

Edinburgh Research Explorer

Towards Efficient and Adaptable Monitoring of Softwarized
Mobile Networks
Citation for published version:
Plascinskas, A, Foukas, X & Marina, MK 2020, Towards Efficient and Adaptable Monitoring of Softwarized
Mobile Networks. in Proceedings of the 2020 IEEE/IFIP Network Operations and Management Symposium
(NOMS 2020). Institute of Electrical and Electronics Engineers (IEEE), pp. 1-6, IEEE/IFIP Network
Operations and Management Symposium 2020, Budapest, Hungary, 20/04/20.
https://doi.org/10.1109/NOMS47738.2020.9110452

Digital Object Identifier (DOI):
10.1109/NOMS47738.2020.9110452

Link:
Link to publication record in Edinburgh Research Explorer

Document Version:
Peer reviewed version

Published In:
Proceedings of the 2020 IEEE/IFIP Network Operations and Management Symposium (NOMS 2020)

General rights
Copyright for the publications made accessible via the Edinburgh Research Explorer is retained by the author(s)
and / or other copyright owners and it is a condition of accessing these publications that users recognise and
abide by the legal requirements associated with these rights.

Take down policy
The University of Edinburgh has made every reasonable effort to ensure that Edinburgh Research Explorer
content complies with UK legislation. If you believe that the public display of this file breaches copyright please
contact openaccess@ed.ac.uk providing details, and we will remove access to the work immediately and
investigate your claim.

Download date: 25. Apr. 2024

https://doi.org/10.1109/NOMS47738.2020.9110452
https://doi.org/10.1109/NOMS47738.2020.9110452
https://www.research.ed.ac.uk/en/publications/70c477a5-824b-4d81-ac56-42e51b440c68

Towards Efficient and Adaptable
Monitoring of Softwarized Mobile Networks

Alan Plascinskas, Xenofon Foukas, Mahesh K. Marina
The University of Edinburgh

Abstract—We consider the problem of monitoring in the con-
text of emerging and future mobile networks which are shaping
up to feature diverse set of services composed of customized
chains of virtual network functions (VNFs) realized over (edge)
cloud environments. In such a setting, not only is monitoring
a critical component for service quality assurance, but it also
needs to be efficient, adaptable and flexible. Informed by the expe-
rience analyzing state-of-the-art management and orchestration
(MANO) platforms and monitoring solutions for softwarized mo-
bile networks, we present our monitoring system design termed
PliMon that aims to meet the above requirements by exploiting
diverse temporal variability characteristics across different met-
rics (measurement features) and VNFs, and by grouping such
metrics into tiers based on their relative significance. Using an
experimental testbed, we verify the hypothesis that different mea-
surement features and VNFs exhibit diversity in their variability
and crucially show substantial reduction in monitoring overhead
compared to representative monitoring solution from the litera-
ture. Additionally, we integrate PliMon with OSM, a well known
open source MANO platform, and demonstrate the salient aspects
of our approach using the integrated PliMon-OSM system.

I. Introduction
As we head towards 5G, the mobile network architecture

is undergoing significant transformation driven by the need to
be flexible, programmable, cost-efficient and support a diverse
array of services beyond traditional mobile broadband. This
is evident in the way SDN and NFV principles (e.g., control-
user plane separation, decoupling network functions from
proprietary hardware into virtual network functions (VNFs))
are shaping the 5G architecture [1], [2]. These in turn form
the basis of network slicing [3], a concept embraced in 5G to
realize a multi-service infrastructure. The idea behind network
slicing is to carve out a logical network instance for each
service (a slice) over the shared virtualized infrastructure that is
composed and customized with a set of VNFs as per the service
requirements. The result is a network architecture comprised of
infrastructure, network function and service layers along with
a cross-cutting management & orchestration (MANO) entity.

To realize the multi-service vision over such a multi-layered
architecture, service quality assurance is vital and a significant
challenge. A key component of addressing this challenge and
the focus of this paper is on monitoring the quality experienced
by each service, including the underlying VNFs and the
infrastructure utilization. Such monitoring can provide insights
into the performance bottlenecks causing service guarantee
violations, which in turn can guide the dynamic control of
resource provisioning to avoid them. Clearly, a monitoring

system needs to incur low overhead for tracking various metrics
(measurement features) across VNFs. Equally, monitoring
needs to be agile and responsive to varying conditions
for timely detection of service performance bottlenecks to
accordingly adapt resource provisioning along the service path.

In view of the above, we examine and analyze the state-of-
the-art MANO frameworks and monitoring solutions as relevant
to emerging 5G networks, both conceptually and empirically.
This experience led us to our proposed monitoring system
design, termed PliMon, that is pliable in the sense that it is
adaptable to time-varying conditions across different VNFs and
features while being efficient and flexible (§III). PliMon is built
on two key ideas. First is the hypothesis that different VNFs and
features experience different time-varying behaviors, which can
be exploited to individually tailor the monitoring frequencies
of each feature in such a way that monitoring overhead can be
significantly reduced with no loss in effectiveness. We realize
this idea in PliMon through a time series inference based method
that tracks the variability of each feature to dynamically adapt
its monitoring frequency. Second is the observation that only a
subset of features need to be monitored under normal conditions
and monitoring of other features can be activated on-demand.
For example, tracking end-to-end service quality is sufficient
normally and only when it shows a deterioration beyond a
threshold, other features need to be monitored to gain a better in-
sight on the root cause of the performance degradation. PliMon
embeds this observation in its design through the notion of
tiering by separating various relevant features of a VNF (or a set
of VNFs) into different tiers (subgroups) ordered by importance
with the lowest tier (0) consisting of most important and inex-
pensive features that need to be tracked continually and so on.

PliMon equipped with the above two ideas constitutes an
advancement over the state-of-the-art on monitoring softwarized
mobile networks. To drive home this point, we experimentally
compare our PliMon approach with z-TORCH [4], a represen-
tative approach from the literature, and show that our approach
leads to more than 40% reduction in monitoring overhead
(§IV-B). Moreover, we go a step further and integrate PliMon
into OSM [5], a prominent open-source MANO platform,
thereby substantially expanding the latter’s monitoring capa-
bilities. We present two case studies of the integrated PliMon-
OSM system that demonstrate the usefulness of our proposed
approach in feature specific monitoring frequency adaptation
and the value of multi-tier adaptive monitoring (§IV-C).978-1-7281-4973-820$31.00 © 2020 IEEE

Figure 1. OSM Architecture [7].

II. Background and Related Work

Management and orchestration (MANO) platforms play a
crucial role in the NFV lifecycle, as they are responsible for
orchestrating the process of deploying, scaling and tearing down
Network Services (NS) and their constituent VNFs by interfac-
ing with underlying Virtualized Infrastructure Mangers (VIM)
(e.g., OpenStack, AWS). Two of the most widely used MANO
platforms are Open-Source MANO (OSM) [5] developed by
ETSI; and ONAP [6] that is a Linux Foundation project formed
through the merging of AT&T’s ECOMP project and China
Mobile’s Open-Orchestrator project. Both OSM and ONAP
follow a modular Docker-based micro-service architecture
with different logical entities of the system – responsible for
operations like the lifecycle management of VNFs, logging,
authentication etc. – deployed in separate containers. As a refer-
ence, Figure 1 illustrates the architecture of OSM and its most
significant modules, including Lifecycle Management (LCM),
Performance Management (PM) and Monitoring (MON), which
communicate using an Apache Kafka bus.
On the aspect of monitoring, the focus of this work, there

is no industry-wide gold-standard. However, a plethora of
practical monitoring systems already exist, either tailored for
specific environments (e.g. Microsoft’s Azure Monitor [8]
for the Azure cloud) or targeting more generic infrastructure
deployments, like Zabbix [9] and Nagios [10]. Such systems
allow the monitoring of KPIs like CPU/network/memory/disk
utilization, network flow information etc, both in terms of the
underlying physical infrastructure and of the deployed virtual
network functions and support the triggering of events and
alarms whenever certain important KPIs cross some threshold.

Similarly, a number of proprietary monitoring solutions also
exist in the mobile domain, with some noteable examples being
Nokia’s Wireless Network Guardian [11] and Amdocs’ Deep
Network Analytics [12]. In contrast to the cloud and data center
monitoring solutions, these systems focus on analyzing data
from the mobile networking domain, such as RAN related
information (e.g. signal quality, missed scheduling deadlines,
retransmissions, etc.) or information from the mobile core (e.g.
bearer statistics and traffic load) in order to identify potential
bottlenecks. The type of bottlenecks that are being considered
in this case are different in nature and revolve around issues

like interference, sudden traffic surges etc.
OSM and ONAP also have monitoring subsystems as part

of their designs. In the case of ONAP, this is enabled through
the Data Collection, Analytics and Events (DCAE) subsystem,
which allows the gathering of any type of monitoring data and
events from VNFs, physical hosts and the network through
the use of a common event data model called VNF Event
Stream (VES). OSM provides a multi-layered monitoring
subsystem called MON, which can obtain information from
various domains, by exploiting existing underlying monitoring
solutions (e.g. Ceilometer for an OpenStack cloud, Juju Charms
for the deployed VNFs and SDN for the network switches).

A key limitation of the aforementioned solutions is that, while
they provide domain-specific or holistic monitoring frameworks,
they do not focus on the monitoring overhead, which in the
case of large scale NFV deployments for operational mobile
networks can be significant. On the other hand, while a number
of research works focus on solutions that can make monitoring
as efficient and as fine grained as possible [13]–[15], they only
focus on the reduction of the monitoring overhead and do not
provide holistic monitoring frameworks. For example, [13] and
[14] only consider monitoring the network flows and [15] is
primarily concerned with the least intrusive way to obtain the
generic compute metrics from cloud platforms.
z-TORCH [4], which can be viewed as a state-of-the-art

monitoring system, is specifically designed for NFV deploy-
ments and is concerned with optimizing the quality of decisions
(QoD) of MANO systems while minimizing the monitoring
overhead incurred. z-TORCH employs various machine learning
techniques like Q-learning and k-means clustering to adapt
the frequency of monitoring to help make decisions on VNF
placement across compute nodes. One key limitation of z-
TORCH is it uses the same monitoring frequency across all
the monitored features and VNFs. As a result, even when a
small subset of VNFs (or a small subset of the VNF related
features like CPU load and memory) present a behavior that
fluctuates over time, all the VNFs and features in the system
need to be monitored at the high frequency required to track
the subset, thereby resulting in very high communication
overheads. Moreover, z-TORCH assumes that all the VNFs
have an identical set of features to be monitored. However, in
5G deployments, different VNFs could have a different set of
features that must be monitored and therefore more flexibility is
required in terms of the features to be monitored for each VNF.

III. PliMon
A key hypothesis underlying our proposed approach with

PliMon is that different metrics (features) of different VNFs may
have significantly different variability over time. This suggests
that having different monitoring frequencies for different
metrics and VNFs can lead to reduced monitoring overhead.

Figure 2 shows the schematic of PliMon’s system architecture
with the Monitoring Node (MNode) as a key component. It
obtains measurements of a predefined set of metrics from
each VNF via the measurement retrieval system (described
later in this section). MNode feeds the obtained measurements,

Figure 2. High level system architecture of PliMon.

through a DE wrapper, into the Decision Engine (DE), which
returns the decision on the monitoring frequency of each VNF
metric. The metrics are divided into tiers based on relevance,
with the most important being in Tier 0. The measurements
are performed only on the metrics that are in the active tiers.
Note there are no restrictions on metrics as long as they can
be expressed numerically and their past values carry some
predictive meaning for the future values. This effectively makes
PliMon a very flexible system that can be easily configured to
monitor any set of metrics on any type of VNF.

A. Decision Engine

Here we describe the DE entity that adaptively decides the
monitoring period (from among a discrete set of periods) for
each metric in the active tiers.

We use a DE Wrapper entity to keep track of all the different
VNFs, their metrics as well as their tiers. Thresholds (lower,
upper) are specified for each metric where lower and upper
thresholds indicate the crossing of the safe zone into the danger
zone, which we want to be reported. More formally, when both
thresholds are provided, the safe interval is [lower, upper] and
the danger interval is (−∞, lower) ∪ (upper,+∞). Intervals
with just one threshold specified (e.g., upper bound) can be
similarly defined.

In the rest of this subsection, we describe the DE operation
for an arbitrarily chosen metric. DE decides on the monitoring
period for the metric in question using time series based
inference of Prediction Interval (PI) that we expect the future
data to lie in and then picks the largest monitoring period in
which we do not expect the PI to be violated with the given
confidence. When increasing the monitoring period, we only
allow increasing to the next larger period of the current one.

In order to track the temporal evolution of the metric, Y , we
employ the well known Holt’s double exponential smoothing
method [16]. Firstly, we consider the Exponentially Weighted
Moving Average (MA):

MAt = (1− α)MAt−1 + αYt (1)
and the Exponentially Weighted Moving Variance (MV) [17]:

(2)MVt = (1− α)MVt−1 + α(Yt −MAt)(Yt −MAt−1)

Next observation, Yt+1, at time t + 1 given the level and
trend at t can be expressed as:

Yt+1 = lt + bt + εt (3)

Figure 3. PliMon-OSM integrated system architecture.

Smoothed level at time t:
lt = lt−1 + bt−1 + αεt (4)

Smoothed trend at time t:
bt = bt−1 + αβεt (5)

where α and β are constant hyperparameters, which should
be set by the administrator or via an additional fitting step (e.g.:
using LSE), and εt is a zero-mean normally distributed error
term with a variance for our purposes estimated to be MVt.
From this we use the result from [16] to obtain a forecast

h periods into the future:
Ŷt+h = lt + hbt (6)

and its variance:

vt+h =MVt ∗ (1 + α2
h−1∑
j=1

(1 + jβ)2) (7)

Firstly, given the observed data up to time t, we define a
Prediction Interval (PI) as [L,U] for a level of confidence Q
such that the following holds:

Pr(L < pt+h < U) = Q (8)
We can easily calculate a prediction interval for a given degree
of confidence. For example, PI for time t+h at the confidence
level of 95% can be expressed as:

µt+h ± 1.96
√
vt+h

We can then pick the largest monitoring period m ∈
MonPeriods such that Pr(L < pt+m < U) ≥ Q holds,
where L and U are lower and upper thresholds of the safe zone.

B. Tiered Monitoring
Tiers define the relevance that each metric carries with the

most important metrics being in Tier 0. If the currently active
tier is set to ξ, we will only be monitoring the metrics in tiers
of equal or greater importance or, more formally, metrics in
tiers i ≤ ξ, i ∈ Tiers. Whenever we experience a violation in
the tier ξ, we increase the active tier to ξ + 1. If we no longer
have violations in tier ξ and ξ − 1 (the currently active tier
and the tier before), we decrease the active tier to ξ − 1. The
reasoning here is that we only want to decrease the tier when
we no longer have violations in the currently active tier and in
the tier that forced the active tier increase in the first place.

HSS MME SPGW eNodeB HSS MME SPGW eNodeB HSS MME SPGW eNodeB

CPU Utilization [%]
Mean (µ) 0.39 0.42 0.42 16.48 0.36 0.43 0.39 16.93 0.37 0.43 0.38 16.33
Std (σ) 0.29 0.25 0.20 2.27 0.19 0.20 0.21 4.53 0.33 0.32 0.29 5.27
Memory Utilization [%]
Mean (µ) 13.20 10.40 12.70 18.70 13.20 10.50 12.80 18.91 13.20 10.42 12.72 18.80
Std (σ) 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.08 0.00 0.04 0.04 0.00
Network Utilization [%]
Mean (µ) 0.01 0.01 4.12 11.18 0.01 0.01 2.96 8.92 0.01 0.01 0.01 3.32
Std (σ) 0.00 0.00 3.52 6.44 0.00 0.00 3.99 7.15 0.00 0.00 0.00 0.23

Table I
Results of experiments 1, 2 and 3 (from left to right)

C. PliMon Integration with OSM
To illustrate the possible avenues of practical application

of the system within MANO frameworks, we chose to
demonstrate how the system can be integrated into OSM. OSM
was chosen as a representative example of a MANO framework
suitable for research purposes due to its ease of use, ample
documentation and low footprint [18]. Figure 3 illustrates how
PliMon integrates with OSM. MNode is deployed as a Docker
container within the OSM controller VM and connects to
two Kafka messaging buses; an internal Kafka messaging bus
of OSM to which it can export metrics upon request from a
CLI tool or another module and an external Kafka bus that is
used by MNode to produce monitoring frequency adjustment
requests. The VNFs are configured to connect to the external
bus and subscribe to the MNode requests as well as produce
the metrics at the required frequency. The choice of using a
second external bus for the monitoring related messages instead
of the default OSM Kafka bus was made for added security,
since allowing the VNFs to connect directly to the internal
bus would provide them visibility to the OSM admin traffic.

IV. Evaluation
A. Verification of Metric Variability Hypothesis

Figure 4. Experimental testbed setup illustrated.

Here, we verify that the variability of different metrics over
the same VNF and the same metrics across different VNFs is

not the same by setting up a series of end-to-end experiments
on an OpenStack-based LTE testbed we deployed and illustrated
in Figure 4. For the mobile core part of our testbed (HSS, MME
and SPGW) we used the open source openair-cn [19] EPC
functions, which we deployed in the form of OpenStack VMs,
each with 2 virtual CPUs and 4GB of RAM. For the eNodeB,
we used the OpenAirInterface open source LTE platform [20],
which we deployed over a physical machine with an Intel
i7-4770R CPU and 8GB of RAM.
Using our testbed, we performed 3 experiments using 1 or

more UEs and measured the mean and standard deviation of
the CPU, memory and network utilization of all the network
functions. Our experiments were: 1) a speedtest using a single
UE; 2) single UE video streaming at 1080p; and 3) a connection
of 2 UEs in idle mode. The results of our measurements are
summarized in Table I. In the case of experiments 1 and 2,
we can observe very large standard deviations in the network
utilization for the eNodeB and the SPGW, and almost constant
memory utilizations. This observation suggests that network
utilization might be a more indicative parameter of the service
conditions for the eNodeB and the SPGW than the memory uti-
lization. On the other hand, we can also observe that in the case
of the HSS and MME, the network utilization presents hardly
any variability. Similar observations can also be made for the
case of experiment 3. Based on this discussion, we can conclude
that different metrics can indeed present different variability
behaviors and therefore such differences should be taken into
account when monitoring the performance of network services.

B. Comparison with z-TORCH

We now evaluate the performance of the varied monitor-
ing frequency approach of PliMon to the non-varied of z-
TORCH [4]. To achieve this, we focus on two cases: one
considering 3-feature VNF profiles (e.g. CPU, RAM and
network) and the other considering 1200-feature VNFs (1200
arbitrary metrics). The 1200-feature VNF case reflects a large
monitoring load, corresponding to scenarios where we want to
monitor various fine-grained characteristics of each VNF, such
as the load on each core of a multi-core CPU, fine grained
network usage statistics for each network interface, etc. For the
3-features case we set their standard deviations (std) to be [0.01,
0.1, 0.3], while for the 1200-features case we replicated the 3
aforementioned stds 400 times (3× 400 = 1200 stds in total).

Both the varied and non-varied methods were compared in
terms of the monitoring load required by the system and the
decisions on creating the affinity groups, which are key to the
z-TORCH VNF placement step. More formally, we define the
monitoring load (in bytes) on the system as follows:

MLoad =
∑
p∈M

∑
i∈metrics

δp,iθi|V NFs| (9)

where M is a set of all the monitoring periods for a given run,
δp,i ∈ {0, 1} is an indicator value showing if the data metric
i was consumed in a given monitoring period p and θi is the
size of data required to observe metric i in a single period.
In our tests, monitoring data for all metrics is a single 64-bit
floating point number, so θi = 8B. For constant monitoring
frequency among the metrics the above expression becomes:

MLoadnon_varied = θ|metrics||V NFs||M |. (10)
After calculating the monitoring load which is the cost in our
setup, we evaluate the qualitative difference in two approaches
by comparing how the affinity binding decisions differ. More
formally, we calculate the following metric:

Similarity_slope = OLS(NV, V), (11)
where OLS is an ordinary least squares estimator, taking the
non-varied frequency affinity groups time series averaged over
all tests NV and varied frequency affinity groups time series
V at the same time points as NV and returns the least-squares
unbiased estimator of the slope and intercept. A slope close
to 1 would indicate that on average the two approaches yield
similar results.

We evaluate the aforementioned metrics by running 20 tests
for both the varied and non-varied approaches. The results in
terms of the monitoring load are listed in table II, where we
see how the varied metric frequency method saves 42% and
51% of monitoring load in the 3-feature and the 1200-feature
cases, respectively, compared to the non-varied one. We then
check that the affinity grouping decisions taken by the varied
approach are comparable to the non-varied one. To verify this
formally, we perform the least squares fitting as shown in the
Figure 5, which yields a line with Similarity_slope = 1.05
and Similarity_slope = 1.08 for the 3-feature and the 1200-
feature cases respectively. The similarity slope is compared to
the identity line with slope 1. We can see that the fitted line is
very close to that of the perfect fit and the data follows a linear
model well, to verify this further, we calculate the coefficient
of determination (R2) [21]:

R2
V,NV = 1− V ar(V − V̂)

V ar(V)
(12)

where V̂ indicates the perfect correspondence values from V to
NV , i.e. prediction of V being equal to NV at a point in time.
The R2 given here is interpreted as 1−FV U , where FVU is a
fraction of variance that is unexplained. Calculating the value
from the test data gives: R2

V,NV = 0.989 and R2
V,NV = 0.999

for the 3-feature and the 1200-feature cases respectively. A
value of 0 would mean that no covariance is explained by the
model while a value of 1 means that the model captures the
covariance perfectly. The values we obtained indicate that the
identity line captures the relationship between the values very

Mode 3-feature VNFs 1200-feature VNFs

Non-varied 9.5MB 4.368GB
Varied 5.5MB 2.141GB
Load savings 42% 51%

Table II
Monitoring load comparison between PLIMON (varied) and z-TORCH

(non-varied)

.

Figure 5. z-TORCH affinity groups for VNF placement with varied and
non-varied monitoring frequencies at the same time points.

well.

C. Case Studies
Here we present two case studies using our integrated PliMon

-OSM implementation to demonstrate the salient aspects of our
proposed approach.

1) Case Study 1: Metric Monitoring Frequency Adaptation:
Here we assess how DE calculates PI and monitoring frequency
in a more realistic environment. For this, we simulate CPU load
on one of the connected VNFs. Throughout the experiment,
we use 4 load profiles (no load, low, medium and high in that
order), a metric of maximum CPU utilization over all cores
and set the upper threshold at 60%.

Figure 6 shows what monitoring samples are taken (red dots)
for an underlying evolution of CPU utilization (blue line). The
zone in red indicates an undesirable state of the system, Danger
Zone, during which monitoring samples have to be collected
frequently as we want more information why the system ended
up in that state. The green area indicates the PI for a chosen
monitoring period at a confidence level of 95%.
In Figure 6 we also see that at first the system does not

adjust the monitoring frequency, which stays at 1 sample every
10 seconds until sufficient number of samples are collected
to reliably calculate the metric variability. After this initial
period, we gradually decrease frequency to 1 sample every
50 seconds (note that this is the least frequency: we do not
decrease it further so as to spot deviations in a timely manner).
As can be seen in a period where PI does not cross the red
zone, we space out monitoring points and when it does we
monitor frequently until the PI drops back down again.
2) Case Study 2: Multi-Tier Monitoring: This experiment

demonstrates that the metric tiers function as intended. Here we
use two tiers of metrics: Tier 0 and Tier 1. In Tier 0, we place
ping metric from eNodeB and, in Tier 1, we place the basic
compute metrics from all the network functions (CPU, memory
and network utilizations). The ping metric here indicates a delay

Figure 6. Example illustrating monitoring frequency adaptation of max CPU
core utilization metric.

Figure 7. Multi-tier monitoring in action. Also shown is monitoring frequency
adaptation of Tier 0 metric (eNodeB to Google DNS ping) over time across
normal and congested network conditions.

(in milliseconds) when pinging Google DNS (an inexpensive
proxy for end-to-end Quality of Service (QoS)). Under the
normal operating conditions the delay is very stable at around
13ms. As such, we set the upper threshold to 20ms providing
headroom in normal conditions.

In Figure 7 it can be seen that only Tier 0 metric is collected
at first when ping indicates that the QoS is acceptable. At
120s we simulate high-traffic congestion conditions by using
speedtest-cli on eNodeB. This raises the ping values, which
invokes monitoring of Tier 1 metrics. When Tier 0 is no
longer in violation, we deactivate Tier 1 metrics but continue
monitoring ping at high frequency as instructed by the DE.
When the implied PI of the ping narrows down, the DE instructs
to gradually decrease the ping monitoring frequency.
The benefit of PliMon is evident here as we get more data

on sub-par network performance from Tier 1 (e.g.: network
usage at eNodeB) while saving monitoring overheads by only
having Tier 1 metrics monitored during Tier 0 violation.

V. Conclusions
In this work, we have presented PliMon , a monitoring system

targeting virtualized mobile networks. PliMon provides the
flexibility to obtain custom metrics from each VNF, including
generic compute metrics (e.g., CPU/memory utilization), VNF
specific metrics (e.g., number of active user connections,
eNodeB related measures), or end-to-end service quality metrics

(e.g., device-Internet latency). Furthermore, PliMon reduces
the overall monitoring overhead by employing statistical time
series inference to detect periods of stability for different
features to reduce their monitoring frequency when possible,
and by dividing various metrics into tiers based on their
significance and dynamically adjusting the tiers monitored
based on the observed violations. Through its integration with
the OSM MANO platform and our experimental evaluation, we
demonstrate the compatibility of PliMon with production ready
MANO systems and potential significant savings in terms of
the monitoring overhead.
As possible avenues for future work, we will consider

more robust time series inference methods (e.g., ARIMA)
and the ability to use multi-dimensional, non-linear threshold
boundaries. We will also consider exploring the monitoring
delays and the mean time from the occurrence of an anomaly
until its detection. This would in turn improve the confidence
in the assertions regarding PliMon’s production performance.

References
[1] A. Sutton, “5G Network Architecture,” J. Inst. Telecommun. Professionals,

vol. 12, no. 1, pp. 9–15, 2018.
[2] ETSI, “Network Functions Virtualisation – White Paper on NFV priorities

for 5G,” https://portal.etsi.org/nfv/nfv_white_paper_5g.pdf, accessed: 10
Feb 2019.

[3] K. Samdanis et al., “5G Network Slicing - Part 1: Concepts, Principles,
and Architectures,” IEEE Commun. Mag., vol. 55, no. 5, pp. 70–71, Aug
2017.

[4] V. Sciancalepore, F. Yousaf, and X. Costa-Pérez, “z-TORCH: An Auto-
mated NFV Orchestration and Monitoring Solution,” IEEE Transactions
on Network and Service Management, vol. PP, pp. 1–1, 08 2018.

[5] OSM, “Official OSM website,” https://osm.etsi.org/.
[6] ONAP, “ONAP Architecture,” https://www.onap.org/wp-

content/uploads/sites/20/2018/11/ONAP_CaseSolution_Architecture_112918FNL.pdf.
[7] OSM, “OSM Release 4 Whitepaper,” https://osm.etsi.org/images/OSM-

Whitepaper-TechContent-ReleaseFOUR-FINAL.pdf, accessed: 10 Feb
2019.

[8] Microsoft, “Azure Monitor,” https://docs.microsoft.com/en-
us/azure/azure-monitor/overview, accessed: 2018-10-15.

[9] Zabbix, https://www.zabbix.com/, accessed: 2018-10-15.
[10] Nagios, https://www.nagios.org/, accessed: 2018-10-15.
[11] Nokia, “Nokia Wireless Network Guardian,”

https://networks.nokia.com/products/wireless-network-guardian.
[12] Amdocs, “Amdocs Deep Network Analytics,”

https://tinyurl.com/ya6ausmh, accessed: 2018-10-15.
[13] Y. Li et al., “FlowRadar: A Better NetFlow for Data Centers.” in Nsdi,

2016, pp. 311–324.
[14] M. Moshref et al., “Trumpet: Timely and precise triggers in data centers,”

in Proceedings of the 2016 ACM SIGCOMM Conference. ACM, 2016,
pp. 129–143.

[15] H. J. Syed, A. Gani, F. H. Nasaruddin, A. Naveed, A. I. A. Ahmed, and
M. Khurram Khan, “Cloudprocmon: A non-intrusive cloud monitoring
framework,” IEEE Access, vol. 6, pp. 44 591–44 606, 2018.

[16] R. Hyndman, A. Koehler, K. Ord, and R. Snyder, “Prediction intervals
for exponential smoothing using two new classes of state space models,”
Journal of Forecasting, vol. 24, no. 1, pp. 17–37, 2005.

[17] T. Finch, “Incremental calculation of weighted mean and variance,” 2009.
[18] G. M. Yilma, F. Z. Yousaf, V. Sciancalepore, and X. Costa-Perez, “On

the challenges and KPIs for benchmarking open-source NFV MANO
systems: OSM vs ONAP,” https://arxiv.org/abs/1904.10697, 2019.

[19] Openair-CN, https://gitlab.eurecom.fr/oai/openair-cn, 2018, accessed:
2018-09-11.

[20] N. Nikaein et al., “OpenAirInterface: A flexible platform for 5G research,”
ACM SIGCOMM CCR, vol. 44, no. 5, pp. 33–38, 2014.

[21] Michael Patrick Allen, Understanding Regression Analysis. Springer,
Boston, MA, 1997.

