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Abstract—With the growth of 5G, Internet of Things (IoT),
edge computing and cloud computing technologies, the infras-
tructure (compute and network) available to emerging applica-
tions (AR/VR, autonomous driving, industry 4.0, etc.) has become
quite complex. There are multiple tiers of computing (IoT devices,
near edge, far edge, cloud, etc.) that are connected with different
types of networking technologies (LAN, LTE, 5G, MAN, WAN,
etc.). Deployment and management of applications in such an
environment is quite challenging. In this paper, we propose
ROMA, which performs resource orchestration for microservices-
based 5G applications in a dynamic, heterogeneous, multi-tiered
compute and network fabric. We assume that only application-
level requirements are known, and the detailed requirements of
the individual microservices in the application are not specified.
As part of our solution, ROMA identifies and leverages the
coupling relationship between compute and network usage for
various microservices and solves an optimization problem in
order to appropriately identify how each microservice should
be deployed in the complex, multi-tiered compute and network
fabric, so that the end-to-end application requirements are
optimally met. We implemented two real-world 5G applications
in video surveillance and intelligent transportation system (ITS)
domains. Through extensive experiments, we show that ROMA
is able to save up to 90%, 55% and 44% compute and up to
80%, 95% and 75% network bandwidth for the surveillance
(watchlist) and transportation application (person and car detec-
tion), respectively. This improvement is achieved while honoring
the application performance requirements, and it is over an
alternative scheme that employs a static and overprovisioned
resource allocation strategy by ignoring the resource coupling
relationships.

Index Terms—resource orchestration, IoT, 5G, edge computing,
microservices, system modelling and optimization

I. INTRODUCTION

The fifth generation (5G) of mobile network promises to
support a wide range of IoT services requesting strict and
diverse set of requirements in terms of end-to-end latency,
throughput, reliability, etc. In order to accommodate these
services automatically and at large scale, network slicing
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Fig. 1: Multi-tiered compute and network fabric

has emerged as an evolutionary solution for the design and
deployment of the next generation mobile networks, enabled
by the programmability and flexibility that software defined
networking (SDN) and network function virtualization (NFV)
technologies introduce into the future network management
systems. A network slice (NS), in the context of 5G, is
composed of sub-slices encompassing the radio access net-
work (RAN), core network (CN) and the transport network.
3GPP has put efforts into integrating network slicing in the
future specification of both RAN and CN domains [1]. Despite
significant benefits that network slicing has demonstrated
to bring into the mobile network systems management and
performance, the real-time response required by the delay-
sensitive applications, such as autonomous driving, video an-
alytics and streaming applications, necessitates the integration
of the multi-access edge computing (MEC) into 5G networks
and beyond. The aim of MEC is to push different resources
from the remote central cloud to the network edge in close
vicinity of users and IoT sensors, where data is generated [2].

Prior to MEC, mobile cloud computing (MCC) became a
key technology to realize computationally-intensive applica-978-1-6654-0601-7/22$31.00 © 2022 IEEE
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tions by offloading substantial amounts of mobile devices’
computing functionality to a remote cloud data center [3].
Compared to MCC, MEC has lower latency, but it can easily
become overloaded. Therefore, a multi-tiered computing and
networking system where critical services are offloaded to
MEC and the delay-tolerant services are computed at the
remote cloud has the potential to improve the applications
performance and the overall resource utilization [4]. Fig. 1
shows such a multi-tiered compute and network fabric. We
note that there is a slice abstraction on top of the compute and
network infrastructure and application uses this slice abstrac-
tion to request network as well as compute slices. Moreover,
the underlying infrastructure components are untouched by
the application. All requests for compute and network slices
always go through slice abstraction, which may grant or deny
requested slices depending on the resource conditions and
demands at that time. In such a multi-tiered architecture,
compute is available at various tiers like devices i.e. where
data is produced, edge and in the cloud. Similarly, different
kinds of networking capabilities are available at different tiers,
e.g. 5G connectivity between devices and edge servers, MAN
between distributed edge resources and WAN between edge
and central cloud. Deploying and optimizing applications in
such a complex infrastructure is very challenging. Moreover,
the real-time state of different resources (e.g. available network
and compute) is highly dynamic due to high variability in
the compute (multi-tenancy, heterogeneity, etc.), and changing
network (5G NR interference, link congestion, packet loss,
etc.) conditions. Therefore, the problem of application de-
ployment and optimization across multi-tiered compute and
network fabric is even more challenging considering the real-
time state of resources.

For an application which is composed of multiple individual
microservices a.k.a. functions, deployment of the application
entails (i) deployment of individual functions, and (ii) manage-
ment of data communication between various functions. Fig.
2 shows the pipeline of such a microservices-based watchlist
application, for video surveillance use cases. Each individ-
ual function for this application has demands for different
resources such as compute, storage, bandwidth for the incom-
ing streams, etc. The overall performance of the application
depends on the allocated resources to all the microservices.
This introduces a coupling relationship between the usage of
different resources and the application performance, which we
present in detail in section II. To the best of our knowledge,
this is the first work which studies and incorporates these
coupling relationships in order to optimally allocate resources
to the functions of microservices-based 5G applications.

A multi-tiered infrastructure opens up several possibilities
for the deployment of functions and inter-connections between
them. Thus, the questions of where (e.g. which compute node
or tier) each individual function is deployed at and how
the communication between functions is realized, taking into
account the resource coupling relationships, are open research
problems. The placement decisions directly impact the bottom-
line for the application e.g. end-to-end application latency,

Fig. 2: Video surveillance: watchlist application

Fig. 3: Intelligent transportation system: object detection ap-
plication

accuracy, cost of resource usage or any other application-
level metric. Therefore, proper function-level resource allo-
cation and automatically adjusting function-level resources in
response to changes in the dynamic infrastructure is critical
for meeting application-level requirements. The resource al-
location problem becomes even more severe at a large-scale
deployment e.g. city-scale as shown in Fig. 4, when there
are hundreds to thousands of IoT sensors, each continuously
producing data stream, which needs to be transmitted over
5G for local/remote processing. In such scenarios, managing
function-level resources for processing all these data streams
in a dynamic environment is a very challenging task.

The goal of this paper is to automatically manage the
execution of microservices-based application on a dynamic,
heterogeneous, multi-tiered compute fabric in a 5G network
taking into account the coupling relationships between re-
sources, when only application-level requirements are given,
without knowing individual function-level requirements. The
following are the main contributions of this paper:

• We first identify and model the coupling between network
and compute resource usage, and analyze the impact of
the coupling on application performance by considering
multiple real-world use cases.

• Then, we propose a novel optimization formulation that
captures the compute and network coupling relationship,
and enables a principled consideration of resource alloca-
tion options to significantly reduce network and compute
resource usage. Our proposed runtime system (referred
to as ROMA) uses the new formulation, and utilizes
the coupling to jointly optimize compute and network
resources across different edge compute and network
slices while ensuring consistent, high quality insights.

• We implement two real-world IoT applications in video
surveillance and intelligent transportation system domains
and show that ROMA can improve resource usage sig-



Fig. 4: City-scale IoT sensors deployment

nificantly (save up to 90% compute resource usage, and
up to 95% network resource usage), while maintaining
quality of insights, compared to a static resource alloca-
tion approach that ignores compute and network resource
usage coupling.

The paper is organized as follows. In section II, we elaborate
on the main motivation of this paper and describe the chal-
lenges in III. Section IV describes the system model. In section
V, we introduce our solution method. Performance evaluation
is presented in section VI, while we provide the literature
review in section VII. Finally, in section VIII, we highlight
our conclusions.

II. MOTIVATION

In this section, we highlight the motivation behind the
addressed problem through numerical experiments. We con-
sider two video analytics use cases in two different industry
verticals. The first one is in video surveillance and the second
one in ITS. Fig. 2 shows the structure of the video surveillance
use case i.e. watchlist application, which uses face recognition
technology to identify individuals seen in front of a camera.
Fig. 3 shows object detection application, which is used in ITS
to detect objects like cars and even people e.g. pedestrians, and
build higher-level applications like accident prevention, safety
alerting, traffic control, etc.

Fig. 5 illustrates the impact of the network and compute
resources on the performance of the above applications. In
Fig. (5a) and (5b), the performance of the watchlist application
in terms of face detection accuracy is evaluated for two
sample videos as the allocated CPU cores to the face-detection
function and the network bandwidth for the input streams of
the video sensor ingress function vary. Fig. (5c) and (5d) show
the performance of the object (person) detection application in
terms of the detection score (defined in section VI) for two
sample videos. In Fig. (5e), the performance of the object
detection application for a car detection task is illustrated for
different compute and network availabilities. It is important
to note that in all cases, the performance of the application
is controlled by both network and compute resource usage.
As a result, in order to avoid resource overprovisioning and
meet application requirements, this coupling effect should be
considered when deploying the application. From Fig. (5),
it is observed that although the general pattern is similar

in different experiments (increasing compute and network
improves the performance in most of the cases), the coupling
relationship is application-specific and even within an appli-
cation, it is non-linear and therefore not trivial.

In the following, we clarify the coupling relationships and
how they can be utilized to optimize the resource allocation
decision or enhance the application performance through three
specific operation instances of experiment 1-1 (Fig. (5a)).
Suppose that initially, the watchlist application is operating at
point P1 = (0.5 core, 10 Mbps). If the network experiences
congestion (network is a bottleneck) and the bandwidth drops
from 10 Mbps to 4 Mbps, the system is forced to operate
at point P2 = (0.5 core, 4 Mbps), and the performance of
the application drops from 83% to 71%. In this scenario, if
there exist idle compute, the performance can be improved by
increasing the allocated CPU cores to 1 core and moving to
P3 = (1 core, 4 Mbps). In an inverse order, if the system
is initially deployed at P3 with performance of 83% and
suddenly the available compute resource reduces (compute is
a bottleneck), the performance degrades by 12% by moving
from P3 to P2. In this case, allocating more network bandwidth
to the incoming video stream changes the operating point
to P1, thus performance remains unchanged. In each of the
aforementioned cases, there is a tradeoff between network and
compute usage which can be exploited to avoid performance
degradation by taking into account resource coupling relation-
ships in the application resource orchestration and devising a
joint network and compute resource allocation scheme.

Now consider a third case in which the system is operating
at point P4 = (1 core, 10 Mbps) initially. It is observed that
the allocated compute resource can be reduced to 0.5 core
by moving to P1 = (0.5 core, 10 Mbps) without affecting
the performance, thus avoiding resource overprovisioning. The
released CPU cores can be allocated to other services deployed
on the same node, which enhances the resource utilization
and the performance of other deployed applications. Another
option is to reduce the network usage form 10 Mbps to
4 Mbps and reduce even more to 2 Mbps by moving to
point P5 = (1 core, 2Mbps), without affecting the application
accuracy. Further reduction of network bandwidth will result
in significant accuracy degradation and thus should be avoided.
Therefore, even though neither network nor compute resources
become scarce, there may exist multiple paths or options to
save on different resources and avoid overprovisioning while
keeping the performance unchanged or within an acceptable
range. The decision on which path (operational point) to be
opted depends on the objective of the application manager
and the state of the resources. In the following, we propose
an optimization based decision making process for application
deployment incorporating the resource coupling relationships.

III. CHALLENGES

In this section, we discuss the main challenges we faced
while designing ROMA and the approach we propose to
address them.
Challenge 1: Identifying the resource coupling relationship



(a) Exp 1-1 - Watchlist (b) Exp 1-2 - Watchlist

(c) Exp 2-1 - Object (person) detection (d) Exp 2-2 - Object (person) detection (e) Exp 2-3 - Object (car) detection

Fig. 5: Impact of network and compute usage on the application performance

and its impact on the application performance. The
performance of a microservices-based application is
controlled by the amount of different resources used by
different microservices as discussed in section II. These
coupling relationships are not only application-specific, but
also time-variant. Ignoring this important phenomenon in
the application resource orchestration phase may result in
huge resource overprovisioning and undesirable performance.
While the resource coupling relationships can be non-linear
in general, in this paper, we use linear regression to model
the application performance as a function of the allocated
resources and illustrate the effectiveness of this approach
through extensive experiments.

Challenge 2: Unknown function-level performance
requirements. In a multi-tiered 5G infrastructure, the
decisions on the placement of application functions and
the resource allocations determine the application-level
performance metrics such as end-to-end latency, throughput,
accuracy, etc. While knowing the functions-level requirements
simplifies the deployment process, in a realistic setup,
only application-level requirements are known. In this
paper, we propose an optimization model with function
placement and resource allocation decision variables, and the
application-level performance requirements are modeled as
hard constraints.

IV. SYSTEM MODEL

In the sequel, we present the system model and the problem
formulation. The physical infrastructure consists of computing
nodes distributed across multiple layers, at the edge and at a

central cloud. At each compute tier, compute slicing is possible
for the allocation of the resources to different applications.
Let M represent the set of compute nodes. Each compute
node m ∈ M is specified by (gm, tierm), where gm and
tierm denote the available resource vector and the associated
tier (e.g. IoT device, far edge, near edge, central cloud),
respectively. Assuming that each node m provides T different
resources represented by set T , the size of gm is T . While
our proposed approach can be easily extended to arbitrary set
of resources, in this paper, we consider network and compute
resources, i.e. T = {com, net}.

We model an application as a set of microservices or func-
tions and interconnections that represent the data dependency
between functions. An application is specified by a tuple
R = (τ, ω), where τ and ω stand for the required end-
to-end delay and throughput of the application, respectively.
Let G = (V,E) be the graph representing the application,
where V denotes the set of application functions and E
represents the interconnections between functions. Further-
more, Rv = (τv, ωv) denotes the portion of the delay and
throughput corresponding to node (function) v. Moreover,
tierv denotes the tier on which function v should run, if
such constraints exists for function v. For instance, there might
exist constraints on some functions of the mobile application
(such as in user-initiated applications) to run locally (on
the user equipment). Given the function level performance
metrics {Rv, v ∈ V }, we assume that the rules defining
the application level performance metrics are known. One
challenge in this regard is to determine the set of functions
contributing to each of the end-to-end application performance



metrics (a.k.a the critical path or pipeline of the application).
For the sake of simplicity, we assume that the knowledge
about the contributing functions to each performance metric
is available by the application developer similar to [5]. For
instance, given the functions of the critical path of G as
Vcritical ∈ V , we can calculate the end-to-end application
delay as hdelay(τ1, ..., τ|V |) =

∑
v∈Vcritical

τv . Similarly, the
throughput rule is computed as hthroughput(ω1, ..., ω|V |) =
minv∈Vcritical

ωv .
In order to successfully and optimally deploy an application

given its end-to-end performance requirements, it is important
to understand the coupling between the usage of different re-
sources. Let p denote the desired application performance, e.g.
p can be the detection accuracy in the watchlist application. To
address the impact of the network and compute resources on
the application performance, we define f t,t

′

v,v′(x, p) : R −→ R,
v, v′ ∈ V , t, t′ ∈ T as the minimum resource unit of type t′

that should be allocated to function v′ in order to achieve the
application performance of p, given that x units of resource
type t is allocated to function v. In fact, f t,t

′

v,v′(., .) reflects the
coupling relationship between each pair of resources allocated
to all pairs of application functions. Even for the same function
i.e. when v = v′, coupling relationship between different
types of resources is reflected through the defined function
as well. For instance, given that the input streams of function
F2 of the watchlist application in Fig. 2 consume x Mbps
network, the minimum number of CPU cores that should be
allocated to F2 in order to achieve an accuracy of p is equal
to fnet,com2,2 (x, p). As a numerical example, for the watchlist
application of Fig. 2, it can be observed from Fig. (5a) that
fnet,com1,2 (10, 80) = 0.75, i.e. in order to have the accuracy
of 80% when the available network bandwidth for the video
stream input of F1 is 10 Mbps, it suffices to allocate 0.75
CPU core to the face detection function F2.

V. PROBLEM FORMULATION AND PROPOSED SOLUTION

We model the application deployment problem across a
multi-tiered compute and network fabric as an optimization
problem. We then discuss the usage of different models for
the coupling relationships.

A. Optimizing resource allocation and application perfor-
mance

The application resource allocation and performance opti-
mization problem entails the assignment of microservices to
the compute nodes in M (a.k.a. placement problem) and the
allocation of different resources to each function, such that
end-to-end application requirements (e.g. delay and through-
put) are satisfied. We model this problem as a multi-objective
optimization problem, with the objective of minimizing the
total resource usage (equivalently, the deployment cost) and
maximizing the application performance, by incorporating the
resource coupling functions introduced in section IV. By
designing a joint optimization problem with two objective
terms, the tradeoff between performance and resource usage
illustrated in the examples of section II is also captured.

The following decision variables are defined for the problem
formulation:

• xv,m: a binary decision variable for function placement
which is equal to 1 if the function v of the application
is assigned to the substrate node m for execution and 0
otherwise.

• ytv,m: a continuous decision variable denoting the amount
of resource type t of node m allocated to function v.

• p: a continuous decision variable representing the appli-
cation performance, e.g. the face recognition accuracy or
object detection score.

The resulting optimization problem is as follows:

[P ] min η
∑
t,v,m

ytv,m − (1− η)p (1)

s.t.∑
m

xv,mf
t,t′

v,v′(y
t
v,m, p) ≤

∑
m

xv′,my
t′

v′,m,∀v, v′, t, t′ (2)

ytv,m ≤ gtmxv,m,∀t,m, v (3)∑
v∈V

ytv,m ≤ gtm,∀t,m (4)∑
m|tierv=tierm

xv,m = 1,∀v (5)

τ ≥ hdelay(τ1, ..., τ|V |) (6)
ω ≤ hthroughput(ω1, ..., ω|V |) (7)
xv,m ∈ {0, 1},∀v ∈ V,m ∈M
0 ≤ ytv,m ≤ gtm,∀v ∈ V,m ∈M, t ∈ T , 0 ≤ p ≤ pmax (8)

In the objective function (1), η is a parameter between 0
and 1 used to control the balance between the two objective
terms. In our experiments, we tested different values for η and
selected a small value to promote a solution that primarily
enhances the performance and minimizes the total consumed
resources. Constraints (2) ensure that the resources allocated
to each application microservice is greater than or equal to
the required minimum amount (given by the defined coupling
functions) to potentially achieve the performance of p. For
instance, the resource type t′ allocated to function v′ which
is equal to

∑
m xv′,my

t′

v′,m should be greater than or equal
to

∑
m xv,mf

t,t′

v,v′(ytv,m, p) for all t, v. This constraint together
with the objective of minimizing total used resources results
in a solution which avoids resource overprovisioning. The
set of inequalities in (3) and (4) enforce the infrastructure
capacity constraints. Constraints (5) ensure that each function
of an application is deployed at one infrastructure node. The
application end-to-end performance requirements are guaran-
teed by constraints (6) and (7). Finally, the domain constraints
are expressed in (8), where pmax is the maximum observed
performance for a specific application in all resource allocation
vectors. The optimization problem [P ] is a mixed integer
nonlinear program (MINLP) owning to the constraints (2) and
the integer variables, thus an NP-hard problem. In the next



section, we discuss the models for the coupling functions and
solve a special case of [P ].

B. Modelling the resource coupling relationships

In this section, we discuss different models that we can
use for the coupling functions. The first one is a linear
regression modeled as f t,t

′

v,v′(y, p) = αt,t′

v,v′y+β
t,t′

v,v′p+γ
t,t′

v,v′ . The
parameters αt,t′ , βt,t′ , γt,t

′
are obtained using the historical

data collected in an offline manner. It is important to note that
while we employ linear regression in this paper for modelling
resource couplings, it is possible to use other models such as
a support vector regressor (SVR) or a multilayer perceptron
(MLP) resulting in better prediction performance. However,
the benefit of linear regression models is that if the placement
variables xv,m are assumed to be known, the resource allo-
cation problem [P ] becomes a linear program (LP) for which
efficient algorithms exist to generate the optimal solution in
polynomial time. Table I represents the performance of differ-
ent regression models, for six coupling function examples of
the watchlist and object detection applications, with coupling
data shown in Fig. (5a), (5d) and (5e). We use the polynomial
kernel for the SVR model with γ parameter of 10 and the
MLP has a hidden layer of size 100 and uses relu as activation
function. It can be observed that the MLP regression model
outperforms the SVR and linear regression models. However,
the linear model is simple and useful for a special case of [P ]
to become a LP as discussed earlier. In section VI, we illustrate
that the usage of linear model for the coupling functions
results in significant resource saving although it has limited
prediction capability compared to SVR and MLP models. In
the rest of the paper, we consider a special case of [P ] with
known placement decisions and linear models for the coupling
functions, resulting in an LP. We demonstrate the benefits of
incorporating the introduced resource coupling models in the
application resource orchestration. For the placement problem,
existing solutions such as the algorithm proposed in [5] can
be used accordingly.

VI. PERFORMANCE EVALUATION

In this section, we present the experimental setup and
benchmark our proposed solution, ROMA, against a static re-
source allocation scheme, which ignores the coupling between
resources.

A. Experiment setup

Our experimental setup is shown in Fig. 6, where we have
wireless gateways from Multitech [6] and Access Point (AP)
from Celona [7]. User Equipment (UE) connect over private
5G to AP. 5G core and MEC servers are in our internal
LAN and the core is remotely configured using Celona’s
Service Orchestrator. Control and Data plane traffic from
AP is terminated at the core. In our MEC setup, we have
one master and three worker node servers. Master node is
equipped with 10-core Intel core i9 CPU and the three worker
nodes are equipped with 24-core Intel CPU and with NVIDIA
RTX 2080 Ti GPUs. Kubernetes [8] cluster is setup on our

MEC servers and both our usecases i.e. video surveillance
(watchlist application) and intelligent transportation systems
(object detection application) run within pods in Kubernetes.
Each function runs as a separate pod and multiple replicas
of these pods are created, as necessary. We stream videos
from video server using ffmpeg [9] and they are processed
in MEC servers on a Kubernetes cluster, within pods. We use
GNU Linear Programming Kit (GLPK) [10] solver for the
optimization problem discussed in section V.

B. Results

We present our experimental results for the two use cases
i.e. video surveillance and intelligent transportation system:

1) Video surveillance: For the video surveillance use case,
we deploy the watchlist application depicted in Fig. 2. We
consider a sample video including different people and com-
pare the performance of two resource allocation strategies,
ROMA and a static allocation in which the amount of compute
allocated to the face detection function is fixed to 2 cores. The
results are averaged over 3 runs. Fig. (7a) shows the average
application accuracy as the network experiences congestion
and the bandwidth drops from 10 Mbps to 0.05 Mbps. In
Fig. (7b), the compute resource usage is compared for the two
schemes as the network bandwidth changes. It is observed that
compared to the static resource allocation scheme, ROMA is
able to reduce the compute resource usage up to 90%, hence
preventing overprovisioning while maintaining the application
accuracy, by exploiting the network-compute coupling rela-
tionship. It is important to note that the slight variation in
the application accuracies in Fig. (7a) is mainly due to the
fact that different set of frames may be processed in each
case because some frames are dropped by the video ingress
function until CPU is released to process next frame, and that
is why we need to average the results over multiple runs.
Similar results are shown in Fig. (7c) and (7d) when the
compute resource changes, and the application accuracy and
network resource usage is compared for ROMA and the static
scheme. In particular, according to Fig (7d), ROMA reduces
the bandwidth up to 80% while the application accuracy
remains acceptable.

2) ITS: In this experiment, we implement the object de-
tection application shown in Fig. 3. We consider the used
videos in Exp 2-2 and Exp 2-3 in Fig (5d) and (5e). The
goal is to detect the person or car objects in the videos. Fig.
(8a) demonstrates the application performance in terms of the

Fig. 6: Experimental setup



TABLE I: Performance comparison of linear, SVR and MLP models for resource coupling functions

Instance
MAE

Lin SVR MLP
MSE

Lin SVR MLP
RMSE

Lin SVR MLP

Exp 1-1, fcom,net
2,1 1.1 0.7 0.09 2.6 3.2 0.01 1.6 1.7 0.1

Exp 1-1, fnet,com
1,2 0.36 0.4 0.17 0.17 0.37 0.04 0.47 0.65 0.21

Exp 2-2, fcom,net
2,1 2.2 1.2 0.4 10.4 3.2 0.4 3.2 1.8 0.61

Exp 2-2, fnet,com
1,2 1.7 1.17 0.09 6.4 5.6 3.7 2.5 2.8 1.9

Exp 2-3, fcom,net
2,1 1.35 0.79 0.03 4.16 5.43 0.002 2.04 2.33 0.053

Exp 2-3, fnet,com
1,2 2.05 2.58 0.57 7.94 15.71 0.64 2.81 3.96 0.80

(a) Application accuracy (b) Resource usage (c) Application accuracy (d) Resource usage

Fig. 7: Performance of watchlist application, ROMA vs. static

(a) Detection score (b) Resource usage (c) Detection score (d) Resource usage

Fig. 8: Performance of object (person) detection application: ROMA vs. static

(a) Detection score (b) Resource usage (c) Detection score (d) Resource usage

Fig. 9: Performance of object (car) detection application: ROMA vs. static

object detection score, which we define next. The amount
of used compute resource, as the network condition changes
is also showed in Fig (8b). Since not all the video frames
are processed at each experiment instance, and because the
number of objects differ in various video frames, we define the
following weighted score (which is different from confidence
score) for the object detection application:

score =
∑

f∈FRAME

wf
TPf

GTf
(9)

where f, TPf and GTf denote the frame index, the number
of true positives in frame f and the number of ground truth
objects in frame f . Moreover, FRAME denotes the set of
processed frames. We use the intersection over union (IoU)
metric to measure the overlap between the detected and ground
truth bounding boxes. The IoU threshold is predefined as
0.5 and the predictions with an IoU of 0.5 and above are
classified as TP. Fig. (8a) and (8b) illustrate that ROMA trades
off a small degree of performance for significant compute
resource saving by leveraging the network-compute coupling



relationship in the resource allocation. The amount of compute
resource usage is reduced up to 50% in this case. In Fig.
(8c) and (8d), the object detection score and the network
resource usage are shown respectively as the available compute
resource varies. It is observed that ROMA outperforms the
static scheme in terms of compute resource usage by saving
up to 95% of the network bandwidth (in the case that the
available number of CPU cores is 1), while the object detection
score is comparable with the overprovisioned static solution.
The same results for the car detection application are depicted
in Fig. 9. According to Fig. (9a) and (9b), as the network
bandwidth varies, ROMA is able to save on the compute
resource usage up to 44% compared to the static approach.
The detection score remains within an acceptable range of
the static solution except for the single case of 0.25 cores.
From Fig. (9c) and (9d), as the compute resource changes
from 16 cores to 2 cores for the car detection experiment,
the network bandwidth is remarkably saved up to 75% in the
case with 2 cores.

VII. RELATED WORK

The work presented in [11], uses a distributed cross-domain
resource orchestration (DIRECT) for cellular edge computing
considering the radio and computing resources of a radio
access network and multiple edge servers. The formulated
resource orchestration problem takes the perspective of the net-
work operator with the objective of maximizing the sum utility
of network slices on all edge nodes. Assuming unknown utility
functions, the authors propose a learning-assisted resource
orchestration based on a probabilistic model with a gradient-
based optimization solution. Authors in [12] show that DI-
RECT incurs in overprovisioning due to ignoring the coupling
between different edge resources. This coupling is modeled as
a linear function used in an MILP to optimally instantiate joint
network-MEC slices and prevent resource overprovisioning.
In order to deal with the MILP time complexity, distributed
algorithms are proposed to leverage the similarities among
edge nodes and resource virtualization which can instantiate
heterogeneous slices within a short distance from the optimum.
In the literature, there are also studies such as [13], [14]
focusing on the problem of virtual network embedding which
shares similarities with the microservices-based application
deployment problem. The main limitation of these works is
that they only consider the edge or core networks which cannot
be readily applied to a multi-tier computing infrastructure.

In [15], a multi-tier vehicular edge computing (VEC) system
is considered which consists of three layers of data generation,
vehicular edge computing and remote cloud. The overall
system involves the cooperation of local edge servers with the
global cloud servers distributed over a geographical region.
An ML-based prediction is utilized to performs a two-stage
process for the offloading decision, a classification for pre-
dicting the offloading success and a regression for the service
time estimation. While the solution in [15] takes into account
static dataset and models, authors in [16] propose online multi-
armed bandit (MAB) based task offloading schemes to avoid

poor performance when the VEC environment conditions to
which the static models are exposed differ from those used for
model training. It is shown that the proposed contextual bandit-
based algorithm surpass all other algorithms under the failure
rate and QoE metrics besides achieving adequately comparable
service time values. Different from [15] and [16], we consider
an underlying realistic 5G system. Moreover, the workloads in
the aforementioned works are only single tasks, which makes
the proposed frameworks not applicable to the microservices-
based applications. Authors in [17] developed an emulation
software named eXP-RAN, which allows experimenting with
network slicing in virtualized RAN nodes and EC scenarios,
with the key characteristics of slicing abstraction, service
representation, and predictable performance. Compared with
existing relevant tools such as EdgeCloudSim [18], eXP-RAN
has the ability of monitoring each network slice independently.
However, current version of eXP-RAN only implements the
RAN slicing and it lacks 5G core network implementation.
Therefore, its applicability for a case of multi-tier computing
framework is questionable. Regarding the microservices-based
application deployment in a dynamic environment, authors
in [19] design an RL-based proactive scheme for placement
and migration of an already placed microservice in the MEC
setup. In contrast to a conservative policy leading to wasteful
resource allocation and a reactive on-demand policy causing
high latency, the main contribution of this paper is to learn
and synthesize the optimal proactive prefetch, deployment and
migration schedule, given a microservice workflow by utilizing
the user mobility. However, only sequential workflow structure
(linear sequence of microservices) is considered in this study
and no back-end central cloud is assumed. Moreover, all the
microservices invoked by a user can be co-located at one edge
server.

VIII. CONCLUSION

Emerging IoT applications today have strict and diverse set
of requirements in terms of end-to-end latency, throughput,
reliability, etc. 5G and edge computing has made it possible to
meet these requirements. However, with the addition of extra
computing and networking layers, the underlying infrastruc-
ture itself has become quite complex. To this end, in this
paper, we propose ROMA, which enables optimal resource
orchestration for microservices-based 5G applications in a
dynamic, heterogeneous, multi-tiered compute and network
fabric by exploiting resource coupling relationships. ROMA
is able to successfully map application-level requirements to
individual functions and ensure optimal deployment, such that
end-to-end application requirements are met. By implementing
two real-world IoT applications, one in video surveillance
domain and another one in intelligent transportation systems
domain, we show that ROMA is able to reduce compute
and network resource usage remarkably while maintaining
the application performance. In future, we aim at studying
the performance of machine learning-based dynamic resource
allocation which potentially captures nonlinear resource cou-
pling relationships.
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