC latency goals.

D. Influence of batch sizes

All previously described measurements use CBR traffic.
For CBR the pauses in between packets can be used for
packet processing without delaying subsequent packets and
leading to optimal latency results. However, real traffic may
arrive in bursts of packets without pauses between them.
There, packet processing may delay subsequent packets. The

0 5 10 15 20 25 30
0

5

10

15

20

Measurement time [s]

L
at

en
cy

[µ
s]

Simulation Measurement

(a) HW (cf. Table II, Line 1)

0 5 10 15 20 25 30
0

5

10

15

20

Measurement time [s]

L
at

en
cy

[µ
s]

Measurement

(b) VM (cf. Table II, Line 4)

Fig. 4: 5000 worst-case latency events measured for DPDK-
l2fwd at 10 kpackets/s

following measurements show the impact of bursty traffic on
the latency.

We define a block of packets arriving back-to-back on the
wire as a burst and a block of packets being accepted or
processed on a device as batch. Batched packet processing
leads to a higher throughput for packet processing frameworks
like DPDK [26]. The DPDK-enabled Snort accepts batches of
up to 32 packets, processes them, and then releases the batch
of packets only after all batched packets have been processed.
Figure 5a shows the results of this processing strategy for
different batch sizes. All graphs show areas of very steep
increases indicating a large number of packets sharing the
same latency, i.e. a batch of packets is sent out. Starting with
batch size 4 flat areas become visible indicating that no packets
were observed with this latency, i.e. the batch is processed
without any packet sent out. The flat areas are followed by
steep increases where the batches are sent out and the flat areas
grow with increasing batch sizes as batch processing times
increase. For a 64-packet burst, a two-step pattern is observed
as two batches of 32 packets are processed in sequence. The
plots show few packets with lower latency for every burst size.
This happens if only a few packets of a burst are put into a
batch, processed, and sent out before the remaining packets of
the burst are processed.

As already processed packets are delayed until the batch
is fully processed, the median delay is raised significantly.
For low-latency optimized systems, smaller batch sizes can
be beneficial. Therefore, we change the batch size from 32 to
the minimal DPDK-supported batch size of 4. The results can
be seen in Figure 5b, where the CDFs display a linear trend

https://gallenmu.github.io/low-latency/web/worstcase.html
https://gallenmu.github.io/low-latency/web/worstcase.html


0 200 400 600 800 1 000
0

0.5

1

Latency [µs]

Pe
rc

en
t

burst 2 burst 16
burst 4 burst 32
burst 8 burst 64

(a) 32-batch processing

0 200 400 600 800 1 000
0

0.5

1

Latency [µs]

Pe
rc

en
t

burst 2 burst 16
burst 4 burst 32
burst 8

(b) 4-batch processing

Fig. 5: Latency when forwarding using Snort-filter (VM) at
10 kpackets/s for different burst sizes

for growing burst sizes. This results in a significantly lower
median for burst sizes of 16 and above with little influence on
the maximum observed latency.

We have shown that the blocking behavior of this batch-
processing strategy may increase latency unnecessarily. For
low-latency systems, small batch sizes or even no-batch pro-
cessing decrease latency. However, large bursts may cause
latency violations due to short-time overload scenarios. In our
case, burst sizes of 32 and 64 lead to latencies not meeting
the URLLC criteria any longer for the chosen scenario.

E. Energy consumption

Our proposed low-latency configuration requires deactivat-
ing energy-saving mechanisms. Therefore, we compare the
system configuration used for testing with a configuration with
default bios settings and kernel arguments for energy saving
enabled. For the power measurement, we use the metered
power outlet Gude Expert Power Control 8226-1. We measure
the power consumption of the entire server.

Table III lists the measured power values. We observe
no differences in power consumption between the different
applications (DPDK, Snort-fwd, Snort-filter). We measure the
server while idling, while the application is in an available
state, and while the application is actively processing packets.
With power saving enabled there is a 14-watt difference
between idle and transmitting state and a 3-watt difference
between running and transmitting. The latter, rather low
difference is a consequence of DPDK’s design, relying on
active polling, therefore, keeping the system (re-)active even
without packet transfer. This intentional design decision of
DPDK makes it a well-suited framework for high-performance

TABLE III: Power consumption

Power saving Idle Available Processing

enabled 31 W 42 W 45 W
disabled 46 W 47 W 47 W

CPU

NIC

DMA

RAM

M.bus

CPU

ttransfer
tcpu

Fig. 6: Sources of delay on modern architectures

scenarios where energy consumption is always high, however,
DPDK is a poor choice for scenarios with low load because
of the high energy consumption.

Disabling power saving increases the previous maximum
power consumption by 1 W for the idle state and by 2 W for
the other states. Comparing power saving enabled and disabled
shows that low-latency configuration does not come for free.
In scenarios with long idling periods, power consumption and
therefore costs raise up to 48%. For other load scenarios the
increase is lower (12% and 4%), i.e. if system load is already
high for the traditional systems the additional costs for the low-
latency configuration are significantly lower. The CPU used in
our test system has a thermal design power (TDP) of 35 W,
running more powerful CPUs with energy saving disabled may
introduce even higher differences between idle and running
states and therefore higher costs.

VI. MODEL

Our measurements have shown that the packet processing
system must not be overloaded to adhere to URLLC require-
ments. Therefore, we use our measurements to deduce a model
calculating the maximum packet rate our system can handle
without overloading.

Figure 6 shows the path of a packet through the different
system components and their according time consumptions t.
The time a packet travels through the system (ttransfer) includes
delays caused by propagation, serialization, and the transfer
from NIC to RAM. tCPU denotes the time the CPU processes
the packet. As packets are received and sent, the path of a
packet involves ttransfer twice assuming symmetrical receiving
and sending delays. This leads to Equation 1 for calculating
the e2e delay of a single packet.

te2e = tcpu + 2ttransfer (1)

In previous work [26] we demonstrated that the CPU is
the main bottleneck in software packet processing. Especially
considering the low packet rates (≤ 120 kpacket/s) neither the

https://gallenmu.github.io/low-latency/web/burst.html
https://gallenmu.github.io/low-latency/web/burst.html


TABLE IV: Calculated CPU times and maximum rate

DPDK-l2fwd Med. latency CPUtime Max. Rate
2ttransfer te2e tCPU Rmax

[µs] [µs] [µs] [kpkts/s]

S.-fwd HW 3.1 14.5 11.4 87.4
VM 3.3 15.9 12.6 78.7

S.-filter HW 3.1 17.4 14.3 69.7
VM 3.3 18.4 15.1 65.6

TABLE V: Trigger rates (r) & delays (d) of interrupts

lochost iwihost locVM dΣ per s

r [Hz] d [µs] r [Hz] d [µs] r [Hz] d [µs] [µs]

HW 166.7 10.9 83.3 13.6 - - 2949.9
VM 166.7 17.5 83.3 19.2 250 17.5 8891.6

Ethernet bandwidth, the NIC, nor the involved system busses
are overloaded. Subsequently, it is crucial to determine the
required calculation time on the CPU tCPU for calculating the
maximum packet rate. Table II lists the measured e2e delays
of the packets (te2e) not tCPU . However, the DPDK-l2fwd
scenario—representing the most basic forwarder possible with-
out any processing for the packet—involves only a minimal
amount of tCPU . Therefore, we can use the median value of
the DPDK-l2fwd measurement as a approximation of 2ttransfer.
Using that information, we can calculate an approximation of
tCPU for Snort-fwd and Snort-filter, by deducting the median
measured in the DPDK-l2fwd scenario from their respective
e2e delays. The results of the approximated tCPU are given in
Table IV.

Section V-C shows that a CPU core also performs interrupts.
Depending on the scenario, the interrupt rates, and the costs
of the individual interrupts Table V lists CPU time spent on
interrupts per second dΣ. Knowing the amount of CPU time
spent on packet processing per packet tCPU and the CPU time
spent on interrupt processing per second dΣ the Equation 2
can be deduced. Maximum packet rates calculated according
to this equation are listed in Table IV.

Rmax =
1 s – dΣ

tCPU
(2)

Comparing the calculated maximum rates in Table IV with
the actual maximum rates measured in Table II shows that
Equation 2 can predict the overload correctly for three out of
four scenarios. For the Snort-fwd (VM) scenario the maximum
rate is underestimated with the overload not happening at the
predicted rate 78.7 kpackets/s but beyond 80 kpackets/s. We
conclude that the prediction approximates a lower bound for
the maximum packet rate. A conservative approximation is ad-
visable in this scenario especially considering the devastating
impact of overload on latency and QoS.

VII. LIMITATIONS

Despite its benefits in terms of latency and jitter the pro-
posed architecture has disadvantages. Statically assigning VMs

to cores does not allow sharing a CPU core between several
VMs, at least not the isolated cores dedicated to realtime
applications. This increases hosting costs for such a VM.
Migrating VMs or scaling the VM setup is not possible as
SR-IOV does not allow VM migration due to the non-trivial
replication of the NIC’s hardware state [16]. Disabling energy-
saving mechanisms increases energy costs for the server (cf.
Section V-E), air conditioning, and increases the thermal load
on the hardware which in turn may require earlier replacement
additionally raising costs.

VIII. REPRODUCIBILITY

As part of our ongoing effort towards reproducible network
research, we release the pcap traces and plotting tools used
in the measurements of this paper. Further, we release our
measurement tools and source code of the investigated soft-
ware including a detailed description for others to replicate
our measurements on https://gallenmu.github.io/low-latency.
Figures 1, 4 and 5 link to a detailed description of the used
source code, experiment scripts, generated data, and plotting
tools. The website lists additional measurements which were
cut from the paper due to space limitations (cf. Table II).

IX. CONCLUSION

Our paper shows that—in contrast to non-optimized
systems—a carefully tuned system architecture can meet the
demanding latency and reliability requirements of future 5G
URLLC services. Hardware-timestamped latency measure-
ments of the entire network traffic, allow for a detailed analysis
of worst-case latencies, bursty traffic, and system load. We
measured a virtualized system running a real-world intrusion
prevention system causing a worst-case latency of 116 µs on
a steady-state system, leaving enough room for subsequent
packet processing tasks. Further, we show bursty traffic caus-
ing short-time overloads violating the latency requirements and
introduce a strategy to reduce its impact. By publicly releasing
our experiment scripts and data we provide the foundation for
others to reproduce all measurements described in this paper.

We introduce a model to predict system overload to avoid
the destructive effect of overload on latency. The benefits
of this model are its simplicity requiring only the median
forwarding latency for IO and the interrupt processing times.

Despite the increase in power consumption (48% for a
low-load and 4% for a high-load scenario), we demonstrate
that off-the-shelf hardware and available open-source software
can achieve consistently low latency. Relying on off-the-
shelf hardware and well-known tools simplifies the transition
towards URLLC.

For future work, we want to investigate the impact of
hosting different 5G service classes on the same system
especially regarding potential QoS cross-talk and potential
mitigation strategies.

X. ACKNOWLEDGEMENTS

This work was supported by the Nokia university dona-
tion program and by the DFG-funded projects Moonshine &
MoDaNet (grant no. CA 595/7-1 & CA 595/11-1).

https://gallenmu.github.io/low-latency


REFERENCES

[1] ITU. Report ITU-R M.2410-0 (11/2017) Minimum requirements related
to technical performance for IMT-2020 radio interface(s). https://www.
itu.int/dms pub/itu-r/opb/rep/R-REP-M.2410-2017-PDF-E.pdf. Ac-
cessed: 2019-08-28.

[2] Paul Emmerich, Daniel Raumer, Sebastian Gallenmüller, Florian Wohl-
fart, and Georg Carle. Throughput and Latency of Virtual Switching
with Open vSwitch: A Quantitative Analysis. July 2017.

[3] Philipp Schulz, Maximilian Matthe, Henrik Klessig, Meryem Simsek,
Gerhard Fettweis, Junaid Ansari, Shehzad Ali Ashraf, Bjoern Almeroth,
Jens Voigt, Ines Riedel, et al. Latency Critical IoT Applications in 5G:
Perspective on the Design of Radio Interface and Network Architecture.
IEEE Communications Magazine, 55(2):70–78, February 2017.

[4] Study on Scenarios and Requirements for Next Generation Access
Technology. Technical report, 3GPP TR 38.913 V14.2.0, May 2017.

[5] Rapeepat Ratasuk. Ultra Reliable Low Latency Communication for 5G
New Radio, October 2018. IEEE Workshop on 5G Technologies for
Tactical and First Responder Networks.

[6] Paul Emmerich, Daniel Raumer, Alexander Beifuß, Lukas Erlacher,
Florian Wohlfart, Torsten M. Runge, Sebastian Gallenmüller, and Georg
Carle. Optimizing Latency and CPU Load in Packet Processing Systems.
In International Symposium on Performance Evaluation of Computer
and Telecommunication Systems (SPECTS 2015), Chicago, IL, USA,
July 2015.

[7] The Linux Foundation. Data Plane Development Kit (DPDK). https:
//dpdk.org. Accessed: 2019-08-28.

[8] Mark Beierl. Nfv-kvm-tuning. https://wiki.opnfv.org/pages/viewpage.
action?pageId=2926179. Accessed: 2019-08-28.

[9] Joe Mario and Jeremy Eder. Low Latency Performance Tuning for
Red Hat Enterprise Linux 7. http://people.redhat.com/jmario/docs/
201501-perf-brief-low-latency-tuning-rhel7-v2.0.pdf. Accessed: 2019-
08-28.

[10] AMD. Performance Tuning Guidelines for Low Latency Response on
AMD EPYC-Based Servers. http://developer.amd.com/wordpress/media/
2013/12/PerformanceTuningGuidelinesforLowLatencyResponse.pdf.
Accessed: 2019-08-28.

[11] Yunqi Zhang, Michael A Laurenzano, Jason Mars, and Lingjia Tang.
SMiTe: Precise QoS Prediction on Real-System SMT Processors to Im-
prove Utilization in Warehouse Scale Computers. In 2014 47th Annual
IEEE/ACM International Symposium on Microarchitecture, pages 406–
418. IEEE, December 2014.

[12] Robert Schöne, Daniel Molka, and Michael Werner. Wake-up Latencies
for Processor Idle States on Current x86 Processors. Computer Science-
Research and Development, 30(2):219–227, July 2015.

[13] Andrew Herdrich, Edwin Verplanke, Priya Autee, Ramesh Illikkal, Chris
Gianos, Ronak Singhal, and Ravi Iyer. Cache QoS: From concept to
reality in the Intel® Xeon® processor E5-2600 v3 product family. In
2016 IEEE International Symposium on High Performance Computer
Architecture (HPCA), pages 657–668. IEEE, March 2016.

[14] Paul McKenney. A realtime preemption overview. https://lwn.net/
Articles/146861/. Accessed: 2019-08-28.

[15] Giuseppe Lettieri, Vincenzo Maffione, and Luigi Rizzo. A survey of
fast packet I/O technologies for Network Function Virtualization. In
International Conference on High Performance Computing, pages 579–
590. Springer, June 2017.

[16] Xin Xu and Bhavesh Davda. SRVM: Hypervisor Support for Live Mi-
gration with Passthrough SR-IOV Network Devices. In ACM SIGPLAN
Notices, volume 51, pages 65–77. ACM, 2016.

[17] Zuo Xiang, Frank Gabriel, Elena Urbano, Giang T Nguyen, Martin
Reisslein, and Frank HP Fitzek. Reducing Latency in Virtual Machines:
Enabling Tactile Internet for Human-Machine Co-Working. IEEE
Journal on Selected Areas in Communications, 37(5):1098–1116, 2019.

[18] Noa Zilberman, Matthew Grosvenor, Diana Andreea Popescu, Neelakan-
dan Manihatty-Bojan, Gianni Antichi, Marcin Wójcik, and Andrew W
Moore. Where Has My Time Gone? In International Conference on
Passive and Active Network Measurement, pages 201–214. Springer,
February 2017.

[19] Ralf Ramsauer, Jan Kiszka, Daniel Lohmann, and Wolfgang Mauerer.
Look Mum, no VM Exits! (Almost). CoRR, abs/1705.06932, May 2017.

[20] Robert Kaiser and Stephan Wagner. Evolution of the PikeOS Micro-
kernel. In First International Workshop on Microkernels for Embedded
Systems, volume 50, January 2007.

[21] Paul Emmerich, Sebastian Gallenmüller, Daniel Raumer, Florian Wohl-
fart, and Georg Carle. MoonGen: A Scriptable High-Speed Packet
Generator. In Internet Measurement Conference (IMC) 2015, IRTF
Applied Networking Research Prize 2017, Tokyo, Japan, October 2015.

[22] Intel. Ethernet Controller X550. https://www.intel.com/content/dam/
www/public/us/en/documents/datasheets/ethernet-x550-datasheet.pdf?
asset=12457, 11 2018. Accessed: 2019-08-28.

[23] Cisco Inc. Snort. https://github.com/snort3/snort3. Accessed: 2019-08-
28.

[24] Napatech. Snort. https://github.com/napatech/daq dpdk multiqueue.
Accessed: 2019-08-28.

[25] Talos et al. Snort3 community ruleset. https://www.snort.org/downloads/
#rule-downloads. Accessed: 2019-08-28.

[26] Sebastian Gallenmüller, Paul Emmerich, Florian Wohlfart, Daniel
Raumer, and Georg Carle. Comparison of Frameworks for High-
Performance Packet IO. In ACM/IEEE Symposium on Architectures for
Networking and Communications Systems (ANCS 2015), Oakland, CA,
USA, May 2015.

[27] Simon Bauer, Daniel Raumer, Paul Emmerich, and Georg Carle. Intra-
node Resource Isolation for SFC with SR-IOV. In IEEE 7th Interna-
tional Conference on Cloud Networking (CloudNet’18), Tokyo, Japan,
October 2018.

https://www.itu.int/dms_pub/itu-r/opb/rep/R-REP-M.2410-2017-PDF-E.pdf
https://www.itu.int/dms_pub/itu-r/opb/rep/R-REP-M.2410-2017-PDF-E.pdf
https://dpdk.org
https://dpdk.org
https://wiki.opnfv.org/pages/viewpage.action?pageId=2926179
https://wiki.opnfv.org/pages/viewpage.action?pageId=2926179
http://people.redhat.com/jmario/docs/201501-perf-brief-low-latency-tuning-rhel7-v2.0.pdf
http://people.redhat.com/jmario/docs/201501-perf-brief-low-latency-tuning-rhel7-v2.0.pdf
http://developer.amd.com/wordpress/media/2013/12/PerformanceTuningGuidelinesforLowLatencyResponse.pdf
http://developer.amd.com/wordpress/media/2013/12/PerformanceTuningGuidelinesforLowLatencyResponse.pdf
https://lwn.net/Articles/146861/
https://lwn.net/Articles/146861/
https://www.intel.com/content/dam/www/public/us/en/documents/datasheets/ethernet-x550-datasheet.pdf?asset=12457
https://www.intel.com/content/dam/www/public/us/en/documents/datasheets/ethernet-x550-datasheet.pdf?asset=12457
https://www.intel.com/content/dam/www/public/us/en/documents/datasheets/ethernet-x550-datasheet.pdf?asset=12457
https://github.com/snort3/snort3
https://github.com/napatech/daq_dpdk_multiqueue
https://www.snort.org/downloads/#rule-downloads
https://www.snort.org/downloads/#rule-downloads

	Introduction
	Motivation
	Background and related work
	Architecture design
	Evaluation
	Setup
	Measurements
	Hardware
	Virtualization

	Tail latencies
	Influence of batch sizes
	Energy consumption

	Model
	Limitations
	Reproducibility
	Conclusion
	Acknowledgements
	References

