
A Resource Efficient Implementation of the
RESTCONF Protocol for OpenWrt Systems

Malte Granderath
Computer Science, Jacobs University Bremen, Germany

malte.granderath@gmail.com

Jürgen Schönwälder
Computer Science, Jacobs University Bremen, Germany

j.schoenwaelder@jacobs-university.de

Abstract—In recent years, the open source operating system
OpenWrt has become a popular option for replacing proprietary
firmware on networking devices such as home routers or access
points. In order to configure an OpenWrt system, like setting
up firewall rules, the user has to either sign in to the web
interface or use SSH to manually change configuration files on the
device. While the current approach is sufficient for small home
networks, it only allows for limited automation of management
tasks and configuration management becomes time-consuming,
for example, on larger campus networks where access control
lists on OpenWrt access points need updates regularly.

This paper describes our efforts to implement the RESTCONF
configuration management protocol standardized by the IETF on
OpenWrt systems that have limited CPU and memory resources.
We detail our design choices that make our implementation
resource efficient for the use cases we target and we compare
our implementation against other similar solutions. Our imple-
mentation is available on GitHub under an open source license1.

Index Terms—RESTCONF, OpenWrt, YANG, network man-
agement

I. INTRODUCTION

The IETF has standardized a new network management
protocol called RESTCONF [1] that supports a subset of the
functionality of NETCONF [2]. RESTCONF uses HTTP [3] as
a substrate and hence any tool or programming language that
can invoke HTTP operations can be used to implement man-
agement applications. RESTCONF provides a programmatic
interface for installing, changing, or deleting configuration
data, which is accessible via HTTP methods. The protocol
supports different data encodings (e.g., XML [4] and JSON
[5]). The exposed API is data-model-driven. The data models
are written in the YANG [4] data modeling language and
define the resources exposed by the RESTCONF server. The
original version of RESTCONF supported a single unified
datastore abstraction exposing both configuration and state
data. The more recent for network management datastore
architecture [6] has led to RESTCONF extensions that can
expose multiple configuration datastores and a separate oper-
ational state datastore [7].

The OpenWrt open source project is creating and maintain-
ing an embedded operating system based on the Linux kernel,
which is mostly used on networking devices, such as home

1Available from https://github.com/mgranderath/orc under BSD-3

routers and access points. All OpenWrt components have been
optimized to run efficiently on embedded devices with limited
resources. A typical system running OpenWrt has at least
8MB of flash memory and at least 64 MiB of main memory.
Systems with 16 MiB flash and 128 MiB main memory are
quite common at the time of this writing. OpenWrt implements
a fully writable and accessible file system and it provides a
package management system allowing users to easily install
additional applications [8]. The OpenWrt system implements
a special approach to configuration file management, which
is called the Unified Configuration Interface (UCI). It enables
the unified management of all configuration information of the
system. UCI keeps configuration information separated from
the parts of the system that are essentially read-only.

While looking for a RESTCONF implementation that runs
efficiently on OpenWrt platforms, we found that open source
implementations were either attempts to port implementations
originally written for much more resource rich platforms over
to OpenWrt or they were written with embedded systems
in mind but still designed to consume resources even when
no management interactions take place. Hence, we wanted to
find out how resource efficient a RESTCONF implementation
running under OpenWrt can be made. In particular, we wanted
to avoid long running processes that constantly consume
memory. Since we also wanted to achieve good response times,
it was crucial to minimize the startup time of the RESTCONF
subsystem.

The rest of the paper is structured as follows. In the Section
II, we provide a brief introduction to the UCI subsystem
used by OpenWrt to store configuration information. We
then review a few basics of the RESTCONF protocol and
the YANG data modeling language in Section III before we
discuss related work in Section IV. We describe our solution
in Section V and provide an evaluation in Section VI before
we conclude the paper in Section VII.

II. UNIFIED CONFIGURATION INTERFACE

Linux systems usually store configuration files in the /etc
directory tree and the configuration files use various file
formats. OpenWrt tries to unify the format and location
of the configuration files through the unified configuration
interface (UCI). UCI configuration files are stored in the
/etc/config directory and all UCI configuration files have
the same format. Due to this unifying approach, configuration978-1-7281-4973-8/20/$31.00 © 2020 IEEE

ar
X

iv
:2

30
3.

12
40

3v
1

 [
cs

.N
I]

 2
2

M
ar

 2
02

3

data can be exposed and manipulated easily via a common
application programming interface (API).

A UCI file usually represents a UCI package, i.e., it contains
all configuration information for a specific component of
the system. UCI configuration files are divided into sections.
Sections start with a config keyword followed by a section
type name identifying the type of the section. Sections can be
named or unnamed: a named section is identified by an addi-
tional name and the same section can appear multiple times
with different names; unnamed sections usually only appear
once in a configuration file. Inside the sections, configuration
options are defined using the option keyword followed by
the option type name and a value. The list keyword declares
a list of name value pairs, utilizing the same list name for
several items. Note that the format does not allow for nested
sections.

config system
option hostname "OpenWrt"
option timezone "UTC"
...

config interface "en0"
option ip6addr "2001:db8::42/64"
option ip6gw "2001:db8::1"
...

config vnstat
list interface "en0"
list interface "en1"
...

Fig. 1. Examples of UCI configuration sections

Figure 1 shows examples of UCI configuration sections.
The first section is unnamed and defining system options. The
second section is named and defines options for the interface
named en0. This third section is again unnamed and defines
a list of interfaces that should be used for statistics collection.

OpenWrt ships with a small C library (libuci) to access
UCI files. It exposes multiple functions that can be used to
read, write, or modify the configuration data. The library
handles the locking of the configuration files during changes
and prevents write collisions. It also exposes some further
additional functions that help validate values and names of
sections. The uci command line utility can be used interac-
tively on the command line to make changes. The web user
interface LuCI is written in Lua [9] and uses the libuci as
well to access and manipulate configuration files.

III. RESTCONF AND YANG
YANG [4] is a data modeling language that was designed

to model data accessed and manipulated by configuration
management protocols like RESTCONF or NETCONF. YANG
models configuration and state data in a hierarchical fashion
with essentially four elements:

• A leaf schema node models simple data of a simple data
type. A leaf node instance has exactly one value and no
child nodes.

• A leaf-list schema node models an ordered sequence of
simple data of one specified simple data type. A leaf-list
instance can have zero, one, or multiple values.

• A container schema node groups related schema nodes
into a sub-tree. A container instance does not have a value
but it can contain child nodes of any type.

• A list schema node defines a sequence of list entries.
Each list entry acts as a container. A list schema node for
configuration data is required to define the child elements
that form a key identifying list instances.

YANG has been used to define data models covering, for
example, network interfaces [10] or general system aspects
[11].

The RESTCONF specification maps hierarchical models
defined in YANG modules to a hierarchical set of resources
that can be accessed and manipulated by invoking HTTP
methods on them. The data exchanged between a RESTCONF
client and a RESTCONF server can be encoded in either
XML or JSON. RESTCONF uses HTTP methods to realize
the create, read, update and delete (CRUD) operations needed
to manipulate configuration data [1]:

• The OPTIONS method is used to discover which opera-
tions are possible for a specific resource.

• The GET method is used to retrieve data and header fields
of a specific resource.

• The HEAD method only returns the header fields of a GET
request.

• The POST method is used to create a new data resource
(or to invoke an operation)

• The PUT method can create new data resources, like
POST, but, if the resource already exists, it replaces the
existing resource.

• The PATCH method is used to modify an existing re-
source.

IV. RELATED WORK

Several of open-source RESTCONF implementations can be
found by searching through public git repositories and digital
libraries.

JetConf is a RESTCONF implementation that is imple-
mented entirely in Python. It supports the JSON encoding and
only HTTP/2 as the HTTP transport. JetConf has dependencies
on several non-standard Python libraries that have to be
installed. This means that only systems having the Python
interpreter and those libraries installed will be able to run
the RESTCONF implementation [12]. The developers mention
that this implementation is not suitable for low-end OpenWrt
routers [13]. Note that OpenWrt systems usually do not come
with Python installed since the Python language environment
is relatively expensive in terms of resource requirements.

MD-SAL is an infrastructure component of the OpenDay-
light (ODL) project that supports NETCONF and RESTCONF.
It is implemented in Java and supports several transports
and payload formats [14]. RESTCONF is part of the MD-
SAL artifact and cannot be installed standalone. There is only
limited Java Virtual Machine (JVM) support on OpenWrt and

only stripped down JVM’s are available for installation such
as JamVM [15]. Hence, this implementation is not suitable for
OpenWrt devices.

Clixon is a YANG based configuration manager with both
NETCONF and RESTCONF interfaces and an interactive
command line tool. Clixon provides the core system and can
be used as-provided but it also exposes an API for plugins,
such that additional functionality can be implemented. It also
has dependencies on some non standard libraries. Clixon is
built as a system of services that utilize Remote Procedure
Calls (RPC) to communicate with each other. When running
RESTCONF there have to be three processes running. It needs
a web server with support for FastCGI, the backend daemon
and the restconf daemon. Therefore, on systems that only
have small numbers of configuration changes, resources are
consumed whether or not RESTCONF is needed at that point
in time [16].

V. SOLUTION OVERVIEW

For our RESTCONF implementation, orc, to be able to run
on all devices that run OpenWrt, we focused on adhering to the
functionality that is provided in a base installation of OpenWrt.
We assume that the devices do not have to handle hundreds or
thousands of RESTCONF requests per minute but rather have
to handle configuration changes that arrive only occasionally.
This means that our implementation should not consume any
resources when no configuration transactions are taking place.
For integration with OpenWrt the UCI system should be used
as a datastore. This means that we have to map between the
different data formats. An additional requirement that we set
for our implementation is to depend on as few non-standard
libraries as possible and to utilize only libraries that have a
small package size.

A. Architecture and Design Decisions
The architecture of our implementation is best explained

using the time sequence diagram shown in Figure 2.

uHTTP CGI RESTCONF libuci /etc/config /etc/init.d/script /etc

GET/HEAD/POST/PUT/PATCH

fork();exec()

get/set/add/delete

read()

commit

write()

system()

read

write

exit()

200 OK

Fig. 2. Architecture of the implementation

The uHTTP web server was implemented specifically for
the OpenWrt operating system and it supports the Common

Gateway Interface (CGI) [17]. We decided to build our im-
plementation orc as native binary that can be executed via the
CGI mechanism of uHTTP, see Figure 2. This ensures that
other applications can use the same web server (most notably
LuCI) and orc will only be executed when requested. This
reduces the consumption of resources compared to having our
implementation built integrated with its own web server. This
design has the added benefit that the native binary can be used
with any web server that supports the CGI.

When orc is executed, it interprets the request using the
provided YANG models and then, depending on the request,
reads or writes to the UCI using the libuci library that is pre-
installed on OpenWrt systems. Our implementation also maps
between the data formats so that JSON configuration data
received from a RESTCONF client can be stored in the proper
UCI format. The libuci writes and reads the configurations
stored in the /etc/config directory and then, if required,
a /etc/init.d script can be executed to convert the UCI
configuration into formats that are interpreted by the applica-
tions and services. This is visualized by the /etc directory
in Figure 2.

B. Mapping YANG and UCI

For utilizing the UCI system we need to be able to interpret
the UCI file format in relation to YANG data models. This can
be achieved by adding annotations to the YANG modules. The
following annotations can be added to YANG modules:

• The package annotation is used to set the UCI package
name of the sub-tree.

• The section annotation is used to set the UCI section
type of the sub-tree. This has to be specified for a list.

• The section-name is used to set the UCI section name
of the sub-tree.

• The option annotation is used to set the UCI option
and list names for leafs and leaf-lists.

• The leaf-as-name annotation is optional and can be
used to define which leaf holds the value that should be
used as section-name

module example {
uci:package "example";
container device {

uci:section "device";
uci:section-name "device";
leaf enabled {
uci:option "enabled";
...

}
list interface {
uci:section "interface";
uci:leaf-as-name "name";
...

}
}

}

Fig. 3. Example of an annotated YANG module

The following rules apply for these YANG extensions:

1) The package, section and section-name an-
notations can be overridden in the same sub-tree by
specifying them again. This allows for splitting up a
complex module into different UCI files and sections.

2) The option annotation can only be used to annotate
leafs or leaf-lists and cannot be overridden.

3) If just a section is defined for a container, then
section-name is implicitly declared as empty.

4) A list node must have a section defined but no
section-name (as seen in Figure 3). It can, however,
use the leaf-as-name annotation to use a value of a
leaf as a section-name.

5) The UCI restrictions concerning allowed characters
etc. apply.

C. Representing a YANG model in JSON format

YANG models can be represented in the native YANG
format or an XML rendering called YIN [4]. We looked
at several libraries for parsing the native YANG format or
generic XML libraries for parsing the YIN format but they all
come with significant overhead. We therefore decided to render
YANG models into a JSON representation in an additional
preprocessing step so that we can read YANG modules at
runtime using a JSON parser. On OpenWrt, the json-c
library comes preinstalled since it is used by other applications
on the system.

{
"type": "module",
"package": "example",
"map": {

"device": {
"type": "container",
"section": "device",
"section-name": "device",
"map": {
"enabled": {

"type": "leaf",
"option": "enabled",
...

},
"interfaces" {

"type": "leaf-list",
"section": "interface",
"leaf-as-name": "name",
...

}
}

}
}

}

Fig. 4. The annotated YANG example converted to JIN

Since there was no previous work that allowed for con-
version of a YANG model into a JSON representation, a new
conversion was developed. The first step is the conversion from
YANG to YIN and the second step is the conversion of the YIN
XML representation to JSON. The JSON is then processed to
simplify it for our targeted usage. The YANG representation
in JSON will be referred to as JIN from here on. Figure 4

shows the conversion of the YANG module example shown in
Figure 3 into the JIN format. We have left out the mapping
of the namespaces for improved readability.

D. Converting UCI to JSON

For returning JSON data in a response to a GET request,
the existing UCI content has to be mapped to JSON based on
the YANG data model. From the request URI that is passed
to the CGI script, the JIN module can be traversed to find
the targeted node. At each step of traversal, the JIN node is
checked for UCI annotations, defined in Section V-B, and the
UCI path is stored in an object that is passed on to the next
iteration. Once the target node is reached the UCI path up to
that node will be defined.

From this node, a recursive depth-first traversal is started
that reads and stores the UCI annotations at each node and
passes it on to the children. There are different cases depending
on which node is reached during the traversal:

• For leaf or leaf-lists, the UCI path should be complete
pointing at a specific UCI option or list. This value
is then read using libuci and returned to the parent.

• There is a particular case for lists. As stated in Section II,
sections can be accessed using an index and, therefore,
the number of sections of a section type can be used to
iterate through the list, and the index is passed down to
the children on continuing the recursion on the sub-nodes.

module: example
+--rw device

+--rw name? string
...
+--rw interfaces* [name]
| +--rw name string
| +--rw enabled boolean
...
+--rw applications* string

Fig. 5. Simplified YANG module tree representation.

Taking the module from Figure 5 as an example of this
process, with the URI /data/example:device, the fol-
lowing traversal will be executed:

1) name → read UCI value
2) interfaces → for i in list length (list length = 1)

a) interfaces[i].name → read UCI value
b) interfaces[i].enabled → read UCI value

3) applications → read UCI value
At every step of the traversal, the return value of the child

will be combined with the key from JIN to produce JSON.

E. Converting JSON to UCI

While for converting UCI to JSON a traversal through JIN
has to be executed, for converting JSON to UCI, a parallel
traversal of JIN and JSON has to be done. Every object in
the JSON representation has to be compared to the nodes in
JIN. Similarly to the conversion of UCI as JSON, the request

URI is also used to traverse to the target node. During this
traversal, the individual nodes can be checked for existence
depending on whether it is a PUT or POST request.

After traversing to the target node, the root key of the JSON
should represent the JIN resource that is targeted or its parent.
From this, a depth-first traversal can be run on the combined
JSON and YANG tree. In case the JSON is not targeted at
adding a list item, the content has to be flattened according
to the UCI annotations and no knowledge about the existing
file content has to be known except if they exist. The JSON
key-value pairs will be converted to UCI path, value and type
triples that can then be written after traversal. The return cases
of this recursive depth-first traversal are as follows:

• For a leaf, a triple of the UCI path, JSON value and type
”option” will be returned.

• For a leaf-list, a list structure of triples of the UCI path,
JSON value and type ”list” will be returned.

• For each item in a list the recursive traversal is continued
but with the index passed in the UCI path object. The
results are combined into a list structure and returned.

• For a container the traversal is continued, but an addi-
tional triple is added of UCI path, no value and type
”container”. This is later used to create the named section.

After this step, the JSON has essentially been flattened into
a list of UCI paths to values. The changes can then be written
using libuci by iterating through the list.

{
"example:device": {

"name": "Router_0",
"interfaces": [{

"name": "eth0",
"enabled": true

}],
"applications": [

"uhttpd",
"luci"
]

}
}

Fig. 6. Example JSON request for the module in Figure 5

For example, the request URI /data/ with the JSON con-
tent in Figure 6 will output the following list when processed
together with the restconf-example module:
"example.device", container,
"example.device.name", option, "Router_0"
"example.device.@interfaces[0].name", option, "eth0"
"example.device.@interfaces[0].enabled", option, "true"
"example.device.applications", list, "uhttpd"
"example.device.applications", list, "luci"

In case a list item is to be added to an already existing list
the above principles still apply, but instead of initializing the
list index at zero, it will be initialized with the list length.

F. Verifying JSON against YANG constraints
One of the features of YANG and RESTCONF is the veri-

fication of configuration data against the constraints defined in

the data model. Our implementation does not verify the data
when reading from UCI since it is assumed that if there are
other changes to the configuration files, they will be verified
by the entity or tool causing those changes. However, for
writing JSON as UCI, the verification of a subset of the YANG
constraints has been implemented. The general verification of
the JSON structure is completed while traversing through the
tree.

During the conversion from YANG to JSON (see Section
V-C) the typedefs and imported types are extracted into a
separate list. This list simplifies the lookup of type information
during verification. The verification of types is implemented
as part of the process of writing JSON as UCI. Whenever a
leaf or leaf-list is reached during traversal, the content in the
JSON is verified according to the following steps:

1) The type declaration is retrieved either directly from
YANG or the list of typedefs and imported types.

2) The content is compared to the lexical representation of
the base built-in types defined in RFC 7951 [5].

3) In case a pattern or range restriction is defined, the
content is also verified against these restrictions.

Verification of unique and key semantics of lists has also
been implemented. For lists, the key and unique statement
values are first extracted from the converted module and then
a simple iterative comparison is done on all items. In the case
that a list item is added, the value of that item has to be
compared to the already existing values, so in that case, the
existing items are first read from the UCI and added into a
list that is then verified. This is similar to the verification of
leaf-lists, where only single values have to be compared.

G. Limitations

The main restriction that is imposed by the difference in
UCI and nested data structures is the nesting of a container or
list in another list. The problem in the current implementation
is to indicate which child item, of a list item, belongs to each
list item. This can easily be demonstrated by the following
example.

config interface
option name "eth0"
...

config interface
option name "eth1"
...

config nested nested

Fig. 7. Nested Container in List item.

If a container nested is added to the interfaces list in
the example module (see Figure 5), the UCI configuration
file will look like shown in Figure 7. The nested section
can belong to either of the interface sections. This could
be solved by changing the name of the section to contain a
reference to the list item it belongs to.

VI. EVALUATION

The main goal of our implementation is to run with
low overhead on systems with limited resources. We target
deployment scenarios where management transactions occur
infrequently. The following statistics were collected using
a virtual machine (x86 64 architecture) running OpenWrt
18.06.2 with 64MiB of RAM. Our implementation depends
on several libraries. The package sizes of all dependencies can
be found in Table I.

TABLE I
TOTAL PACKAGE LIBRARY SIZE

Library Size

libjson-c 14KiB
libuci 13KiB
libubox 16KiB

Total 43KiB

The memory space required by the libraries is kept at
an absolute minimum, not even requiring 0.05MiB of the
flash memory. In the official documentation, it is stated that
a minimum of 4MiB of flash is needed for installation of
OpenWrt and a minimum of 32MiB of RAM is recommended
[18].

TABLE II
EVALUATION RESULT

ORC Clixon
Test Heap Time Heap Time

GET 1.1MiB 0.00 s 5.9MiB 0.09 s
POST 1.1MiB 0.07 s 6.3MiB 0.02 s
PUT 1.1MiB 0.07 s 6.3MiB 0.02 s
DELETE 1.1MiB 0.01 s 6.1MiB 0.01 s

Our orc implementation has been tested against the clixon
implementation. We measured the maximum heap size and the
time to complete requests. For testing we used an example
YANG module that can be found on github2. The time
utility was used to measure the time to completion and the
valgrind massif tool was used to measure the maximum
heap size.

Clixon needs a web server with support for FastCGI,
the clixon_backend service, and clixon_restconf
process to be constantly running. When utilizing the example
setup from the clixon documentation, the following idle heap
size can be collected: clixon_restconf uses 2.4MiB and
clixon_backend uses 2.9MiB. The result of our measure-
ments are summarized in Table II. While our implementation
has a lower maximum heap size, it has slower response times
for POST and PUT requests. However, the response times are
still well below 0.1 s and since orc is not constantly consuming
memory resources, we believe that orc is a far more efficient
solution for systems that do not receive a constant stream of
configuration management requests.

2https://github.com/mgranderath/orc/blob/master/yang/restconf-example.
yang

VII. CONCLUSIONS

We described the design of our RESTCONF protocol imple-
mentation for OpenWrt systems called orc. We have outlined
how orc maps between the OpenWrt UCI format used as the
configuration datastore and the nested data format used by
YANG models.

Our comparison of orc against an existing implementation
(clixon) has shown that we can achieve a much lower memory
footprint. Furthermore, orc does not consume any resources
when no RESTCONF transactions take place.

Our implementation has some limitations that arise from the
mapping of the data models (flat UCI versus nested YANG).
Our future work includes extending the JIN parser with more
YANG features and reducing the limitations in the mapping
of the data models. In addition, we are working towards
integrating orc with our implementation of standards for
large-scale measurement frameworks and evolving standards
for network and device security (denial of service signaling,
remote attestation) that use RESTCONF as a substrate.

ACKNOWLEDGEMENTS

This paper has received funding from the European Union’s
Horizon 2020 Research and Innovation program under the
CONCORDIA cybersecurity project (GA No. 830927).

REFERENCES

[1] A. Bierman, M. Björklund, and K. Watsen, “RESTCONF Protocol,”
RFC 8040, Jan. 2017.

[2] R. Enns, M. Björklund, J. Schönwälder, and A. Bierman, “Network
Configuration Protocol (NETCONF),” RFC 6241, Jun. 2011.

[3] R. Fielding and J. Reschke, “Hypertext Transfer Protocol (HTTP/1.1):
Message Syntax and Routing,” RFC 7230, Jun. 2014.

[4] M. Björklund, “The YANG 1.1 Data Modeling Language.” RFC 7950,
Aug. 2016.

[5] L. Lhotka, “JSON Encoding of Data Modeled with YANG,” RFC
7951, Aug. 2016.

[6] M. Björklund, J. Schönwälder, P. Shafer, K. Watsen, and R. Wilton,
“Network Management Datastore Architecture (NMDA),” RFC 8342,
Mar. 2018.

[7] ——, “RESTCONF Extensions to Support the Network Management
Datastore Architecture,” RFC 8527, Feb. 2019.

[8] “Openwrt project.” [Online]. Available: https://openwrt.org/
[9] R. Ierusalimschy, L. de Figueiredo, and W. Celes, “A Look at the

Design of Lua,” Communications of the ACM, vol. 61, no. 11, pp.
114–123, Nov. 2018.

[10] M. Björklund, “A YANG Data Model for Interface Management,”
RFC 8343, Mar. 2018.

[11] A. Bierman and M. Björklund, “A YANG Data Model for System
Management,” RFC 7317, Aug. 2014.

[12] jetconf architecture - gitlab. [Online]. Available:
https://gitlab.labs.nic.cz/labs/jetconf/wikis/jetconf-architecture

[13] restconf openwrt. [Online]. Available:
https://gitlab.labs.nic.cz/labs/jetconf/wikis/restconf-openwrt

[14] Opendaylight controller:md-sal:explained - opendaylight project.
[Online]. Available:
https://wiki.opendaylight.org/view/OpenDaylight Controller:MD-SAL:
Explained

[15] [Online]. Available: https://openwrt.org/packages/pkgdata/jamvm
[16] clicon/clixon: Clixon automatically generates interactive cli, netconf,

restconf and embedded databases with transaction support from a yang
specification. [Online]. Available: https://github.com/clicon/clixon

[17] D. Robinson and K. Coar, “The Common Gateway Interface (CGI)
Version 1.1,” RFC 3875, Oct. 2004.

[18] Openwrt project: Supported devices. [Online]. Available:
https://openwrt.org/supported devices

https://github.com/mgranderath/orc/blob/master/yang/restconf-example.yang
https://github.com/mgranderath/orc/blob/master/yang/restconf-example.yang
https://openwrt.org/
https://gitlab.labs.nic.cz/labs/jetconf/wikis/jetconf-architecture
https://gitlab.labs.nic.cz/labs/jetconf/wikis/restconf-openwrt
https://wiki.opendaylight.org/view/OpenDaylight_Controller:MD-SAL:Explained
https://wiki.opendaylight.org/view/OpenDaylight_Controller:MD-SAL:Explained
https://openwrt.org/packages/pkgdata/jamvm
https://github.com/clicon/clixon
https://openwrt.org/supported_devices

