
ar
X

iv
:2

30
6.

09
29

0v
1

 [
cs

.N
I]

 1
5

Ju
n

20
23

This paper has been accepted for publication in IEEE/IFIP Network Operations and Management Symposium, Miami, FL,

USA, May 2023. This is an author’s copy. The respective copyrights are with IEEE/IFIP.

Generalizable Resource Scaling of 5G Slices using

Constrained Reinforcement Learning

Muhammad Sulaiman∗, Mahdieh Ahmadi∗, Mohammad A. Salahuddin∗, Raouf Boutaba∗, and Aladdin Saleh†

∗David R. Cheriton School of Computer Science, University of Waterloo, Ontario, Canada

{m4sulaim, mahdieh.ahmadi, mohammad.salahuddin, rboutaba}@uwaterloo.ca
†Rogers Communications Inc., Ontario, Canada

{aladdin.saleh@rci.rogers.com}

Abstract—Network slicing is a key enabler for 5G to support
various applications. Slices requested by service providers (SPs)
have heterogeneous quality of service (QoS) requirements, such
as latency, throughput, and jitter. It is imperative that the
5G infrastructure provider (InP) allocates the right amount of
resources depending on the slice’s traffic, such that the specified
QoS levels are maintained during the slice’s lifetime while
maximizing resource efficiency. However, there is a non-trivial
relationship between the QoS and resource allocation. In this
paper, this relationship is learned using a regression-based model.
We also leverage a risk-constrained reinforcement learning agent
that is trained offline using this model and domain randomization
for dynamically scaling slice resources while maintaining the
desired QoS level. Our novel approach reduces the effects of
network modeling errors since it is model-free and does not
require QoS metrics to be mathematically formulated in terms
of traffic. In addition, it provides robustness against uncertain
network conditions, generalizes to different real-world traffic
patterns, and caters to various QoS metrics. The results show
that the state-of-the-art approaches can lead to QoS degradation
as high as 44.5% when tested on previously unseen traffic. On
the other hand, our approach maintains the QoS degradation
below a preset 10% threshold on such traffic, while minimizing
the allocated resources. Additionally, we demonstrate that the
proposed approach is robust against varying network conditions
and inaccurate traffic predictions.

Index Terms—5G, Network Slicing, Resource Scaling, Con-
strained Reinforcement Learning, QoS

I. INTRODUCTION

With 5G, mobile networks are moving away from one-size-

fits-all towards a more programmable network architecture.

The adoption of Software Defined Networking (SDN) and

Network Function Virtualization (NFV) allows an infrastruc-

ture provider (InP) to virtualize its physical network resources,

and use them to create virtual isolated networks on top of

a shared physical network infrastructure. These on-demand

virtual isolated networks are also referred to as network slices.

Network slicing enables 5G mobile networks to host appli-

cations or services with diverse quality of service (QoS) re-

quirements. For example, enhanced mobile broadband (eMBB)

slices can be used for applications that require high throughput

but lenient latency constraints such as 4K video streaming.

On the other hand, ultra-reliable low-latency communication

(URLLC) slices can be used for applications that require high

reliability and very low latency such as remote surgery.

Whenever a service provider (SP) requests a slice from

an infrastructure provider (InP), it includes its peak traffic

and its required minimum quality of service (QoS) in the

service level agreement (SLA). The required resources for

maintaining a slice’s QoS depend on the slice type and its

traffic, which varies with time. The InP can guarantee the QoS

by allocating isolated resources to the slice based on its peak

traffic. However, this can lead to over-provisioning since the

actual traffic of a slice rarely reaches its peak [1]. In this case,

the majority of the allocated resources remain unused or under-

utilized. On the other hand, the InP can improve its resource

efficiency (RE) by predicting the future traffic of a slice,

and preemptively scaling its resources accordingly. However,

under-provisioning the resources, based on inaccurate traffic

prediction or imprecise modeling of the relationship between

allocated resources and QoS, can lead to a deterioration in the

QoS of the slice. As a result, a certain level of QoS degradation

is typically incorporated into SLAs, and the goal of InP is to

dynamically scale resources to maximize resource efficiency

while keeping QoS degradation under the specified limit. We

refer to this as dynamic resource scaling.

Several challenges need to be addressed to achieve effective

dynamic resource scaling. Mobile networks consist of multiple

domains including the radio access network (RAN), transport

and the core network, and the QoS obtained can be dependent

on the relative level of resources allocated in these domains.

The QoS achieved at any resource allocation also depends

on the state of the network at that time, e.g., the level of

interference by other slices or the state of the queues in the net-

work. Additionally, the QoS may be defined heterogeneously

for different slices serving different kinds of applications. For

example, the QoS may be defined in terms of the throughput

for an eMBB slice, and in terms of the latency for a URLLC

slice. Finally, even though some proposed solutions in the

literature require a dataset to be trained (e.g., [2, 3]), the

traffic that a slice experiences may be unknown during training

time. Therefore, given the uncertainty of network conditions

and future traffic, and the complex modeling of the end-to-

end network, it is challenging to design an algorithm that can

dynamically scale the resources of the slices while keeping

their QoS degradation under the agreed-upon threshold.

Several works in the literature model the mobile network

mathematically [4, 5]. Since it is quite challenging to accu-

rately model end-to-end network dynamics [6], these works are

http://arxiv.org/abs/2306.09290v1

This paper has been accepted for publication in IEEE/IFIP Network Operations and Management Symposium, Miami, FL,

USA, May 2023. This is an author’s copy. The respective copyrights are with IEEE/IFIP.

based on simplifying assumptions which makes them inappli-

cable to real-world networks. Another method commonly used

in the literature is to model the network as a queue and then

use simulation to calculate the metrics of interest [2, 3]. This

method can be too simple to model a multi-domain mobile

network, and complex user-level QoS metrics [6, 7]. Given a

network model, for resource scaling under QoS degradation

constraints, a number of works in the literature propose using

traditional deep reinforcement learning (DRL) algorithms such

as Deep Q-Learning [8, 3]. However, the reward function of

these methods needs to be carefully engineered to achieve

the desired tradeoff between QoS degradation level and re-

source efficiency, which is non-trivial. To circumvent these

problems, authors in [9] use constrained deep reinforcement

learning (CDRL) and online learning to dynamically scale the

resources. But online learning can be quite slow, and even

infeasible for slices with short lifespans.

In this paper, we propose using a regression-based model to

capture the behavior of an end-to-end network under different

conditions. This model is trained offline using a dataset gath-

ered by measuring the performance of an isolated slice in the

real network under diverse network conditions and different

amounts of allocated resources. Regression-based models,

such as neural networks, can learn complex relationships

between predictor and response variables, without requiring an

exact network model. For dynamically scaling the resources

allocated to the slice while satisfying QoS requirements, we

propose using CDRL with offline training. Although offline

training addresses the slow training problem of online training,

it must be generalizable to online traffic patterns not seen

during offline training. For this purpose, we utilize a risk-

constrained DRL algorithm coupled with domain random-

ization (DR). Risk-constrained DRL increases the chances

of meeting QoS degradation constraints under unpredictable

traffic and network conditions by constraining the risk rather

than just the expected value of QoS degradation [10]. DR

is also a common technique for bridging the simulation-to-

reality gap by randomizing the environment parameters during

training [11]. In addition, this RL agent is fed with the output

of an external traffic prediction module to avoid overfitting

to any specific traffic pattern. Although the current evaluation

is confined to the radio resource scaling and a single slice,

it demonstrates the efficacy of the proposed solution. The

contributions of this work are:

• We develop a novel framework for dynamic resource scaling

which consists of a regression-based network model, risk-

constrained DRL agent, and a traffic prediction module.

By training the RL agent offline using random traffic, we

have a generalizable agent that does not require any prior

knowledge of online slice traffic patterns.

• We evaluate the effectiveness of the proposed approach

against traditional, and constrained DRL-based models

which encompass the state-of-the-art. In general, the pro-

posed approach performs relatively better than others while

also showing generalization to previously unseen traffic and

network conditions.

• We assess the robustness of the proposed approach under

varying network conditions (e.g., queue congestion), and

inaccurate traffic predictions and demonstrate that it can

effectively scale resources even under worse-case scenarios.

• We show that our pre-trained model can be fine-tuned

for increased performance while meeting QoS degradation

constraint and maintaining its generalization capability.

The rest of the paper is organized as follows. In Section II,

we provide an overview of CDRL, and discuss the related

works. This is followed by a formal definition of the dynamic

resource scaling problem in Section III. Section IV delineates

the proposed solution. Finally, after showcasing the results in

Section V, we conclude in Section VI and instigate future

research directions.

II. BACKGROUND AND RELATED WORKS

A. Constrained DRL—A Primer

In both traditional and constrained RL, the sequential deci-

sion making and interaction of an agent with its environment

can be formally described using a Markov Decision Process

(MDP) and a Constrained Markov Decision Process (CMDP),

respectively. A finite-horizon MDP can be defined by the

tuple ($, �, %, H, d0, W), where $ is the state space, � is

the action space, H : $ × � → R is the reward function,

% : $ × � × $ → [0, 1] is the state transition probability

distribution, d0 is the initial state distribution, and W is the

discount factor that specifies the relative importance of future

rewards. When state transition probabilities are unknown, RL

can be adopted to find a policy c : $ × � → [0, 1] that

can maximize the expected discounted reward defined as

� (c) = E(>C ,0C)∼dc [
∑

C W
C H(>C , 0C)], where >C and 0C are the

state and action at time step C, respectively, and dc denotes the

state-action distribution induced by following policy c. When

the action and state spaces are large and/or continuous, the

policy is learned using a parameterized deep neural network,

which is known as DRL.

CMDPs extend MDPs by adding cost functions 2 : $ ×

� → R such that a CMDP is defined as ($, �, %, H, 2,

d0, W). Following a policy c, the cost distribution can be

modeled as ? c (2 |B, 0). The expected discounted cost �2 (c)

is analogous to � (c) and is obtained by replacing the reward

H with cost 2 in the corresponding equation, i.e., �2 (c) =

E(>C ,0C)∼dc [
∑

C W
C2(>C , 0C)]. In CMDPs, the objective is to

find an optimal policy that maximizes � (c), but also keeps

�2 (c) under a certain pre-defined threshold 2thresh. Formally,

this objective can be written as [12]:

c∗ = max
c
� (c), (1)

s.t. �2 (c) ≤ 2thresh.

There are numerous approaches for solving CDRL problems

(cf., [13]). In general, these methods are either based on

Constraint Policy Optimization (CPO) [12], or Lagrangian

relaxation [14, 15]. CPO builds upon the TRPO algorithm

[16] by adding constraint satisfaction, leading to a monoton-

This paper has been accepted for publication in IEEE/IFIP Network Operations and Management Symposium, Miami, FL,

USA, May 2023. This is an author’s copy. The respective copyrights are with IEEE/IFIP.

ically improving policy that guarantees constraint satisfaction

throughout training. On the other hand, Lagrangian relax-

ation methods work by relaxing constraints using Lagrangian

multipliers, and updating decision variables and multipliers

in an iterative manner using gradient ascent/descent. SAC-

Lagrangian is one of these algorithms which is based on

the actor-critic framework [14]. It utilizes an actor network

to represent the policy, and two critic networks to learn the

expected reward and cost for any given state and action. These

critic networks are then utilized to update the policy network to

maximize the return while satisfying expected cost constraints.

Although the methods discussed above satisfy a constraint

on the expected value of the discounted cost distribution ? c ,

they do not constrain its variation. In this case, there remains

a considerable probability of high-cost episodes. As a result,

such methods can not be used in safety-critical applications,

where it is crucial for the learned policies to be robust. For

this case, rather than the expected cost, the safety metric of

interest is defined in terms of the Conditional Value-at-Risk

(CVaR) of the cost, i.e.,

CVaRU = E?c [� |� ≥ �−1

� (1 − U)], (2)

where �� (.) is the cumulative distribution function (CDF) of

? c , and U is the risk level hyper-parameter with smaller values

leading to more risk-averse policies. In this case, a policy is

safe if it satisfies a constraint on this new safety measure:

E?c [� (>C , 0C) |� (>C , 0C) ≥ �−1

� (1 − U)] ≤ 2thresh, ∀C, (3)

where � (>C , 0C) is the discounted cumulative cost of policy c

from point (>C , 0C).

To address this issue, Yang et al. [10] recently proposed

the Worst-Case Soft Actor Critic (WCSAC) algorithm that

extends SAC-Lagrangian by replacing the cost critic with a

distributional one. Specifically, they model ? c as a Gaussian

distribution, and utilize two neural networks to predict its

mean &2c (BC , 0C) and variance +2c (BC , 0C) given a state-action

pair (BC , 0C). The new safety measure, i.e., CVaR, can then be

calculated using a closed-form equation:

CVaRU = Γc (BC , 0C , U) = &
2
c (B, 0) + U

−1q−1 (Φ−1 (U)), (4)

where q(.) and Φ(.) represent the probability distribution

function (PDF) and CDF of the standard normal distribution,

respectively. The policy can be updated by minimizing the

following KL-Divergence [17, 10]:

c′ = min
c

DKL

(

c(.|BC)

�

�

�

�

�

�

�

�

exp(1

V
&Ac (BC , .)) − :Γc (BC , ., U)

/ c (BC)

)

(5)

where c
′

denotes the updated policy, &Ac (B, 0) denotes the

state-action value and / c (BC) is a normalization factor. V and :

are Lagrangian multipliers that are updated iteratively to deter-

mine the trade-off between the policy entropy, the reward, and

the safety measure. For a detailed exposition of the algorithm,

we refer to [10]. As WCSAC is able to satisfy a percentile-

based constraint (CVaR) over a QoS degradation distribution,

compared to expectation-based methods, it is more adaptable

to different traffic patterns and network condition scenarios.

B. Dynamic Resource Scaling

Dynamic resource scaling requires an accurate model of the

relationship between the allocated resources, traffic volume,

and achieved QoS. In this section, we present an overview of

the methodologies commonly used to model this relationship

and review state-of-the-art dynamic resource scaling works

that fall into these categories.

1) Resource Isolation

In this approach, QoS is defined in terms of resource

isolation that depends on a simple comparison between the

required resources and the resource allocation, i.e., P(ABC ≥ EBC),

where ABC and EBC respectively denote the amount of allocated

resource to a slice, and its minimum required resource to meet

the QoS threshold at a specific time C. This type of network

modeling requires EBC to be known or easily predictable which

may not be feasible in practice. Additionally, this may be

undesirable for cases when the slices experience bursty traffic

since even if only a small amount of resources are allocated to

the slice during short periods of high traffic, high isolation can

still be achieved. Based on this model, Li et al. [4] optimize

the resource utilization at each time step while respecting

resource isolation constraints modeled by chance constraints.

These constraints are then approximated using a data-driven

approach, which converts the problem to a semi-definite pro-

gramming (SDP) problem that can be solved optimally.

2) Model-Driven QoS Isolation

This approach adheres to QoS isolation by calculating the

minimum required resources based on a given QoS threshold,

but only considers an abstract model of the network for

which there exists concrete theoretical groundwork. Queues

are one of the commonly used models in this category. In

this case, either queuing theory or queue simulation can be

utilized to compute different performance measurements for

the packets entering the queue. By defining the queue arrival-

rate in terms of slice traffic and determining the service-rate

based on resource allocation, the queuing-time for any packet

can be determined. The average queuing-time can represent

the QoS of a slice, defined as the packet latency. In general,

the drawback of this type of modeling is that it can only deal

with simple network-level QoS metrics which are based on a

single resource type, as it can be challenging to model the

service-rate of the queue based on multiple heterogeneous

metrics. Solutions based on queue simulation also suffer

from high computational complexity when the traffic volume

increases since they deal with the traffic at the packet-level.

Finally, queues might not be able to accurately model network

components such as RAN, as there can be additional factors

that affect the latency such as the presence of multiple queues,

channel effects or application-specific idiosyncrasies.

Some of the works that use a queue for modeling the

network include [18, 19, 2, 3, 8]. Papa et al. [18] and Kasgari

and Saad [19] assume the delay experienced by each slice can

be exactly modeled by considering an M/M/1 queue model.

The authors then leverage the Lyapunov optimization method

This paper has been accepted for publication in IEEE/IFIP Network Operations and Management Symposium, Miami, FL,

USA, May 2023. This is an author’s copy. The respective copyrights are with IEEE/IFIP.

Fig. 1: Regression-Queue based network model

to minimize long-term resource usage under QoS constraints.

Li et al. [3] and Hua et al. [8] utilize queue-based simulation

and optimize the weighted sum of RE and SLA satisfaction

ratio. For this purpose, [3] utilizes Deep Q-learning, whereas

[8] leverages a combination of distributional DRL with gen-

erative adversarial network (GAN). However, in these works,

the trade-off between RE and SLA satisfaction ratio depends

on the weights assigned to these in the reward formulation,

which have to be manually tuned. As a result, these approaches

are not able to satisfy QoS degradation constraints. To ensure

these constraints, the authors in [2] propose constrained RL

for resource allocation. But this approach requires the slice’s

traffic to be known in advance and is unable to generalize to

previously unseen traffic patterns during testing.

3) Data-Driven QoS Isolation

In this method, QoS isolation is assured and the behavior

of the network is learned using data-driven approaches based

on historical data. As there is no public dataset available, this

mandates access to either a testbed or a production network

where slices can be easily created and scaled. Due to this

reason, there are only a limited number of works that utilize

this approach. This type of network modeling is classified

further into the following categories:

Regression-Queue Based: As shown in Fig. 1, this ap-

proach is also based on a queue, with the difference that a

regression model, learned using a network dataset, is used to

predict the service rate of the queue. Since multiple resources

can be used as the input to the service rate prediction model,

this type of network modeling is not restricted to only one

resource type. However, this approach remains constrained

by other drawbacks associated with queue-based model-driven

approaches. Liu et al. [7] used offline training based on this

model to minimize multi-domain resource utilization under

capacity and end-to-end delay constraints of slices. They relax

SLA satisfaction constraints and incorporate them into the

objective by utilizing the primal-dual Lagrangian method, and

train the model using conventional actor-critic DRL methods.

Although offline training reduces the time for the RL model

to converge in the real environment, similar to [2] it suffers

from low generalizability.

Online Learning Based: In this approach, rather than

modeling a network, the data from a production network

during a slice’s operation is leveraged to learn the resource

scaling algorithm. In a subsequent work to [7], Liu et al. [9]

proposed an RL-based approach with online-only training and

behaviour cloning, which can deal with various QoS metrics.

However, considering the granularity of updates in a real

network (i.e., around 15 minutes [9]), the adoption of this

method in a production environment is impractical due to the

long convergence time.

III. PROBLEM STATEMENT

Let))� be the transmission time interval, i.e., small iso-

metric time intervals into which the time horizon is divided.

We define)Δ, consisting of # TTIs, to be the decision

time interval (DTI), i.e., the minimum time interval required

between resource scaling decisions due to practical limitations

such as the time required for horizontally or vertically scaling

virtual machines (VMs). Let T denote the set of starting points

of all DTIs. For slice B ∈ (, we denote the traffic at the DTI

starting at C by column vector xBC = [GBC=]=∈[#] , where GBC= ∈ N

is the traffic at the =th TTI within DTI starting at C. We also

define rBC = [AB,:C]:∈[] with A
B,:
C ∈ R to be the different

types of resources allocated to slice B over DTI C. We assume

that the traffic, measured in users/sec, stays constant within a

TTI and the resources allocated to a slice are divided fairly

among all its users.

Let vector qBC = [@BC=] ∈ R=×1 represent per-user QoS of

each slice at DTI C, which can be determined using a network

model. We are interested in QoS degradation probability at any

point in time, which can be defined as the portion of traffic

that receives QoS below the minimum threshold, i.e.,

VBC =

∑

g∈) :g≤C x
B
g
⊺
1[@Bg≤@

B

thresh
]

∑

g∈) :g≤C 1# xBg
, (6)

where 1[@Bg≤@
B

thresh
] is an indicator vector whose =th element

equals to 1 only when @Bg= ≤ @B
thresh

, 1# is a 1-vector of

size # and @B
thresh

is the expected minimum QoS of slice

users. Finally, based on the introduced notations, the dynamic

resource scaling problem can be formulated as:

min
r

1

|) |

∑

C∈)

∑

B∈S

[⊺rBC

s.t. E

(

VB
max())

)

≤ VB,thresh, ∀B ∈ (
∑

B∈(

rBC ≤ R, ∀C ∈),

(7)

where [∈ R:×1 is the resource normalization vector, E is

the expectation over the distributions of QoS and traffic, R =

[':]:∈[] represents the capacities of resources, and VB,thresh

is the acceptable &>(degradation threshold for slice B.

IV. PROPOSED FRAMEWORK

In this section, we describe the proposed framework which

is shown in Fig. 2. It consists of three components: a future

traffic forecast module, an RL-based dynamic resource scaler

and a network model. Note that we do not expound on the

traffic prediction module, since it is a well-studied topic and

there are off-the-shelf packages available for it (e.g., [20]).

A. Network Model

We propose using a regression-based network model. Sim-

ilar to the state-of-the-art [8, 9], we assume that there are

only a limited number of standard slice types (e.g., URLLC,

eMBB, mMTC), and their QoS can be monitored by creating

This paper has been accepted for publication in IEEE/IFIP Network Operations and Management Symposium, Miami, FL,

USA, May 2023. This is an author’s copy. The respective copyrights are with IEEE/IFIP.

Fig. 2: Overview of the proposed framework

isolated slices and scaling their resources. Compared to the

regression-queue based model in Section II-B3, the queue and

the service rate prediction model are replaced by a single

regression model. This regression model learns the function

5 (G, r) : N × R → R × R, which maps the traffic GBC= and

resource allocation vector rBC of =th TTI of DTI C to Gaussian

distribution parameters `BC= and fBC=. The QoS can then be

sampled using these parameters, i.e., @BC= ∼ N(`, f). In this

method, we assume that the effect of past traffic on the QoS

is only transient, and can be subsumed by the distribution of

QoS around the mean. This is because it can be infeasible to

gather a dataset that correlates the past traffic as well as the

current traffic, and a resource allocation to a certain QoS.

Based on the complexity of the network (e.g., in terms of the

number of resources), a simple query-based method, a linear

regression model, or neural networks could be used to learn the

function 5 (G, r). To train this model, the dataset is gathered by

performing a grid search over different resource allocations at

different traffic levels, and measuring the corresponding QoS

under varying network conditions. As each QoS value sampled

from the Gaussian distribution N(`, f) can be written as

` − 3f, we use the parameter 3 ∈ R to represent network

conditions such as queue congestion and channel quality.

When 3 is known, i.e., in deterministic network conditions,

the QoS vector at DTI C can be computed as:

q
B,det
C (3) =

[

`BC= − 3f
B
C=

]

=∈[#]
. (8)

As opposed to queue-based models, the regression-based

model can deal with scaling heterogeneous resources, and can

predict different types of QoS. Additionally, the complexity of

this approach does not depend on the traffic volume and it is

not restricted to packet-level traffic.

B. Risk-constrained DRL-based Resource Scaling Algorithm

For dynamically scaling the resources allocated to a slice,

we propose using the WCSAC [10] algorithm trained using

the training loop shown in Fig. 2. Each step in an episode,

i.e., C ∈) , corresponds to a DTI.

1) CMDP Formulation

At step C, the RL agent’s state >C includes the CDF of the

traffic of the next DTI over its TTIs, �GB
C=
(.), and the QoS

degradation up until that time, VB
C−1

, for each slice. Note that

since the traffic is in terms of users/sec, �GB
C=
(0) = P(GBC= ≤ 0)

is a discrete CDF which can be represented by a vector of

finite size. As opposed to existing works [7, 2], instead of

mean, we include the CDF of the future traffic in the agent’s

state space. This is because multiple different distributions can

have the same mean, and can lead the agent to learn spurious

correlations between actions in a given state and their effect on

the environment [21]. Additionally, VB
C−1

, which is calculated

using Eq. (6), acts as a feedback mechanism for the agent to

adjust the resource allocation for the future DTIs based on the

effect of past actions on QoS degradation. The agent’s action

0C corresponds to the resource scaling decision rBC for each

slice and we define the reward function as:

H(>C , 0C) = 1 −
∑

B∈S

[⊺rBC . (9)

Finally, the cost function is defined as the marginal QoS

degradation where the denominator is the sum of traffic over

the episode, as shown below:

2(>C , 0C) =
xBC
⊺
1[@B

C
≤@B

thresh
]

∑

g≤<0G ()) 1# xBg
. (10)

2) Training

Fig. 2 shows how WCSAC algorithm is integrated with the

network model and future traffic prediction module during

training and testing. To make the learned policy generalizable

across different traffic patterns and network conditions, we

utilize uniform DR during training. For this purpose, at the

start of each episode, the traffic for each DTI, xBC , is generated

by sampling i.i.d from a randomized distribution, i.e., �GB
C=

.

By randomizing the traffic distribution and sampling the QoS

from the network model distribution during training, the risk-

constrained RL agent learns to maximize the reward while

keeping the QoS degradation under the specified threshold

VB
thresh

even in the worst-case scenarios. These extreme condi-

tions can arise due to congestion in the network, interference

by other slices, or a specific traffic pattern (e.g., bursty) that

may require higher resource allocation.

Since the future traffic, x̂BC , is unknown during testing, an

external traffic prediction module is used to predict its CDF.

The QoS degradation during testing can be computed using

actual slice traffic, and by utilizing either the offline network

model or actual QoS reported by users. Note that by including

the future traffic distribution in the state space, the agent is

not confounded by the varying effect of different resource

allocations under varying traffic levels.

V. EXPERIMENTS

A. Testbed and Simulation Setup

To gather the required dataset for creating a realistic network

model, we deploy the SDRAN-in-a-Box (RiaB) [22] on an

Intel NUC PC. RiaB utilizes Kubernetes to deploy end-to-end

SD-RAN components that include EPC, emulated RAN and

user equipment (UE), and ONOS RAN Intelligence Controller

(RIC). The testbed can be used to create slices, associate

UEs to them, and scale their allocated resources dynamically.

However, there are limitations on the number of UEs per slice

and the granularity of resource allocation. To circumvent the

former restriction, we count the number of parallel connec-

tions made by an emulated UE as the slice’s users. For the

This paper has been accepted for publication in IEEE/IFIP Network Operations and Management Symposium, Miami, FL,

USA, May 2023. This is an author’s copy. The respective copyrights are with IEEE/IFIP.

Fig. 3: Regression-based network model

latter, we allocate radio resources in intervals of 10% of the

total resource capacity. For simplicity, during evaluation, we

consider a single type of slice (i.e., eMBB) and resource (i.e.,

radio resource in Mbps), and thus we omit the subscript B and

: in the subsequent sections. The slice is tailored for eMBB

services by deploying an image download application over it.

We define the QoS of the slice in terms of frames per second

(Fps), i.e., the number of times the image can be downloaded

from a local server within a second.

To gather the QoS dataset, we perform a grid-search over

the alterable parameters by varying the traffic from 1 to 5

users/sec, and the corresponding resource allocation from 10%

to 80%. To encompass different network conditions, we repeat

this grid-search multiple times and gather the data for 30

seconds for each point in the grid per iteration. Fig. 3 shows

the corresponding network model. The shaded area around the

mean represents the distribution of QoS achieved at different

network conditions. The network model is fed with this data

to predict the distribution of &>(at any traffic and resource

allocation. In this paper, we learn the network model using a

simple query-based model that returns the mean and standard

deviation of the QoS as the size of the grid is small.

For training and testing the different scaling approaches,

we set the QoS threshold and the acceptable QoS degradation

threshold, i.e., @thresh and Vthresh, to 2.0 Fps and 10%, respec-

tively. As we can see in Fig. 3, 80% bandwidth allocation

is required to have no (i.e., 0) QoS degradation under the

highest traffic rate (i.e., 5 users/sec) and worse-case network

conditions which occur at around 3 = −2. For WCSAC,

we set the risk level hyper-parameter U to 0.1. DTI and

TTI are set to one minute and one second, respectively. As

discussed previously, we assume the traffic varies across TTIs,

but remains constant within each TTI. For testing, we utilize

the real-world traffic pattern of Internet events in Milan from

the Telecom Italia dataset [1]. We scale this traffic pattern

to represent the traffic of 1 to 3 users/sec and add truncated

Gaussian noise N(0, 0.75
2) to create dynamic traffic within

each DTI. We refer to the resulting traffic curve as the

dataset traffic throughout this section. The reported results are

averaged over 100 episodes of 10 minutes in length to ensure

statistically stable results.

B. Comparative Approaches

For evaluating the proposed framework comprising the

regression-based network model, WCSAC algorithm and de-

scribed training paradigm, we implement a number of DRL-

based approaches, and a heuristic method. These approaches

encompass the baselines and emulate a number of the solutions

proposed in contemporary literature. For training and testing

these methods, we utilize the proposed regression-based net-

work model for a fair comparison.

1) DRL-based

Avg-CPO, Avg-PPO: A number of DRL-based works in the

literature train the RL agent on the same traffic pattern which is

also used during testing [2, 7, 8, 3]. Clearly, these approaches

fail to perform well if the test traffic varies from the training

traffic. To encompass both constraint-aware and traditional

DRL approaches presented in these works, we implement the

CPO [12] and the PPO [23] algorithms and refer to them as

Avg-CPO and Avg-PPO, respectively. For Avg-CPO, the reward

and cost are the same as the ones used for WCSAC, described

in equations (9) and (10). Since a cost constraint cannot be

incorporated with PPO, we formulated its reward function as

the sum of the reward and the cost used for WCSAC, weighted

by FRE and FQoS, respectively. The values for these weights

are manually fine-tuned. Some of these works assume that

the RL agent learns to scale the slice resource allocation only

based on past traffic information [7, 2]. This requires the RL

agent to predict the traffic trend in addition to resource scaling.

However, for a fair comparison, we include the CDF of the

future traffic in the RL agent’s state.

WC-CPO: As described in Section II-A, CPO is designed

to constrain the expected cost under a specific limit while

learning actions that maximize the reward. To make this

approach risk-aware, i.e., robust to different traffic distributions

and network conditions that arise during testing, we leverage

cost-shaping to ensure that the QoS degradation stays below

Vthresh for all scenarios. For this purpose, in addition to the

per-step cost in Eq. (10), the agent is given an additional

cost at the end of each episode. This cost is an exponential

function of QoS degradation that is in excess of the threshold,

i.e., W(4 [Vmax())−Vthresh]
+
− 1) where [G]+ denotes the maximum

of G and 0, and W is a scaling factor which controls the

degree of risk adverseness. Since the average cost is affected

significantly by this exponentially weighted cost component,

the agent learns to keep the QoS degradation for scenarios

giving rise to high QoS degradation under the threshold. We

refer to this CPO-based approach with the shaped cost function

as worst-case CPO, and denote it by WC-CPO.

2) Heuristics-based

Pred-Alloc: As an upper bound for evaluating DRL-based

approaches, we also implement a simple heuristic. This al-

gorithm is based on two simplifying assumptions. First, it

assumes the traffic in any DTI to be constant and equal

to the peak of the curve predicted by the traffic prediction

module. The second simplification is that it considers some-

what extreme and deterministic network conditions, i.e., at

any given traffic and resource allocation, the QoS vector is

equal to @34CC (−2) defined in Eq. (8). These assumptions make

the resource allocation at each DTI trivial since it can be

This paper has been accepted for publication in IEEE/IFIP Network Operations and Management Symposium, Miami, FL,

USA, May 2023. This is an author’s copy. The respective copyrights are with IEEE/IFIP.

0 200 400 600 800 1000

10

20

30

40

50

Training Epochs

Ba
nd
wi
dt
h
Al
lo
ca
tio

n
r (
%
)

Avg-PPO - wQoS=1,wRE=1
Avg-PPO - wQoS=10,wRE=1
Avg-PPO - wQoS=100,wRE=1

Avg-CPO
Pred-Alloc

(a) Avg. BW allocation per epoch

90.0
92.5
95.0
97.5

100.0

0 200 400 600 800 1000
0.0
2.5
5.0
7.5

10.0
12.5
15.0
17.5
20.0

Training Epochs

Qo
S
de

gr
ad

at
io
n
β m

ax
(T
) (

%
)

Avg-PPO - wQoS = 1,wRE = 1
Avg-PPO - wQoS = 10,wRE = 1
Avg-PPO - wQoS = 100,wRE = 1

Avg-CPO
Pred-Alloc
βthresh

(b) Avg. QoS degradation per epoch (Vthresh = 10%)

(c) Avg. BW allocation per epoch (d) Avg. QoS degradation per epoch (Vthresh = 10%)

Fig. 4: Training process of different methods; (a),(b) are trained on the dataset traffic, and (c),(d) are trained on randomized traffic.

calculated using a simple grid-search. However, it can lead

to significant over-provisioning and non-optimal results. We

refer to this approach as Pred-Alloc.

C. Training Performance

For training, we use two dense layers each having 64 neu-

rons for the policy network for the different algorithms. The

learning rates can differ across methods and are determined

experimentally. We train Avg-CPO and Avg-PPO on the dataset

traffic. For Avg-PPO, we set F'� to 1, and tune F&>(to

achieve a nearly optimized tradeoff between resource alloca-

tion and QoS. Fig. 4a and Fig. 4b show the mean bandwidth

allocation and mean QoS degradation of these methods during

the training phase. We observe that Avg-PPO is able to keep

QoS degradation under 10% with F&>(=100. When evaluated,

on the same traffic distribution as the one used for training

(cf., Table I), Avg-CPO and Avg-PPO (F&>(=1, F'�=100)

achieve the same mean bandwidth allocation of 37.2%, and a

mean QoS degradation of 8.42% and 8.3%, respectively. This

bandwidth allocation is 12.8% lower than Pred-Alloc, which

allocates a 50.8% mean bandwidth in this scenario.

Fig. 4c and Fig. 4d show the training progress of WC-

CPO and WCSAC approaches on the randomized traffic. The

shaded area around the curves denotes the minimum and

maximum of the corresponding quantities. The variation range

of mean bandwidth and QoS degradation represent the ability

of the two approaches to operate under different network

conditions and traffic distributions. As reported in Table I,

when evaluated on dataset traffic, WC-CPO and WCSAC lead

to a mean bandwidth allocation of 52.5% and 39%, and a

mean QoS degradation of 1.06% and 6.73%, respectively. In

this scenario, the respective approaches lead to 2.5% higher,

and 11.8% lower bandwidth allocation compared to Pred-Alloc.

TABLE I: Evaluation Performance of Different Approaches

Method
Dataset Traffic Offset Dataset Traffic

BW allocation(%) QoS degradation(%) BW allocation(%) QoS degradation(%)

Avg-PPO 37.2 8.3 39.7 40.8
Avg-CPO 37.2 8.42 39.4 44.5
WC-CPO 52.5 1.06 53.9 8.98
WCSAC 39 6.73 56 7.19
Pred-Alloc 50.8 1.01 77.7 0.995

D. Generalization to Unseen Traffic Pattern

To assess generalization, we offset the traffic curve by 2

users/sec, i.e., the trained agents are evaluated on the dataset

traffic that represents 3 to 5 users/sec. The results are reported

in Table I. In this scenario, Avg-CPO and Avg-PPO lead to

similar mean bandwidth allocation of 39.4% and 39.7%, but

a mean QoS degradation of 44.5% and 40.8%, respectively.

The results assert that these methods over-fit to the training

traffic pattern and are unable to generalize to previously unseen

traffic, leading to high QoS degradation beyond the threshold.

Note that, in this scenario, although Pred-Alloc leads to a

high bandwidth allocation of 77.7%, it keeps the mean QoS

degradation Vmax()) under 1%. WC-CPO and WCSAC lead to

a mean bandwidth allocation of 53.9% and 56%, and a mean

QoS degradation of 8.98% and 7.19%, respectively. Although

resulting in better generalization than the previous approaches,

these results show that WC-CPO overfits to the worse-case

traffic scenarios due to the exponential cost, while WCSAC

adapts well to both average and worse-case scenarios.

E. Robustness to Varying Network Conditions and Inaccurate

Traffic Predictions

First, we evaluate the proposed approach, on the dataset traf-

fic, under different network conditions. To control the severity

of network conditions (i.e., from favorable to worst-case),

we assume them to be deterministic. In this case, @34CC (−3)

and @34CC (+3) represent worst-case and best-case network

This paper has been accepted for publication in IEEE/IFIP Network Operations and Management Symposium, Miami, FL,

USA, May 2023. This is an author’s copy. The respective copyrights are with IEEE/IFIP.

−3 −2 −1 0 1 2 3
Network Condition d

30

35

40

45

50

55
Ba

nd
wi

dt
h
Al
lo
ca

tio
n
r (

%
)

Bandwidth Allocation
QoS Degradation
Determini tic network condition
Random network condition

10

15

20

25

30

Qo
S
de

gr
ad

at
io
n
β m

ax
(T
) (
%
)

Fig. 5: WCSAC performance at different net-
work conditions (Vthresh = 10%)

0.0 0.2 0.4 0.6 0.8 1.0
Noise std. dev. σnoise

30

35

40

45

50

55

60

Ba
nd

wi
dt

h
Al

lo
ca

tio
n
r (

%
)

Bandwidth Allocation
QoS Degradation
Noisy Prediction
Random Prediction

0

5

10

15

20

25

Qo
S

de
gr

ad
at

io
n
β m

ax
(T

) (
%

)

Fig. 6: WCSAC performance with inaccurate
traffic prediction (Vthresh = 10%)

0 100 200 300 400 500
Training Epochs

28

30

32

34

36

38

40

Ba
nd
wi
dt
h
Al
lo
ca
tio

n
r (
%
)

Bandwidth Allocation
QoS Degradation 5.0

5.5

6.0

6.5

7.0

7.5

8.0

8.5

9.0

Qo
S
de
gr
ad
at
io
n
β m

ax
(T
) (
%
)

Fig. 7: WCSAC avg. BW and QoS degrada-
tion during fine-tuning on deterministic net-
work condition @34CC (+1) with Vthresh = 10%

conditions, respectively. In Fig. 5, the horizontal lines show

the bandwidth allocation and QoS degradation when the QoS

is randomly sampled using the network model output, while

the curves show their trend under static network conditions

with varying 3. Evidently, as the network conditions aggravate,

both the QoS degradation and bandwidth allocation increase.

The QoS degradation stays within the threshold Vthresh as long

as 3 ≥ −1.5. For 1.5 < 3 < 3, the QoS degradation is

slightly higher than the threshold. Finally, at 3 = −3, the

QoS degradation hits 30.4%. This is expected since WCSAC

constrains only the CVaR of the cost distribution at a given risk

level (i.e., U) under the limit. On the other hand, as network

conditions become more favorable, it results in an increase in

resource efficiency and a decrease in QoS degradation.

Subsequently, we evaluate the sensitivity of the proposed

approach to inaccurate traffic prediction. For this purpose,

we use dataset traffic but introduce truncated Gaussian noise

N(0, f2

=>8B4
) to the traffic probability distribution, at each step.

After normalization, this resulting CDF is fed as the state to

the RL agent. In Fig. 6, the horizontal lines show the resource

allocation and the QoS degradation when the traffic prediction

is fully random (i.e., ĜC= ∼ U(1, 5)), while the curves

show these metrics as f=>8B4 increases. We can observe that

when prediction inaccuracy increases (i.e., for higher f=>8B4),

both the QoS degradation and bandwidth allocation increase.

However, even with fully randomized traffic prediction, the

proposed approach shows a QoS degradation that is only

13% higher than the threshold Vthresh. This is attributed to

the RL agent taking the current QoS degradation level into

account when allocating resources, which acts as a feedback

mechanism and allows the agent to allocate higher resources

even if the traffic prediction is inaccurate.

F. Fine-tuning Performance

In a production network, the online data regarding a slice’s

traffic pattern and the network condition can be used to

continuously improve the network model and resource scal-

ing algorithm with fine-tuning. Since the traffic pattern and

network conditions do not change during testing, learning to

adapt to other scenarios is not required during fine-tuning.

Therefore, we train the WCSAC algorithm with U = 0.99

(i.e., risk-neutral), and at a lowered learning rate for 500

epochs. Fig. 7 shows the bandwidth allocation and the QoS

degradation when WCSAC is fine-tuned on the dataset traffic

with a favorable and deterministic network condition, i.e.,

@34CC (+1). The optimal bandwidth allocation is achieved within

250 epochs while maintaining QoS degradation below the set

threshold of 10%. We evaluate the fine-tuned model using

the best checkpoint during training. Evaluation results on the

dataset traffic show a mean bandwidth allocation of 29.7%

and a mean QoS degradation of 7.85%. Compared to previous

results in Fig. 5, there is 7.8% less bandwidth usage while

maintaining QoS degradation under the threshold. We also

test this fine-tuned algorithm on the dataset traffic offset by

2 users, with randomly sampled network conditions, which

leads to a mean bandwidth allocation of 56.9% and a mean

QoS degradation of 9.06%. Comparing these to the results in

Table I, we can conclude that the gain in performance during

fine-tuning comes at only a slight cost to the generalization

ability of the algorithm.

VI. CONCLUSION

In this work, we developed a novel framework utilizing

a risk-constraint DRL algorithm, a regression-based network

model and a traffic prediction module, for dynamically scaling

slice resources in a 5G network. We proposed a regression-

based network model to learn the distribution of QoS at any

resource allocation and traffic, and utilized that to train the

RL agent offline. To achieve generalization, the RL agent is

fed with future traffic and current QoS degradation level, and

is trained on randomized traffic. Our results show that the

resulting RL agent is able to show similar performance as RL

agents trained on the exact test-time traffic. Furthermore, it is

able to maintain its performance across different real-world

traffic patterns. Additionally, we demonstrated the agent’s

robustness under extreme network conditions and inaccurate

traffic prediction. Finally, we showed that fine-tuning can be

used to improve the performance further when the network

condition or the slice traffic pattern is known in advance.

As a future direction for this work, we intend to extend the

evaluations over multiple types of resources and slices. We

also plan to validate the algorithm on an expansive 5G testbed.

ACKNOWLEDGEMENT

This work was supported in part by Rogers Communications

Canada Inc. and in part by a Mitacs Accelerate Grant.

This paper has been accepted for publication in IEEE/IFIP Network Operations and Management Symposium, Miami, FL,

USA, May 2023. This is an author’s copy. The respective copyrights are with IEEE/IFIP.

REFERENCES

[1] Telecom Italia, “Telecommunications - SMS, Call,
Internet - MI,” 2015. [Online]. Available:
https://doi.org/10.7910/DVN/EGZHFV

[2] Y. Liu, J. Ding, and X. Liu, “A constrained reinforcement learn-
ing based approach for network slicing,” in IEEE International
Conference on Network Protocols (ICNP), 2020, pp. 1–6.

[3] R. Li, Z. Zhao, Q. Sun, C.-L. I, C. Yang, X. Chen, M. Zhao,
and H. Zhang, “Deep reinforcement learning for resource man-
agement in network slicing,” IEEE Access, vol. 6, pp. 74 429–
74 441, 2018.

[4] J. Li, J. Liu, T. Huang, and Y. Liu, “DRA-IG: the balance of per-
formance isolation and resource utilization efficiency in network
slicing,” in IEEE International Conference on Communications
(ICC), 2020, pp. 1–6.

[5] J. X. Salvat, L. Zanzi, A. Garcia-Saavedra, V. Sciancalepore,
and X. Costa-Perez, “Overbooking network slices through yield-
driven end-to-end orchestration,” in ACM International Confer-
ence on emerging Networking EXperiments and Technologies
(CoNEXT), 2018, pp. 353–365.

[6] F. Y. Yan, J. Ma, G. D. Hill, D. Raghavan, R. S. Wahby,
P. Levis, and K. Winstein, “Pantheon: the training ground
for internet congestion-control research,” in USENIX Annual
Technical Conference (ATC), 2018, pp. 731–743.

[7] Q. Liu, N. Choi, and T. Han, “Constraint-aware deep reinforce-
ment learning for end-to-end resource orchestration in mobile
networks,” in IEEE International Conference on Network Pro-
tocols (ICNP), 2021, pp. 1–11.

[8] Y. Hua, R. Li, Z. Zhao, X. Chen, and H. Zhang, “GAN-
powered deep distributional reinforcement learning for resource
management in network slicing,” IEEE Journal on Selected
Areas in Communications, vol. 38, no. 2, pp. 334–349, 2019.

[9] Q. Liu, N. Choi, and T. Han, “OnSlicing: online end-to-end
network slicing with reinforcement learning,” in ACM Interna-
tional Conference on emerging Networking EXperiments and
Technologies (CoNEXT), 2021, pp. 141–153.

[10] Q. Yang, T. D. Simão, S. H. Tindemans, and M. T. J. Spaan,
“WCSAC: worst-case soft actor critic for safety-constrained
reinforcement learning,” in AAAI Conference on Artificial In-
telligence, vol. 35, no. 12, 2021, pp. 10 639–10 646.

[11] M. Xu, Z. Liu, P. Huang, W. Ding, Z. Cen, B. Li, and
D. Zhao, “Trustworthy reinforcement learning against intrinsic
vulnerabilities: Robustness, safety, and generalizability,” 2022.
[Online]. Available: https://arxiv.org/abs/2209.08025

[12] J. Achiam, D. Held, A. Tamar, and P. Abbeel,
“Constrained policy optimization,” 2017. [Online]. Available:
https://arxiv.org/abs/1705.10528

[13] Y. Liu, A. Halev, and X. Liu, “Policy learning with constraints in
model-free reinforcement learning: A survey,” in International
Joint Conference on Artificial Intelligence (IJCAI), 2021.

[14] S. Ha, P. Xu, Z. Tan, S. Levine, and J. Tan, “Learning to walk
in the real world with minimal human effort,” 2020. [Online].
Available: https://arxiv.org/abs/2002.08550

[15] C. Tessler, D. J. Mankowitz, and S. Mannor, “Reward
constrained policy optimization,” 2018. [Online]. Available:
https://arxiv.org/abs/1805.11074

[16] J. Schulman, S. Levine, P. Abbeel, M. Jordan, and P. Moritz,
“Trust region policy optimization,” in International Conference
on Machine Learning (ICML), 2015, pp. 1889–1897.

[17] S. Kullback and R. A. Leibler, “On information and sufficiency,”
The Annals of Mathematical Statistics, vol. 22, no. 1, pp. 79–86,
1951.

[18] A. Papa, M. Klugel, L. Goratti, T. Rasheed, and W. Kellerer,
“Optimizing dynamic RAN slicing in programmable 5G net-
works,” in IEEE International Conference on Communications
(ICC), 2019, pp. 1–7.

[19] A. T. Z. Kasgari and W. Saad, “Stochastic optimization and
control framework for 5G network slicing with effective isola-
tion,” in IEEE Annual Conference on Information Sciences and
Systems (CISS), 2018, pp. 1–6.

[20] O. Triebe, H. Hewamalage, P. Pilyugina, N. Laptev,
C. Bergmeir, and R. Rajagopal, “NeuralProphet: Ex-
plainable forecasting at scale,” 2021. [Online]. Available:
https://arxiv.org/abs/2111.15397

[21] F. D. Johansson, U. Shalit, and D. Sontag, “Learning
representations for counterfactual inference,” 2016. [Online].
Available: https://arxiv.org/abs/1605.03661

[22] “Introduction — SD-RAN Docs 1.4.1-dev documentation,”
https://docs.sd-ran.org/sdran-1.4/introduction.html, [Accessed
29-Sep-2022].

[23] J. Schulman, F. Wolski, P. Dhariwal, A. Radford, and
O. Klimov, “Proximal policy optimization algorithms,” 2017.
[Online]. Available: https://arxiv.org/abs/1707.06347

https://doi.org/10.7910/DVN/EGZHFV
https://arxiv.org/abs/2209.08025
https://arxiv.org/abs/1705.10528
https://arxiv.org/abs/2002.08550
https://arxiv.org/abs/1805.11074
https://arxiv.org/abs/2111.15397
https://arxiv.org/abs/1605.03661
https://docs.sd-ran.org/sdran-1.4/introduction.html
https://arxiv.org/abs/1707.06347

	Introduction
	Background and Related Works
	Constrained DRL—A Primer
	Dynamic Resource Scaling
	Resource Isolation
	Model-Driven QoS Isolation
	Data-Driven QoS Isolation

	Problem Statement
	Proposed Framework
	Network Model
	Risk-constrained DRL-based Resource Scaling Algorithm
	CMDP Formulation
	Training

	Experiments
	Testbed and Simulation Setup
	Comparative Approaches
	DRL-based
	Heuristics-based

	Training Performance
	Generalization to Unseen Traffic Pattern
	Robustness to Varying Network Conditions and Inaccurate Traffic Predictions
	Fine-tuning Performance

	Conclusion

