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Abstract—The increasing softwarization of network
infrastructures introduces an important challenge for network
configuration. On the one hand, the growth of the network
configuration space as a result of new device types and the
expanding inter-dependence of network service components,
increases the network configuration complexity. On the other
hand, new service deployment architectures lack mechanisms to
validate the impact of service configuration on network resilience.
Network operators need to adopt new mechanisms to validate
and verify network configuration changes, inspired by popular
Continuous Integration/Continuous Development (CI/CD)
mechanisms. This paper introduces Network Emulation-based
Automated Testing (NEAT), an automated testing framework
for network configuration. NEAT allows network managers to
define network topologies and tests through YAML files and run
realistic network topologies and tests. Furthermore, network
managers can control the fidelity of their network tests and
bound the execution time of testing suites, as well as exploit
parallelization of modern servers to speedup test execution.

Index Terms—Network Verification, CI/CD, NetDevOps

I. INTRODUCTION

Network Softwarization [|1] promotes the adoption of soft-
ware techniques in building, configuring, and managing net-
work infrastructures, thus simplifying and automating network
management. Nonetheless, the adoption of network softwariza-
tion is hindered by the increased configuration complexity
and the lack of automated and holistic testing. Traditionally,
network operators use network testing labs with real network
devices to validate network configurations in a controlled
environment. In parallel, network administrators inject time-
based checks and rollback statements in device configuration,
to automatically discard invalid configurations (e.g. discon-
nection). These human-centric approaches lack support for
the dynamism of new network services. Recent research
efforts use theoretical network models in conjunction with
mathematical tools like model checkers [2]], theorem proof [3]],
or SAT solvers [4] to prove the properties of a network
under a specific configuration and a traffic pattern. Such
efforts can capture a wide range of network policies and
detect several types of network misconfigurations and bugs.
Nonetheless, their effectiveness is as good as their model.
New middlebox features require modeling updates and the
scope of verification is bounded by the scope of the underlying
models. In parallel, modeling higher network layers increases
complexity drastically.

As an alternate approach, network emulation and simulation
platforms offer a healthy dose of generalization by allowing
the replication of a wide range of real-world scenarios and
network applications and expands the scope of formal method

verification. Both approaches can be used synergistically to
improve testing coverage. On the one hand, it is easier to add
new device types and applications in a network emulation
platform, an essential feature to realistically replicate the
heterogeneity of network infrastructures. On the other hand,
the primary users of such platforms, network managers, tend
to be familiar with APIs and tools available to setup testing
environments on an emulation platform. Nonetheless, existing
network emulation mechanisms lack critical features to sup-
port network testing. Firstly, effective network testing requires
mechanisms to precisely replicate the device heterogeneity
in a network infrastructure. Secondly, existing emulation API
cannot capture complex testing scenarios. Finally, there is a
need to implement mechanisms to integrate network testing,
such as device configuration scripts, with CI/CD pipelines in
order to fully exploit the potential of network automation.

In this paper we argue that automated testing is essential for
exploiting the benefits of softwarization and programmability.
Alongside network verification methods, network operators
require emulation platforms with the ability to run automated
testing suites. To meet these goals we present NEAT, an
automated network testing platform with built-in support
for network testing suites and enhanced device emulation
realism. In summary, the contributions of this paper are:

e We present how NEAT allows network managers to
create network test scenarios with custom network
configurations, run asynchronous network tests and
collect detailed test logs.

e We describe a set of Mininet extensions offering
support for several new devices types, including Docker
containers, KVM/XEN and unikernel VMs, as well as
CISCO VIRL and JunOS images. In addition, a RESTful
API allows asynchronous execution of test scenarios.

o« We demonstrate the ability of our system to control
trade-offs between testing precision and execution time.

In the remainder of this paper we discuss related network
testing efforts (§ [[I)) and present the architecture of our NEAT
platform (§ [[I). Furthermore, we evaluate the scalability
of our NEAT implementation (§ and discuss future
directions(§ [V). NEAT is available under an open-source
license at https://github.com/ng-cdi/neat.

II. BACKGROUND

Standardization efforts for network management, like the
ETSI MANO model, have motivated the development of
automated testing platforms for network services. Peuster et
al. 5] developed an early benchmarking platform for Service



Function Chains (SFC) targeting the Sonata orchestrator. The
system allows users to measure the performance of individual
NFV instances using off-the-shelf tools like ping and iperf.
Similarly, the H2020 5GTango project developed one of
the first CI/CD pipelines for network service descriptors as
part of their architecture [6]]. Tests are defined using the
NFV-MANO model and the SDK uses a Virtual Infrastructure
Manager (VIM) to execute them. Existing service testing
mechanisms offer partial coverage, designed to test the service
components configuration, and lack the ability to validate the
service in conjunction with the wider network infrastructure
configuration.

Testing standardization has been an active field of
exploration for standard definition bodies. Efforts include
the ETSI TTCN-3 WG [7]], developing a platform-agnostic
testing language, the ITU SG11 WG [8]], developing protocol
compatibility test suites, and the IEEE Future Networks
Initiative (FNI) Testbeds WG [9], developing testbed
federation standards. Relevant efforts provide an excellent
source of use-cases and testing requirement analysis.

A key enabler for testing automation is network emulation.
Mininet [[10] is a popular emulation platform used widely to
execute large-scale OpenFlow experiments. Several Mininet
extensions improve the scalability [[11[], network technology
support [[12]], and integration with a wider range of network
control technologies [[13]]. Unfortunately, the Mininet API is
primarily designed to capture network topology properties and
simple linear execution scenarios, and lacks built-in supports
for asynchronous and parallel operations, and automatic
testing. GNS3 [14] is an open source network emulator,
providing enhanced network device realism. Users can
construct rich topologies with both legacy and programmable
device types, like Cisco and Juniper routers. The platform
uses predominantly hypervisor-based virtualization to support
device model diversity, which reduces scalability for complex
experimental scenarios. We believe that network configuration
testing requires an emulation platform that combines large-
scale topologies with the ability to precisely emulate specific
network device types. Fulfilling these two goals with fixed
computational resources is a trade-off and topology APIs
should allow users to explicitly control the level of fidelity
required by their topology and thus optimize the testing
environment. Furthermore, existing platforms lack primitives
to support test specification, including asynchronous process
execution and time-based events.

III. NETWORK EMULATION-BASED AUTOMATED TESTING

NEAT is a network testing automation system with the
goal of furthering network DevOps via enhancing CI/CD
workflows. To achieve this, NEAT aims to fulfill the following
objectives. Firstly, the test suites should allow users to control
the level of realism and support emulated network topologies
of varying complexity. Secondly, operators and developers
should be able to define repeatable test suites and the data
produced from these tests should be easily evaluated by
testing policies (e.g. binary output). Finally, all of these

Fig. 1: The NEAT architecture, running a single test scenario
against a policy update.

objectives should be capable of local execution by developers,
but also allow integration with popular CI/CD systems to
support large tests with high resource demands which cannot
be satisfied locally. All of these objectives should limit the
need for coding to a minimum. In this section, we discuss
the design of our network testing architecture and discuss the
details of our prototype implementation.

Network Emulation: An essential functionality to enable
the NEAT testing capability is an emulation mechanism which
can model heterogeneous network devices with high-fidelity,
whilst simultaneously having the capacity to run large
topologies. In parallel, in order to improve the usability, a
language-agnostic interaction API for tests would allow users
to seamlessly develop tests using their preferred programming
language. Finally, the platform should allow for parallel
instance execution to speed up test execution. To meet these
goals, NEAT uses the Mininet emulation platform due to its
proclivity for extensibility [[15], for which we developed a
series of extensions.

The first of our extensions increases the support for
heterogeneity in Mininet. Specifically, we added a series
of new device types to support VM and containers in the
form of LibVirt and Docker respectively. This design choice
enables support for several pre-built network applications,
including Docker-based web-servers, JunOS and Cisco router
images, and unikernel appliances. To maintain backwards-
compatibility and simplify topology design, our extensions
use class inheritance and are compatible with the Mininet
topology API. Furthermore, our node type extensions offer
testing support for legacy Cisco images via DynaMIPS [16],
without the need for real hardware. By supporting an array
of network devices on top of the Mininet base, we can use
Mininet to manage the whole topology, dynamically attaching
device interfaces and connections so that defining a complete
testing environment is as simple as including a topology file.

Furthermore, an essential feature for a testing platform is
support for parallel program execution and time-based actions,
in a language-agnostic way. The existing Mininet interaction



Listing 1: Sample test configuration for a network function
test suite

1 topologies:
2

- name: clickos-loadbalancer

3 topology: cdn-topo

4 assets: ["$(pwd)/click-images"]

5 libvirt: true

6 post_start_script: ./install_routers.sh
7 Dblocks:

8 - name: hl connect h4

9 variant: ping
10 topologies: [clickos-loadbalancer]
11 mutables: { sender: hl, target: h4, count: 5}
12 expressions:
13 - Sent == Received

mediums, the CLI and the Python API, unfortunately lack this
capability. To address this challenge, we developed a RESTful
API to Mininet which exposes topological information and
enables asynchronous program execution and log collection.
Using the RESTful API, NEAT users can separate test
scenarios from the topology and execute them independently.

Finally, the NEAT emulator is designed to run as a Docker
container, thus ensuring test isolation. However, as some
device types require LibVirt and Xen support we have built
support to run certain topology components outside of the
Docker context. To isolate parallel tests containing LibVirt
nodes, we adopted the following runtime configuration.
Firstly, we use a shared folder between the NEAT container
and the host, containing required VM images and XML
definitions. Secondly, hooks have been added to the VM
creation process in LibVirt which detect when a VM is created
by a container, in order to expose the VMs interfaces to the
container’s network namespace. Interface name collision is
eliminated by including the parent container’s ID.

Automating Testing: The architecture of NEAT is
presented in Figure [T} The core of the system is the session
manager module. A session is an isolated set of topologies
and network tests defined by user interaction from either the
RESTful API or though a local CLI. Tests are defined using
a YAML format and a sample YAML test is depicted in
Listing [l NEAT proceeds to manage the session, providing
means for session interaction and result reporting.

A NEAT YAML files contains a series of named topologies
and a sequence of testing blocks. A NEAT topology consists
of a Mininet topology along with any node assets (e.g. VM im-
age, configuration files). Optionally, a topology can be granted
privileges such as access to the host Docker or LibVirt sockets.
Once a session begins, NEAT instantiates the topologies in
isolated container environments and provides the appropriate
access to host resources. With the topologies instantiated,
NEAT exposes endpoints to execute arbitrary commands on its
nodes. If topologies need more advanced configuration, such as
configuration that responds to dynamic content in the topology,
NEAT provides hook points for scripts to be executed.

A NEAT test block is the smallest test unit. For example,
a ping between 2 nodes is a testing block, whereas, testing
multiple packet types via hping could be expressed in a set
of blocks. NEAT provides a block catalog of fundamental

network testing tools (i.e. ping, iperf) allowing non-expert
users to quickly produce tests suites. Each block contains
mutables, test block input configuration parameters (e.g.
testing end-points), and expressions. Expressions use a Go
expression library [17] and allow users to evaluate test
outcomes, using mathematical and logical operators on the
results of a testing block and its mutables. The boolean return
of an expression dictates the pass/fail state of a block in the
session report. Expressions reflect the outcome of a test, and
additional logging information can be collected to troubleshoot
failures. Finally, a special script block can be used to define
custom testing mechanisms. A script block allows a user
to define custom scripts, execute tests, process results, and
evaluate test outcomes. The blocks execute their commands
via the RESTful API made available by the emulation layer
extensions. Testing blocks in NEAT do however encounter
limits. Emulation is not a panacea and certain performance
limits appear as network topologies grow in size. As a result,
NEAT focuses on blocks that validate non-performance
related network properties, like connectivity and correctness.

The configuration system provided by NEAT also provides
the means to facilitate some NetDevOps methodologies. As
the tests are distinct from the topologies, the 2 components
can be sourced separately. Although a VNF developer may be
able to produce a simple test suite that ensures that their code
integrates as expected into a simple generic network, they
could source topologies from the destined network operator
to ensure operational correctness in the network environment,
prior to roll-out.

1V. EVALUATION

In this section, we evaluate the performance and the
flexibility of our NEAT architecture. For our experiments, we
use a dual-socket DELL server (2xIntel E5-2697, 32G RAM,
Ubuntu 20.04), equipped with several virtualization platforms
(Xen 4.11.4 Hypervisor, Docker v20.10.7, KVM v1.4.2, and
libvirt) and for our KVM-based NEAT tests, we use the
ClickOS [18] VM images. Our experiments measure the
performance trade-offs when using the different technologies
to emulate network nodes in a test and the speed-up gains
when parallelizing test execution.

NEAT Scalability Evaluation: To evaluate the scalability
of our platform, we run a series of experiments to evaluate
the time required to perform a basic connectivity test on a
topology of growing size and when using different emulation
host types. Our topology consists of a varying number (2,
4, 8, 16) of connected pairs of a “network host”, emulated
using a network namespace, and a “forwarding appliance”. All
node pairs are interconnected via a secondary interface on the
forwarding appliance in a star topology using a central Open
VSwitch instance, operating as a learning switch. We assign
a static IP on a /24 subnet to each node connected, and we
configure every forwarding appliance to route traffic between
any pair of network hosts. Our experiments use five forwarding
appliance configurations: a network namespace running a click
instance (Mininet), a click docker container (Docker), an
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Fig. 2: Median execution time to create a star topology and
run a connectivity test.

Open VSwitch switch controlled by a Ryu router application
(OVS+Ryu), a ClickOS unikernel (VM) and an emulated
Cisco 7200 router instance running on Dynamips (Cisco). Our
connectivity test runs a ping command in every instance and
we measure the total time to complete all ping tests.

Figure [Z] depicts the min, median, and max (errorbars are
not easily distinguishable due to low variance) execution
time to setup the star topology and run a connectivity test
across five experimental runs. From the results, we highlight
that lightweight virtualization technologies like Mininet
and containers achieve very good scalability, requiring
approximately 90 seconds to run a 16-node topology.
Hypervisor-based technologies exhibit more diverse execution
profiles. For small topologies, performance is comparable
to light-weight virtualization, however the boot overheads
increase significantly the total execution time for larger
topologies. In contrast, DynaMIPS topologies with a few
nodes exhibit comparably higher execution times due to the
impact of software emulation on boot-time. Nonetheless,
these boot-up latencies are masked by other topology setup
latencies, as more DynaMIPS nodes are added in the topology.
For example, a 16-node topology exhibits the same execution
time as a VM-based topology of equal node count. It is
worth highlighting that DynaMIPS utilizes a core at 50%
during idle. Finally, the NEAT platform is lightweight and
has negligible impact on execution times (<2 sec).

To evaluate the ability of NEAT to parallelize test execution,
we revisit the previous experimental setup and change the
number of parallel tests running each time. Specifically, we
use a star topology with four nodes and run a varying number
of topologies (from one to five), in parallel. The selection of
the topology size and the number of parallel topologies ensures
that our platform has sufficient CPU resources to cope with the
size of the experiment, without any node experiencing resource
starvation. Figure [3| reports the min, median, and max execu-
tion time across five experimental runs. Lightweight virtualiza-
tion again demonstrates the best scalability, with the execution
time remaining unaffected by the parallel execution of exper-
iments. Due to the impact of full host virtualization however,
the ClickOS and Cisco topologies experience a slight increase
in execution times. This can be attributed to the increased
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Fig. 3: Median total execution time for parallel NEAT
experiments.

resource requirements to boot hosts, which slow down the
topology creation. Nonetheless, execution time is increased by
only 50%-60% when running five parallel testbeds. Although
the DynaMIPS/Cisco host type exhibits the worst scalability
properties, it allows users to precisely emulate the network be-
havior and users can control the trade-offs between test fidelity
and scalability by adopting appropriately their topology files.

V. CONCLUSION

A major challenge to adopt network softwarization in pro-
duction is the lack of mechanisms to holistically test and
validate network configuration. This becomes increasingly im-
portant as legacy devices will need to co-exist and interoperate
with new networking technologies in the near future, during
the transition of production systems to new operational mod-
els. We introduce NEAT, an automated network testing archi-
tecture with a network emulation platform designed to capture
the diversity of modern infrastructures. NEAT’s Mininet-based
emulation layer can emulate a wide range of network device
types, including VMs and unikernels, Linux namespaces,
and OvS bridges, effectively capturing the heterogeneity of
network infrastructures. Adding support for virtualization in
Mininet negatively affects its scalability capabilities. Nonethe-
less, NEAT allows network managers to control the trade-off in
the realism and the execution time of a test by using VMs for
network elements that require increased emulation precision.
In parallel, strong isolation between test runs allows NEAT to
parallelize and achieve significant test execution speed-ups.

As for future work, we aim to improve the scalability of
the emulation layer in order to support larger, more complex
heterogeneous topologies whilst keeping test execution times
within time limits reasonable for the CI/CD context. Also,
NEAT’s goals for a codeless test definition are not fully
realized, as topology files still depend on a Python Mininet
file. A future update to NEAT could contain a YAML layer that
enables Mininet topologies definition in a user friendly way.
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