
RLBrowse: Generating Realistic Packet Traces with
Reinforcement Learning

Alexander Griessel*, Maximilian Stephan*, Martin Mieth†, Wolfgang Kellerer*, Patrick Krämer*
*Technical University of Munich, Munich, Germany

†ipoque GmbH - A Rohde&Schwarz Company, Leipzig, Germany

© 2023 IEEE. Personal use of this material is permitted. Permission from IEEE must be obtained for all other uses, in any current or future media, including
reprinting/republishing this material for advertising or promotional purposes, creating new collective works, for resale or redistribution to servers or lists, or
reuse of any copyrighted component of this work in other works.

Abstract—Automated Web Browsing tools, such as Selenium
and headless browsers, are used to collect traffic traces from
networked applications, with which statistical models describing
the traffic are obtained. However, we show that traces from
Selenium and headless browsers have markedly different traffic
characteristics than human generated traces, with potential im-
pact on the quality of the obtained models. To overcome this lim-
itation, we propose RLBROWSE, an automated web automation
framework that imitates human browsing habits by separating
web automation from the browser using reinforcement learning.
By separating the browser and automation tool, RLBROWSE
improves on 9 out of the 13 traffic trace features tested. The
distribution of packet sizes in a trace improves the most, with
a nearly 400% improvement. We test RLBROWSE by collecting
a corpus of network packet traces on a set of human-navigated
website browsing sessions, and by RLBROWSE and Selenium.
In the subsequent analysis, we identify key differences in the
resulting packet traces.

I. INTRODUCTION

In recent years, the number of published attacks, exploits
and vulnerabilities in network traffic has led to a state of
encrypt-everything [1]. According to the Google Transparency
Report, the share of pages loaded using HTTPS (Hypertext
Transfer Protocol Secure) has increased from between 30 %
and 47 % in 2015, to between 80 % and 98 % today. While
the move towards encryption protects individual security [2],
and prevents network censorship [3], [4], encrypted network
traffic renders network monitoring difficult [1]. With traffic
encryption, statistical traffic classification through traditional
techniques, like Deep Packet Inspection (DPI) is no longer
possible. However, classification of network traffic into net-
work applications, and network traffic monitoring is used by
Internet Service Providers for QoS guarantees, detection of
malicious intrusions, and network traffic management [4]–[6].
For encrypted traffic, Internet Service Providers and businesses
interested in their own network management need to look
towards new traffic classification methods, such as machine-
learned models that make use of exposed packet-level features-
packet timing, sizes, and direction [7].

Machine-learning solutions require high-quality, large-scale,
representative data of traffic traces of networked applications.
To date, the network traffic these solutions are trained on are
generated by automated tools [8]–[11]. But, to the best of our
knowledge, it has not yet been investigated how representative
synthetically generated traffic is for human generated traffic.

We fill this gap and compare the traffic generated with Sele-
nium and headless browsers against human generated traces.
We limit the evaluation to website interaction, since website
classification has a magnitude more classes than the more
generally defined traffic classification, making the gathering
of large data-sets difficult, thus requiring automated methods
[7], [12]–[14]. We show that traffic characteristics differ sig-
nificantly for synthetic and manual traces. We determine that
RLBROWSE improves on 9 out of the 13 traffic trace features
tested. Further, we find that several features, including the
distribution of packet sizes, are improved by up to 400%.

To generate more realistic traffic, we propose RLBROWSE,
a framework that mitigates trace differences observed with
Selenium. Unlike existing tools, RLBROWSE is built on
the foundation that human-representative web automation re-
quires a complete separation of browser and automation tool.
Compared to Selenium and Selenium Headless, RL-
BROWSE improves the divergence in packet size distribution
by up to 347%. Average packet sizes are improved from a
26% difference to 2%. Further, significant improvements are
seen in outgoing burst rate features. In fact, RLBROWSE gen-
erates traffic with nearly identical packet sizes, trace lengths,
and outgoing bursts as human generated traffic. Further, be-
cause RLBROWSE navigates web-pages by emulating human
browsing, any differences in traces generated by the two
methods are independent from browser configuration or web-
page interaction methodology. This ensures that RLBROWSE
is unaffected by browser updates, and that website interaction
is congruent regardless of the browser used. Further, RL-
BROWSE is not affected by closures or restrictions in access
to an API or HTML identifiers.

Our contributions are as follows:
‚ We demonstrate that significant differences exist between

traces generated through existing web automation tools,
and traces generated through human browsing.

‚ We propose RLBROWSE, an innovative tool for auto-
mated generation of traffic traces in which a Reinforce-
ment Learning trained agent navigates the web-page using
only mouse and keyboard.

‚ We evaluate that traces generated by RLBROWSE are
representative of human generated traces, in the websites
investigated in our dataset.

‚ We show that a minimal implementation of RLBROWSE
performs better in respect to trace similarity, than the
existing tools Selenium, and Selenium Headless.978-1-6654-0601-7/22/$31.00 © 2022 IEEE



The remainder of this paper is structured as follows: Sec-
tion II elaborates on related work and background. Section III
introduces and discusses the design goals, framework, and
implementation of RLBROWSE. The comparison dataset, data
collection, and feature selection are elaborated in Section IV.
Further, Section IV presents the results and findings drawn
from the evaluation of our comparison dataset. Finally, Sec-
tion V concludes this paper with a summary of key findings
and a short discussion of the future work.

II. BACKGROUND AND RELATED WORK

A. Web Automation

Web automation tools are a pair of browser, and automation
tool. A number of browsers have been used in network
tracing applications. These include headless browsers such as
PhantomJs [15], Firefox Headless and Chromium
Headless [16]. The most popular automation tool is
Selenium [8], [10]. Selenium utilizes DOM (Document
Object Module) nodes to help identify web elements on a web-
page. DOM identifiers are often modified between web-page
reloads, preventing automation scripts from reliable playback
of a pre-programmed sequence [17]. During implementation
of the Selenium automation scripts for this paper, DOM iden-
tifiers such as ids and class changed consistently. RINGER [17]
extends Selenium by logging as many identifiers on a DOM
element as possible. While this makes RINGER more robust
against changes to a web-page and against identifier obfusca-
tion, it does not give a guarantee of success, with automation
tests succeeding only 74 % of the time, and decaying by 7 %
over a three week period. COCO [18] is a conversational web
automation tool. Given a short command by a user, COCO
generates a plan to reach the requested information, after
which it executes the plan on the web, and extracts and returns
results to the user. COCO uses JavaScript to browse the web
with Firefox browsers. Finally, COSCRIPTER is a similar
tool to RINGER, and navigates across the web using DOM
attributes [19]. RLBROWSE differs from these tools in that it
does not navigate websites by DOM, but rather by mouse and
keyboard. Further, RLBROWSE remains independent from the
browser at all steps, limited to the same input a human user
would receive. Thus, RLBROWSE does not require specific
browser configurations or APIs.

B. Crawler Identification

A web crawler is a scripted bot that navigates across
the web, using a web automation tool. As discussed, most
web automation tools interface directly with a browser. Vas-
tel et al. and Chen et al. [16], [20] present comprehen-
sive studies on web-crawlers, and their detection. Vastel
et al. [16] found that crawlers are detected using browser
or automation framework specific attributes properties- for
example, Selenium injects additional properties into the
htmldom document class: __webdriver_script_fm,
__fxdriver _unwrapped among others. In another case,
images were fed to the requesting browser, and the size of the
placeholder image read, as several headless browsers returned

0x0 Pixel placeholder images. Since web-crawlers are built
with the same tools used to automate packet trace collection,
the differences that identification techniques exploit are likely
to have an impact on traffic generated by these tools. In
contrast, RLBROWSE is separated from the browser. Thus,
browser configuration and resource requests are independent
from RLBROWSE interacting with a web-page.

III. RLBROWSE: AUTOMATED WEB BROWSING

In this paper, we define web browsing over a single website
and the web-pages the website encompasses. Web browsing is
a task that begins from a user’s current position on a given
web-page, and extends to the browsing objective, or the end
goal of the user, on the same website. For example, a user
might begin at google.com, and have the objective to look at
cat pictures. In this case, the user’s browsing objective would
be the google.com image results web-page containing pictures
of cats. Web browsing is a sequential task [21], [22]- even
when a user desires to accomplish multiple tasks simultane-
ously, the user is limited by control over a single mouse cursor.
Thus, an arbitrary web browsing objective can be broken down
into a series of navigation steps, or interactions. Interactions
are composed of a navigation component, where an agent
navigates to a given destination di, and condition ci to begin
an action ai. In the previous example, an agent navigates the
mouse cursor to the google.com search bar, and when the con-
dition ”mouse cursor state changes to clickable” occurs, the
agent executes the action ”click”, proceeding to enter the word
”cats”. Cursor state changes can be identified independently
from a browser event, either by a visual change in the cursor,
or by reading the cursor state from the operating system.
This structure offers two opportunities for which reinforcement
learning could provide a benefit. First, the structure of a task
implicates a planned sequence of actions. A reinforcement
learning agent can improve on existing web automation tools
by planning actions to reach a browsing objective. Second,
mouse control is a necessity for the separation of browser
and automation tool. The movement of a mouse is a known
stimulus for robot checks and CAPTCHA pop-ups [23], [24].

A. Design Goals

The RLBROWSE framework should fulfill the following
design goals:

‚ RLBROWSE should only interface with a web browser
by means of mouse cursor or keyboard, such that RL-
BROWSE interacts identically with any given browser, and
does not change browser settings.

‚ RLBROWSE should only execute a navigational step if the
prior navigational step is completed: when the condition
ci is met, and action ai executed. Browsing behavior
should be sequential, and actions not completed in a
manner not possible with a mouse cursor and keyboard.

‚ RLBROWSE should respect navigation timing: Actions
should not be completed instantaneously, nor should
they preempt cues a user would realistically require to
complete the action.



‚ RLBROWSE should not attempt a navigation to a desti-
nation di if the web content at di is not loaded. This
condition prevents pages from partially loading into a
state a user would not normally be capable of interacting
with, before the page load is stopped due to a new
navigation.

B. Framework

The RLBROWSE framework is a web automation tool
built on reinforcement learning, and composed of four major
components: the INPUT MODULE, ACTION ELEMENTS, the
AGENT, and the ACTION MODULE. RLBROWSE structures
web browsing as chained tasks. The INPUT MODULE rep-
resents the observational interface available to the AGENT.
In this paper, RLBROWSE is implemented with the low-level
observation space S1, which is composed of the current and
previous cursor positions: pxt, ytq, pxt´1, yt´1q, current and
previous velocity: pvtx, v

t
yq, pv

t´1
x , vt´1

y q, as well as the pre-
dicted next position, given the current velocity: pxt`1, yt`1q.
Finally, the target position pX,Y q is also given, where the
target position is given by the current ACTION ELEMENT.
Future work includes an extension in which the agent navigates
via screen input, and identifies web-elements visually [25].
RLBROWSE trains the AGENT with Soft-Actor-Critic (SAC).
SAC is well-suited for environments with multi-modal strate-
gies and continuous action spaces, as in our case [26]. The
ACTION MODULE implements the action space for the agent.
The agent interacts with a web-page in two ways. First, the
AGENT has control over the velocity of the mouse cursor,
pvtx, v

t
yq. Second, the AGENT controls keyboard commands,

such as typing or pressing the ”enter” key. In this paper, we
limit the implementation of the second action space to scripted
events executed by an ACTION ELEMENT.

The AGENT is defined as any algorithmic or learned method
that converts the input I from the INPUT MODULE into an
action ai, or a navigational step pvtx, v

t
yq, in the ACTION MOD-

ULE, conditioned on the current ACTION ELEMENT. More
generally, an AGENT utilizes the input from the framework
to produce an output action such that the AGENT achieves
the goal defined in the ACTION ELEMENT. AGENTS are non-
invasive, meaning that they are limited to browser interactions
a regular web user would make. AGENTS cannot find page
elements by interpreting the HTML page source, and cannot in-
terface with the web browser through APIs. RLBROWSE uses
reinforcement learning to browse a website, by navigating over
its web-pages. We define the reward function for the mouse
navigation goal as R “ ´α}pt ´ pt´1} ´ βt, where pt is the
current mouse position, pt´1 the previous mouse position, and
α the scalar factor for the position-based reward. Additionally,
the agent receives a negative reward for increasing time steps.

Each ACTION ELEMENT represents a single interaction with
the web browser, containing the specific action the AGENT
should take- such as the navigation destination, the action
the AGENT should take when reaching the destination, and
what constitutes the end of the action. Once an ACTION
ELEMENT has reached the end of its action, the next ACTION

Start C Next

Step
Navigation

False

Element of
Interest

Web Element
True

ai
ei1
...
ein

ci

Fig. 1: Flow Diagram of Steps within an Action Element.

ELEMENT is loaded and given to the AGENT. AGENTS are
interchangeable, and independent of the ACTION ELEMENT.
They are responsible for the task of navigation: controlling
a mouse or keyboard to reach an on-screen destination. The
AGENT receives its directive from the ACTION ELEMENT, and
navigation-necessary input from the INPUT MODULE.

ACTION ELEMENTS are either predefined, or defined dy-
namically when RLBROWSE determines a new objective. AC-
TION ELEMENTS are composed of three blocks of information:

1) Element of Interest Defined as a bounding box contain-
ing a region that an agent should navigate to. Elements
of Interest can be generated dynamically, given an
agent’s observation, or can be predefined in minimal im-
plementations of RLBROWSE. In this paper, the Element
of Interest is used to generate the target position pX,Y q.

2) Condition The condition C is responsible for executing
the Action when a condition is met. For example, an
agent may need to scroll if it cannot reach the Element
of Interest without doing so. Or, an agent attempts to
click on the element, but only if within the bounding
box of the Element of Interest.

3) Action A tuple containing an action ai, action events ei,
and action completion ci: Ai “ pai, ei, ciq. The action
initiates a number of non-navigational events, which
are completed with the final event, the completion. For
example: ai = ”click”, ei = (”type text”, press ”Enter”
key), and ci = ”wait”.

An ACTION ELEMENT represents an AGENT’s current goal
for the given navigation. ACTION ELEMENTS are designed to
be chained together, to fulfill the design goal of a sequential
browsing model. The individual parts of the ACTION ELE-
MENT and the corresponding steps are shown in Figure 1.
ACTION ELEMENTS begin at some starting point, from which
they navigate in steps towards the Element of Interest. Once
the condition C is met, the AGENT is considered to have
reached the Element of Interest, and initiates the action ai,
completing the series of action events ei. Once the completion
condition ci is met, the next ACTION ELEMENT begins.

IV. EVALUATION

A. Dataset

Network packet traces were gathered for four methods of
web interaction and five websites. Each website was assigned
a trial consisting of a number of defined ACTION ELEMENTS.
For each of the four methods of web interaction, the browsing
objective and the individual navigation steps are identical.
Trials begin on the index page of a website, and proceed over
two website sub-pages. Navigation between consecutive pages
is performed by accessing a linking web element, e.g. a button,



TABLE I: Features and Corresponding Values. Sel. is short
for Selenium, Headl. for Headless, and RLB. for RL-
BROWSE.

Feature Unit Sel. Headl. RLB Human

Packet Size Distribution dmeasure 0.242 0.219 0.063* N/A
Packets Inbound Distribution dmeasure 0.27 0.22 0.33 N/A
Packets Outbound Distribution dmeasure 0.28 0.26 0.31 N/A
Avg. Packet Size Bytes 667 661 542 531
Var. Packet Size KBytes2 0.433 0.403 0.336 0.331
Avg. Burst Packets Incoming Unitless 2.76 2.89 2.73 4.22
Avg. Burst Packets Outgoing Unitless 7.01 10.40 3.94 3.68
Avg. Burst Bytes Incoming Bytes 8930 10559 9148 10907
Avg. Burst Bytes Outgoing Bytes 4510 7351 1468 1708
No. of Packets Inbound Unitless 475 281 571 527
No. of Packets Outbound Unitless 588 704 976 1029
Avg. Interarrival Time ms 4.7 6.5 5.6 5.8
Var. Interarrival Time s2 2.14 6.24 2.44 3.96

*(Bold) Synthetic value closest to human generated traffic

a search bar, or hyper-link. For example, the google.com trial
begins on the google.com search page, where a defined text
is entered. Subsequently, a user lands on the ”results” page,
where they are then instructed to navigate to the ”images” tab,
and then to click on a random image.

The five websites chosen for evaluation were google.com,
bbc.com, youtube.com, wikipedia.org, and amazon.com. The
websites were chosen for their Alexa Ranking. Further, each
website represents a different category of web content, in-
cluding media streaming, consumer shopping, and news. The
number of websites is initially kept small due to the evaluation
requirement that human generated data collection be used as
a baseline. All trials were run in the Chromium browser,
where RLBROWSE, Selenium, and human browsing were
used to browse each website. For Selenium, the Chromium
browser was run as-is, and in headless mode. PhantomJs
was not considered, as development has ceased. Further,
each browsing session shared the same browser configuration
settings, with cookies disabled. For each method, 50 packet
traces were taken for each website, granting a total of 1 000
packet traces. Packet traces were collected with tshark. Each
trace lasted for 40 s, with packet collection beginning 2 s prior
to loading the index page for a given trial. Chromium was
closed 30 s after a trace started, and a 25 s delay given prior to
starting the subsequent trace. All traces were collected on the
same day. Human collected traces were split equally among
ten participants, where participants were not informed of the
30 s window in which the browser remained open- no trial
required more than the allotted time.

B. Feature Selection

Frequently used traffic features are packet size, packet
timing, packet sequence, and packet direction [27]. The com-
bination and derivation of these feature categories yields the
full corpus of features- for example, combining packet size
and packet direction yields the number of bytes being sent or
received by a web user. A full set of features evaluated in this
paper is identified in Table I.

C. Evaluation

This section focuses on the evaluation of differences in
network packet trace features by automation method. Further,
RLBROWSE is evaluated for improvement against observed
feature disparities between Selenium and human generated
browsing. Features are split into two categories: packet-level
features, and trace-level features, where packet-level features
are evaluated by their distributions over a given trace, and
trace-level features are evaluated by their aggregate statistics.

We derive a measure for the difference between the two
distributions px and qx:

Dmeasurepp||qq “
Erp|ppxq ´ qpxq|s

2
(1)

Equivalent distributions possess a Dmeasure of 0, while a
Dmeasure of 1 indicates entirely dissimilar distributions. For
each of the five trials, the Dmeasure between the distribution
of features in human generated data collection and automated
data collection can be found in Table I. As the sets of non-zero
bins in the distributions ppxq and qpxq are not equivalent, we
omit the Kullback-Leibler divergence, which requires a strictly
positive qpxq.

Figure 2a displays the distribution of packet sizes across
all traces for each of the four data collection methods for
the wikipedia.org trial. As expected, the majority of packets
are either sent at or near MTU, such as packets carrying
image resources, or contain small payloads, such as HTML GET
requests. While packets sent with small payloads are similar
in distribution across all four methods, packets sent near MTU
display differing distributions. As shown, the Selenium and
Selenium Headless data collection display a strongly
bi-modal packet size distribution for the wikipedia.org trial.
This is in contrast to RLBROWSE and human generated data
collection, where large packets occur with a lower probability.
Figure 2b displays the cumulative distribution function (CDF)
of the packet sizes for the google.com trial, demonstrating the
higher probability of larger packet sizes for the Selenium
and Selenium Headless data collection. These differ-
ences are reflected in the dmeasure, as shown in Table I.
Comparing the dmeasure for Selenium and RLBROWSE
to human generated data collection, we see an average of
0.242 for Selenium, and 0.063 for RLBROWSE, indicating
significant improvement.

Feature Selenium Headless RLBROWSE
Avg. Packet Size α “ 0.01 α “ 0.025 N/A*

Avg. Burst Packets Outgoing α “ 0.01 α “ 0.01 N/A*
Avg. Burst Bytes Outgoing α “ 0.01 α “ 0.01 N/A*

No. of Packets Inbound α “ 0.01 α “ 0.025 N/A*
No. of Packets Outbound N/A* α “ 0.025 N/A*

*N/A: Weakest α tested: α “ 0.10

TABLE II: Two Variance Test for Performant RLBROWSE
Features

Packet size, direction, and sequence are three prevalent char-
acteristics of network packet traces that help identify websites.
Panchenko et al. [28] utilized these features to visualize a



0 200 400 600 800 1000 1200 1400
Packet Size (Byte)

0.0

0.2

0.4

0.6

0.8

1.0

Selenium
Headless
RLBrowse
Manual

(a) Packet Size Distribution for the wikipedia.org trial

0 200 400 600 800 1000 1200 1400
Packet Size (Byte)

0.0

0.2

0.4

0.6

0.8

1.0

Selenium
Headless
RLBrowse
Manual

(b) CDF Packet Sizes for the google.com trial

Fig. 2: Packet Size Distribution Disparities

0 20 40 60 80 100
Packet Index

0

20

40

60

80

Fe
at

ur
e 

Va
lu

e 
(k

B
yt

e) Selenium
Headless
RLBrowse
Manual

(a) bbc.com

0 20 40 60 80 100
Packet Index

0

20

40

60

Fe
at

ur
e 

Va
lu

e 
(k

B
yt

e) Selenium
Headless
RLBrowse
Manual

(b) google.com

Fig. 3: Packet Direction and Packet Size Fingerprints

”fingerprint” of a website- by encoding packet sizes as positive
or negative, based on their direction, and then graphing the
cumulative sum [28]. Based on the predictive capability of
the fingerprint in classifying websites from packet traces, we
visualized the differences in packet traces for Selenium,
Selenium Headless, RLBROWSE, and human gathered
data, as shown in Figure 3. Figure 3a shows the fingerprint
for the bbc.com trial. Here, Selenium Headless shows
several outliers, while the remaining methods remain grouped.
However, as shown in Figure 3b, Selenium and Selenium
Headless fingerprints diverge from RLBROWSE and hu-
man generated fingerprints after an average of 17 packets.
The same occurs for amazon.com after 4 packets, and for
wikipedia.org after 22 packets. Further, the fingerprint vari-
ances for Selenium and Selenium Headless are 191
and 203 kByte2, as compared to 5 and 26 kByte2 for
RLBROWSE and human generated data collection.

Figure 3a demonstrates a case where the four data collection
methods yielded similar results. As seen, the bbc.com trial
shows a similar fingerprint across nearly all traces, with the
exception of one outlier trace in for RLBROWSE, and three

outlier traces for Selenium Headless. This indicates that
websites are not equally affected from differences between hu-
man and synthetic trace tools. RLBROWSE improves on most
of the features tested for (Table I). The average packet size
differs by just 2% for RLBROWSE, while Selenium differs
by 26%. Further, the same is true for the variance in packet
sizes, at 2% and 33% respectively. Larger improvements can
be seen in average outgoing packet bursts, both in the number
of packets per burst, and the number of packets sent during a
burst. Finally, the number of incoming and outgoing packets
is also largely congruent. In Table II we analyze the variance
in the synthetic datasets in relation to the variance in the
human generated dataset. The chosen features are verified as
normal distributions via a Chi-Square goodness of fit test. We
perform a Two Variance hypothesis test for statistical features
in which RLBROWSE had shown improvement. Features were
calculated for each trace, yielding the tested distributions. Tests
were performed at the α “ 0.01 significance level, moving to
α “ 0.025 if the stronger significance level could not be met.
Over the five statistical features tested, RLBROWSE possessed
feature distributions such that a significance level of α “ 0.10



could not be met, indicating a higher degree of similarity
with human generated traces than Selenium or Selenium
Headless.

V. CONCLUSION

We present the RLBROWSE framework, and demonstrate
that disparities in network packet traces between synthetic and
human generated data collection can be reduced. Further, we
provide evidence that traffic trace data generated by existing
web automation tools do not transfer directly to realistic web
browsing.

A future iteration of the RLBROWSE framework should
enable the agent to find navigational destinations on its own,
through the use of visual input. Further, the framework could
benefit from a more versatile approach to browsing objectives,
by being enabled to self-determine optimal navigation steps to
reach the objective. Finally, future work should examine the
benefits of RLBROWSE generated data for traffic classification
models.

ACKNOWLEDGEMENTS

This work is partially funded by the Federal Ministry of
Education and Research in Germany (BMBF) as part of the
project AI-NET-PROTECT (grant ID 16KIS1294), and the
project SELMA from the ”Software Campus” initiative (grant
ID 01IS17049), and by the German Research Foundation
(DFG) as part of the project ADVISE (grant ID - 438892507).

REFERENCES

[1] Richard Barnes, Bruce Schneier, Cullen Jennings, Ted Hardie, Brian
Trammel, Christian Huitema, and Daniel Borkman. Confidentiality in the
face of pervasive surveillance: A threat model and problem statement.
2015.

[2] Marc Juarez, Sadia Afroz, Gunes Acar, Claudia Diaz, and Rachel
Greenstadt. A critical evaluation of website fingerprinting attacks. In
Proceedings of the 2014 ACM SIGSAC Conference on Computer and
Communications Security, pages 263–274, 2014.

[3] Inferring mechanics of web censorship around the world. In 2nd
USENIX Workshop on Free and Open Communications on the Internet
(FOCI 12), Bellevue, WA, August 2012. USENIX Association.

[4] Tarun Kumar Yadav, Akshat Sinha, Devashish Gosain, Piyush Kumar
Sharma, and Sambuddho Chakravarty. Where the light gets in: Analyz-
ing web censorship mechanisms in india. In Proceedings of the Internet
Measurement Conference 2018, pages 252–264, 2018.

[5] Nathan Tusing, Jonathan Oakley, Geddings Barrineau, Lu Yu, Kuang-
Ching Wang, and Richard R Brooks. Traffic analysis resistant network
(tarn) anonymity analysis. In 2019 IEEE 27th International Conference
on Network Protocols (ICNP), pages 1–2. IEEE, 2019.

[6] Jun Zhang, Yang Xiang, Yu Wang, Wanlei Zhou, Yong Xiang, and Yong
Guan. Network traffic classification using correlation information. IEEE
Transactions on Parallel and Distributed systems, 24(1):104–117, 2012.

[7] Baris Yamansavascilar, M Amac Guvensan, A Gokhan Yavuz, and
M Elif Karsligil. Application identification via network traffic clas-
sification. In 2017 International Conference on Computing, Networking
and Communications (ICNC), pages 843–848. IEEE, 2017.

[8] Payap Sirinam, Mohsen Imani, Marc Juarez, and Matthew Wright. Deep
fingerprinting: Undermining website fingerprinting defenses with deep
learning. In Proceedings of the 2018 ACM SIGSAC Conference on
Computer and Communications Security, pages 1928–1943, 2018.

[9] Vera Rimmer, Davy Preuveneers, Marc Juarez, Tom Van Goethem, and
Wouter Joosen. Automated website fingerprinting through deep learning.
arXiv preprint arXiv:1708.06376, 2017.

[10] Jamie Hayes and George Danezis. k-fingerprinting: A robust scalable
website fingerprinting technique. In 25th tUSENIXu Security Symposium
(tUSENIXu Security 16), pages 1187–1203, 2016.

[11] Gerard Draper-Gil, Arash Habibi Lashkari, Mohammad Saiful Islam
Mamun, and Ali A Ghorbani. Characterization of encrypted and vpn
traffic using time-related. In Proceedings of the 2nd international
conference on information systems security and privacy (ICISSP), pages
407–414. sn, 2016.

[12] Zhong Fan and Ran Liu. Investigation of machine learning based
network traffic classification. In 2017 International Symposium on
Wireless Communication Systems (ISWCS), pages 1–6. IEEE, 2017.

[13] Mohammed Elnawawy, Assim Sagahyroon, and Tamer Shanableh. Fpga-
based network traffic classification using machine learning. IEEE
Access, 8:175637–175650, 2020.

[14] Zhiyong Bu, Bin Zhou, Pengyu Cheng, Kecheng Zhang, and Zhen-Hua
Ling. Encrypted network traffic classification using deep and parallel
network-in-network models. IEEE Access, 8:132950–132959, 2020.

[15] Ariya Hidayat et al. Phantomjs. Computer software. PhantomJS. Vers,
1(7), 2013.

[16] Antoine Vastel, Walter Rudametkin, Romain Rouvoy, and Xavier Blanc.
Fp-crawlers: studying the resilience of browser fingerprinting to block
crawlers. In MADWeb’20-NDSS Workshop on Measurements, Attacks,
and Defenses for the Web, 2020.

[17] Shaon Barman, Sarah Chasins, Rastislav Bodik, and Sumit Gulwani.
Ringer: web automation by demonstration. In Proceedings of the 2016
ACM SIGPLAN international conference on object-oriented program-
ming, systems, languages, and applications, pages 748–764, 2016.

[18] Tessa Lau, Julian Cerruti, Guillermo Manzato, Mateo Bengualid, Jef-
frey P Bigham, and Jeffrey Nichols. A conversational interface to web
automation. In Proceedings of the 23nd annual ACM symposium on
User interface software and technology, pages 229–238, 2010.

[19] Greg Little, Tessa A Lau, Allen Cypher, James Lin, Eben M Haber, and
Eser Kandogan. Koala: capture, share, automate, personalize business
processes on the web. In Proceedings of the SIGCHI conference on
Human factors in computing systems, pages 943–946, 2007.

[20] Hanlin Chen, Hongmei He, and Andrew Starr. An overview of web
robots detection techniques. In 2020 International Conference on Cyber
Security and Protection of Digital Services (Cyber Security), pages 1–6.
IEEE, 2020.

[21] Qilei Yin, Zhuotao Liu, Qi Li, Tao Wang, Qian Wang, Chao Shen, and
Yixiao Xu. Automated multi-tab website fingerprinting attack. IEEE
Transactions on Dependable and Secure Computing, 2021.

[22] Luca Vassio, Idilio Drago, Marco Mellia, Zied Ben Houidi, and Mo-
hamed Lamine Lamali. You, the web, and your device: Longitudinal
characterization of browsing habits. ACM Transactions on the Web
(TWEB), 12(4):1–30, 2018.

[23] Tomasz Wesolowski, Malgorzata Palys, and Przemyslaw Kudlacik.
Computer user verification based on mouse activity analysis. In New
Trends in Intelligent Information and Database Systems, pages 61–70.
Springer, 2015.

[24] Maja Pusara and Carla E Brodley. User re-authentication via mouse
movements. In Proceedings of the 2004 ACM workshop on Visualization
and data mining for computer security, pages 1–8, 2004.

[25] Iraklis Kordomatis, Christoph Herzog, Ruslan R Fayzrakhmanov, Bern-
hard Krüpl-Sypien, Wolfgang Holzinger, and Robert Baumgartner. Web
object identification for web automation and meta-search. In Proceed-
ings of the 3rd International Conference on Web Intelligence, Mining
and Semantics, pages 1–12, 2013.

[26] Tuomas Haarnoja, Aurick Zhou, Pieter Abbeel, and Sergey Levine. Soft
actor-critic: Off-policy maximum entropy deep reinforcement learning
with a stochastic actor. In International conference on machine learning,
pages 1861–1870. PMLR, 2018.

[27] Junhua Yan and Jasleen Kaur. Feature selection for website fingerprint-
ing. Proc. Priv. Enhancing Technol., 2018(4):200–219, 2018.

[28] Andriy Panchenko, Fabian Lanze, Jan Pennekamp, Thomas Engel, An-
dreas Zinnen, Martin Henze, and Klaus Wehrle. Website fingerprinting
at internet scale. In NDSS, 2016.


