
ar
X

iv
:2

20
4.

13
54

7v
3

 [
cs

.N
I]

 2
3

Fe
b

20
23

Generic Dijkstra: correctness and tractability

Ireneusz Szcześniak∗, Bożena Woźna-Szcześniak†

∗Częstochowa University of Technology, Department of Computer Science

ul. J. H. Dąbrowskiego 73, 42-201 Częstochowa, Poland
†Jan Długosz University in Częstochowa, Department of Mathematics and Computer Science

al. Armii Krajowej 13/15, 42-200 Częstochowa, Poland

Abstract—The recently-proposed generic Dijkstra algorithm
finds shortest paths in networks with continuous and contiguous
resources. The algorithm was proposed in the context of optical

networks, but is applicable to networks with finite and discrete
resources. The algorithm was published without a proof of
correctness, and with a minor shortcoming. We provide that
missing proof and offer a correction to the shortcoming. To prove
the algorithm correct, we generalize the Bellman’s principle of
optimality to algebraic structures with a partial ordering. By
analyzing the size of the search space in the worst-case, we argue
the stated problem is tractable. Thus we definitely answer a long-
standing fundamental question of whether we can efficienlty find
a shortest path in a network with discrete resources subject to
the continuity and contiguity constraints: yes, we can.

I. INTRODUCTION

The Dijkstra shortest-path algorithm finds shortest paths in a

graph from a given source vertex to all other vertexes, provided

the costs of edges are non-negative [1]. However, the algorithm

cannot be used if the paths found have to meet the resource

continuity and contiguity constraints.

Some networks have finite and discrete resources which

have to be used by a connection along the path. For instance, in

communication networks, frequency or time is such resource.

The resource is divided into discrete units modeled by a set

of integers Ω = [0, U), where U is a finite number of units

offered. Each edge has a set of available units, which is a

subset of Ω.

A path meets the resource continuity constraint if some

given units are available on each of its edges. Therefore an

algorithm should find not only a path, but also the set of units

available along the path. When a connection is established

along the found path, the units found are made unavailable

along the path, thus changing the state of the network, and

influencing the future path searches.

The continuity constraint follows from the characteristics

of the modeled network. For instance, in optical networks, a

unit is a wavelength or a frequency unit, which has to be used

along the path in order to take advantage of the wavelength-

division multiplexing. In networks capable of advance resource

reservation, a unit is a time slot, which has to be used along

the path in order to schedule transmission at a given time along

the edges used.

The resource contiguity constraint requires that the units of

a path be contiguous. Contiguous units can be modeled by a

half-closed integer interval. For example, the units of interval

[0, 3) are contiguous, and the units of set {0, 2} are not.

The contiguity constraint also follows from the characteris-

tics of the modeled network. For instance, in the elastic optical

networks, the unit contiguity constraint follows from the

physical and economical limitations of optical networks, where

the frequency units of a connection should occupy a single

frequency band. In networks capable of advance resource

reservation, the (time slot) contiguity constraint follows from

the assumption that the connection should last unintermitted.

The generic Dijkstra algorithm [2] finds efficiently shortest

paths that meet the unit continuity and contiguity constraints.

The generic Dijkstra algorithm is a generalization of the stan-

dard Dijkstra algorithm: while the standard Dijkstra requires

the ordering (of the cost labels) to be total, the generic Dijkstra

relaxes this requirement and allows for a partial ordering.

Our novel contribution is the generalization of the Bellman’s

principle of optimality, the proof of correctness of the generic

Dijkstra algorithm, and a correction to a minor shortcoming

of the algorithm. By proposing the worst-case analysis of

the search space, we argue that the problem is tractable, a

crucial conclusion for network operations and management

with the ever increasing requirements of densification, agility,

performance and reliability.

II. RELATED WORKS

In [2], the routing problem was presented in the context

of optical networks. In that article also the signal modulation

constraint was considered, i.e., a path was dropped if it was

unable to support a demand, while here we drop no paths.

The generic Dijkstra algorithm was adapted to solve the

dynamic routing problem with dedicated path protection [3].

The algorithm was simulatively demonstrated to efficiently

find exact results [4], [2].

Bellman formulated the principle of optimality in [5], which

is also known as the dynamic programming principle. For the

shortest-path problem, this principle stipulates that shortest

paths are made of shortest paths [6], i.e., shortest paths have

the optimal substructure, and therefore form a shortest-path

tree. This principle is not exactly a solution to a problem

(which Bellman readily acknowledged in [6] that the principle

does not offer a ready computational scheme), but rather a

stipulation the solution should meet [7].

http://arxiv.org/abs/2204.13547v3

In [8] the authors proposed an algorithm for finding a

shortest path in a network with continuous and discrete re-

sources. While we believe the algorithm is exact, the authors

call is heuristic, albeit in the context of optimizing the overall

network performance.

The status of this routing problem had been unclear: no

proof of nondeterministic-polynomial (NP) completeness was

proposed, no efficient algorithm with proven correctness has

been published but heuristic algorithms were commonly used,

most notably based on a K-shortest path algorithm or on the

Dijkstra algorithm [9]. However, searching for a path that

meets the unit continuity and contiguity constraints is an easy

(in terms of complexity theory) problem, because the number

of shortest paths is polynomially bounded [2].

The proofs of the correctness of the Dijkstra algorithm have

been proposed in a number of mile-stone text books. Usually

the proofs are inductive, and combined with contradiction. We

find the most convincing the proof offered in [10], which does

not rely on contradiction, and that strategy we use in the proof

we propose.

The Martins algorithm is a general multilabeling algorithm

for solving multicriteria optimization problems with real-

valued criteria [11]. The algorithm could be used to solve the

stated problem but with the exponential worst-case complexity.

The generic Dijkstra algorithm is similar to the Martins

algorithm in that it is also multilabeling, but different in that

it is of a single criterion with partial ordering.

III. PRELIMINARIES AND TERMINOLOGY

A. Resource interval

We refer to a half-closed integer interval as a resource

interval (RI). We describe a set of contiguous units with an RI,

and refer to it with r. For instance, by r = [10, 12) we mean

units 10 and 11. Function min(r) returns the lower endpoint of

r, and max(r) the upper endpoint. For example, min(r) = 10,

and max(r) = 12.

We are interested in the inclusion relation between RIs, be-

cause the larger RI, the better, as it describes also the included

RIs. For instance, r1 = [0, 1) is worse than r3 = [0, 2) (or r3 is

better than r1), because r3 properly includes r1, i.e., r3 ⊃ r1.

Relation ⊂ is a strict partial ordering as there can be RIs for

which neither ⊂ nor the converse (i.e., ⊃) holds. Two RIs are

⊆-incomparable (or incomparable in short), denoted by ‖, if

one does not include the other, properly or not. For instance,

r2 = [1, 3) is incomparable with r1, i.e., r1 ‖ r2, because

neither ⊂, ⊃, nor equality holds.

The ⊂-induced ‖ relation is intransitive. For instance, r1 ‖
r2 and r2 ‖ r3 does not imply r1 ‖ r3 because r1 ⊂ r3.

Therefore, ‖ is not an equivalence relation, and so ordering ⊂
is not strict weak.

Standard sorting requires at least a strict weak ordering, and

to that end we introduce a total ordering <, an extension of

⊂, as defined in Table I, where a cell in its left part reports on

the ⊂ relation, and in the right on <. The converse ri > rj
means rj < ri.

Relation ri ⊇ rj has to imply ri ≤ rj (the unshaded cells in

Table I) because ri should be processed first as it offers a better

solution (see Section V). The shaded cells in Table I report

on one of two possibilities of defining < for the incomparable

RIs so that < is transitive. The other possibility would have

the relation flipped in both gray cells. The choice is arbitrary,

and we prefer the RIs of smaller lower endpoints go first, i.e.,

ri < rj if min(ri) < min(rj). The ordering defined by (1) is

lexicographic: the lower endpoints are compared with <, and

the upper with >.

ri < rj ⇐⇒ min(ri) < min(rj) or

min(ri) = min(rj) and

max(ri) > max(rj)

(1)

Lemma 1. Relation < for RIs is transitive.

Proof. Relation < is transitive if ri < rj < rk implies

ri < rk . Relation ri < rj holds in either of two cases: 1st,

if min(ri) < min(rj); and 2nd, if min(ri) = min(rj) and

max(ri) > max(rj). If both ri < rj and rj < rk hold

in the 1st case, then min(ri) < min(rj) < min(rk) holds,

and so ri < rk does. If ri < rj holds in the 1st case, and

rj < rk in the 2nd, then min(ri) < min(rj) = min(rk)
holds, and so ri < rk does; similarly, if ri < rj holds in the

2nd case, and rj < rk in the 1st. If both ri < rj and rj < rk
hold in the 2nd case, then min(ri) = min(rj) = min(rk)
and max(ri) > max(rj) > max(rk) hold, and so ri < rk
does.

B. Network model

The network is modeled by a weighted, directed multigraph

G = (V,E), where V = {vi} is a set of vertexes, and E =
{ei} is a set of edges. For edge ei, function cost(ei) gives its

cost, and function AU(ei) gives its set of available units (i.e., a

set of integers), which do not have to be contiguous. Function

target(ei) gives the target vertex of edge ei. Function I(vi)
gives the set of incoming edges for vi.

Path p = (ei) is a sequence of edges ei where neighboring

edges meet at the same vertex. A path has a cost, and an RI.

The RI is available on every edge of the path.

The algebraic structure of the cost should have two operators

defined. First, the relation < operator should be transitive.

Second, the ⊕ operator with the identity 0 should calculate

the combined cost based on its two operands. For instance,

integer and real numbers with the < and + operators meet

these requirements.

The cost of a path is the cost of its edges combined with ⊕
as given by (2). We assume that appending edge e to path p
cannot decrease the cost of the path, i.e., cost(p)⊕ cost(e) ≥
cost(p). If ⊕ is the addition operator, then cost(e) ≥ 0, the

requirement of the Dijkstra algorithm.

cost(p) =
⊕

i

cost(ei) (2)

TABLE I: Relations between RIs ri and rj .

max(ri) < max(rj) max(ri) = max(rj) max(ri) > max(rj)
min(ri) < min(rj) ri ‖ rj ri < rj ri ⊃ rj ri < rj ri ⊃ rj ri < rj

min(ri) = min(rj) ri ⊂ rj ri > rj ri = rj ri ⊃ rj ri < rj

min(ri) > min(rj) ri ⊂ rj ri > rj ri ⊂ rj ri > rj ri ‖ rj ri > rj

C. Label

While we search for paths, we find it more efficient (because

of the dynamic programming principle) to describe a path with

a label defined as a pair of cost and an RI. A path is a feasible

solution, so a label is feasible too. We denote labels with l.
A vertex can be reached by different paths of the same cost

and RIs, i.e., equivalent paths of equal labels. We are interested

only in one of these equivalent paths chosen arbitrarily, and

so we do not allow a vertex to have equal labels. Different

vertexes can have equal labels, but these labels would represent

different paths.

The label has the cost and the RI of its path. The cost of

label l is denoted by cost(l), and the RI by RI(l). For instance,

label l = (0,Ω) is of cost(l) = 0, and RI(l) = Ω. Function

edge(l) gives the edge of the label, i.e., the edge that was

appended last to produce the label.

A set C of candidate labels l′ is produced when to a path

described with label l an edge e is appended, which is denoted

by l ⊕ e and defined by (3). We say that l′ is derived from

l. Labels l′ have equal cost that depends on the cost of l and

e, i.e., cost(l′) = cost(l)⊕ cost(e). However, their RIs differ

because RI(l)∩AU(e) can fan out to a set of RIs. The RI of

l′ is in RI(l) and in AU(e) to meet the continuity constraint.

C = l ⊕ e = {l′ : cost(l′) = cost(l)⊕ cost(e) and

RI(l′) ∈ RI(l) ∩AU(e)}
(3)

Labels are compared for two reasons. First, with ≺ for

relaxation to determine whether a label should be kept or

dropped. Second, with < for sorting to determine which label

should be retrieved from the priority queue first. Table II shows

relations between two labels li and lj depending on their costs

and RIs, where a cell in its left part reports on the ≺ relation,

and in the right on <.

1) The ≺ relation: Label li is better than lj (denoted by

li ≺ lj) in two cases: first, if it offers at a lower cost a better or

equal RI; second, if it offers at a lower or equal cost a better

RI. Better or equal relation is denoted by �. The converse

li ≻ lj means lj ≺ li. A better label is kept, and a worse

discarded. Relation ≺ is used to define label efficiency.

Definition 2 (Label efficiency). Label l is efficient if, for a

given vertex, there does not exist label l′ such that l′ ≺ l.

Proposition 3. Relation l � l′ holds for l′ derived from l.

Proof. Relation l � l′ holds for two reasons. First, cost(l) ≤
cost(l′) by an assumption of the network model that the cost

of a path cannot decrease when an edge is appended. Second,

RI(l) ⊇ RI(l′) by the continuity constraint. In Table II, the

related cells are unshaded.

Relation ≺ is a strict partial ordering as there can be

labels for which neither ≺ nor ≻ holds. Two labels are �-

incomparable (or incomparable in short), denoted by ‖, if one

is not better than or equal to the other, which has two reasons:

first, because their RIs are incomparable; second, because one

of the labels offers a better RI at a larger cost than the other

label. For instance, if l1 = (0, [0, 1)) and l2 = (1, [0, 2)), then

l1 ‖ l2, because neither ≺, ≻, nor equality holds.

The ≺-induced label incomparability is not an equivalence

relation as it is intransitive. For example, for labels of equal

cost and incomparable RIs (shaded dark in Table II), the

intransitivity of label incomparability follows from the in-

transitivity of RI incomparability: e.g., given l1 = (0, [0, 1)),
l2 = (0, [1, 3)), and l3 = (0, [0, 2)), relations l1 ‖ l2 and l2 ‖ l3
hold, but l1 ‖ l3 does not as l1 ≺ l3 does.

For a priority queue, standard sorting cannot use ≺ because

of two reasons related to the label incomparability. First, ≺ is

not a strict weak ordering, because label incomparability is not

an equivalence relation. Second, sorting must have ordering

established between all nonequal labels, but ≺ leaves some

labels incomparable (shaded in Table II).

2) The < relation: For sorting, (4) defines a total ordering

< so that either < or > holds for all nonequal labels. Ordering

< extends ≺, i.e., <⊃≺, so that ≺ implies < because a better

label should be processed first (see Section V).

li < lj ⇐⇒ cost(li) < cost(lj) or

cost(li) = cost(lj) and

RI(li) < RI(rj)

(4)

The ordering is lexicographic by cost first, and by RI next.

For labels with different costs (including the incomparable

labels, shaded light in Table II), we compare costs only: li < lj
if cost(li) < cost(lj), because the greedy strategy minimizes

cost.

For labels with equal costs, we compare RIs: li < lj if

cost(li) = cost(lj) and RI(li) < RI(lj). For the comparable

labels (unshaded in the middle row of Table II), the choice

is not arbitrary (i.e., we cannot flip the relation for RIs),

because � must imply ≤. However, for the incomparable

labels (shaded dark in Table II), the choice is arbitrary: we

could flip the relation for RIs (and < for labels would still be

transitive), but we prefer to keep (4) simple.

Lemma 4. Relation < for labels is transitive.

Proof. Analogous to the proof of Lemma 1, provided <
is transitive for the values compared: for the cost it is by

assumption, and for the RI by Lemma 1.

TABLE II: Relations between labels li and lj .

RI(li) ⊂ RI(lj) RI(li) = RI(lj) RI(li) ⊃ RI(lj) RI(li) ‖ RI(lj)
cost(li) < cost(lj) li ‖ lj li < lj li ≺ lj li < lj li ≺ lj li < lj li ‖ lj li < lj

cost(li) = cost(lj) li ≻ lj li > lj li = lj li ≺ lj li < lj li ‖ lj
li < lj if RI(li) < RI(lj)
li > lj if RI(li) > RI(lj)

cost(li) > cost(lj) li ≻ lj li > lj li ≻ lj li > lj li ‖ lj li > lj li ‖ lj li > lj

IV. GENERIC PRINCIPLE OF OPTIMALITY

The principle of optimality was formulated for the shortest-

path problem in [6] by (5) where: the shortest paths are found

to target vertex N (from all other vertexes), there are no

parallel edges, fi is the cost of reaching vN from vi, and tij
is the cost of the edge from vi to vj (of ∞ if the edge does

not exist). Over the years, for various shortest-path problems,

the principle has been reformulated.

fi = min
j

{tij + fj} if i 6= N

fN = 0
(5)

A. Reformulation

If we search for shortest paths from the source vertex s (to

all other vertexes), and there are parallel edges, the principle

of optimality can be formulated by (6) where ⊕ can be any

operator provided the equations hold for an optimal solution

(i.e., of the lowest cost). Operator ⊕ is usually +, but can also

be, e.g., the multiplication operator if we search for, e.g., a path

of the lowest probability of failure (i.e., highest availability).

The relaxation of the Dijkstra algorithm uses this formulation

with the addition operator.

fs = 0

fi = min
e∈I(vi)

{fsource(e) ⊕ cost(e)} if i 6= s (6)

Formulations (5) and (6) require a total ordering between

labels (e.g., the ordering between real numbers), because they

allow a vertex to have one label only. If the ordering between

labels is partial, then a vertex can have a set of incomparable

labels, and so the principle of optimality should be generalized.

B. Generalization

We propose the generalization given by (7), which we call

the generic principle of optimality, and which could also

be called the generic dynamic programming principle. The

generalization describes a solution that we call the efficient-

path tree, a parallel to the shortest-path tree described by the

principle of optimality. Ce is the set of candidate labels we

get after traversing edge e. A union of candidate labels for all

edges that lead to vi is the set of candidate labels for vi. Then

from the union we take a minimum to get the set of efficient

labels Pi.

Ps = {(0,Ω)}

Pi = min{
⋃

e∈I(vi)

Ce} if i 6= s (7)

The minimum of a set C of labels is a set of incomparable

labels, as given by (8), i.e., worse labels are discarded.

minC = {l ∈ C : ∀l′ 6=l∈C l ‖ l′} (8)

Candidate labels Ce depend on the efficient labels Psource(e)

of the source vertex of e, and e itself, as given by (9), which

(depending on the definition of ⊕) could be or not constrained.

Ce = Psource(e) ⊕ e (9)

C. Constriction

We could include in Ce every label l′ ∈ l ⊕ e for every

label l ∈ Psource(e) but that could produce a label with an

empty RI. While such a label could be considered feasible

for some problems and would meet the requirements of the

generic principle of optimality, it would not describe a path

that meets the resource continuity and contiguity constraints.

Therefore we allow labels with nonempty RIs, as defined by

(10). If empty RIs were allowed, the efficient-path tree would

include the shortest-path tree.

Psource(e) ⊕ e = {l′ ∈ l ⊕ e : l ∈ Psource(e) and

RI(l′) 6= ∅}
(10)

V. A SHORTCOMING OF THE GENERIC DIJKSTRA

The generic Dijkstra algorithm sorts the labels in the priority

queue in the ascending order of their cost only [2], and that is

a shortcoming, but only when adding an edge to a path does

not increase the cost of the path.

A. A failing example

Figure 1 shows an example where the efficient path from

vertex s to t goes through vertex u, is of cost 1 and the

RI of [0, 2). However, generic Dijkstra, depending on the

implementation, could mistakenly find efficient a path of cost

1 and the RI of [0, 1) that has edge e1 only.

When visiting vertex s, the algorithm relaxes edges e1 and

e2. Next, label (1, [0, 1)) could be retrieved from the priority

queue first, thus erroneously finding that label (for the path

of edge e1 only) efficient, while it is label (1, [0, 2)) (for the

path of edges e2 and e3) that is efficient.

B. A correction of the shortcoming

Labels in the priority queue should be sorted using the ≤
relation. Labels for the same vertex are <-comparable, but in

the queue there can be equal labels for different vertexes, and

so the ≤ relation has to be used. For any labels li and lj in the

priority queue, label li will be retrieved before lj if li ≤ lj .

Equal labels are retrieved in arbitrary order. At the top of the

s

t

u

e1, (1, [0, 1))

e2, (1, [0, 2))

e3, (0, [0, 2))

Fig. 1: A sample failing example.

queue there is the label that is ≤-comparable with every other

label in the queue.

With the correction, the failing example is solved correctly.

When visiting vertex s, the algorithm relaxes edges e1 and

e2. In the queue there are two labels: l1 = (1, [0, 1)), and

l2 = (1, [0, 2)). Even though l2 ≺ l1, label l1 is kept as it

is for a different vertex. Label l2 is retrieved from the queue

first, because l2 < l1, and so vertex u is visited next, and label

l3 = (1, [0, 2)) is inserted into the queue. Label l3 is retrieved

next, since l3 < l1, thus label l3 is found efficient for vertex

t.

VI. PROBLEM STATEMENT

Prove the correctness of the generic Dijkstra algorithm that

solves the following problem.

Given:

• weighted, directed multigraph G = (V,E), where V =
{vi} is a set of vertexes, and E = {ei} is a set of edges,

• cost function cost(ei), which gives the cost of edge ei,
• available units function AU(ei), which gives the available

units of edge ei,
• a transitive relation < for cost,

• appending an edge to a path does not decrease the cost

of the path,

• an efficient label meets the generic principle of optimality,

• the set of all units Ω on every edge,

• the source vertex s.

Find:

• an efficient-path tree rooted at s that meets the resource

continuity and contiguity constraints.

In the efficient-path tree, each vertex has a minimal and

complete set of efficient labels. Therefore we search for a

minimal and complete set of efficient labels. Minimal, because

from the set of equal labels for a vertex (that describe

equivalent paths) we choose one label arbitrarily. Complete,

because we produce all efficient labels, i.e., there does not

exist an efficient label that we could add to the set.

A. The algorithm

Algorithm 1 shows the generic Dijkstra algorithm, and

Algorithm 2 shows the relaxation procedure.

The labels that are processed by the algorithm are called

known, the other labels are unknown, and as the search pro-

gresses, more labels become known. From an efficient label,

relaxation derives a candidate label that becomes tentative

if no better or equal label is known. A tentative label is

incomparable with other known labels, and can be efficient. A

tentative label is discarded if a better label is found later, or

becomes permanent when it is found efficient. Known labels

for vi are in the set of permanent labels Pi and tentative labels

Ti. All known labels are in P = {Pi} and T = {Ti}. T is

organized as a priority queue with the ≤ ordering.

Algorithm 1 Generic Dijkstra

In: graph G, source vertex s
Out: an efficient-path tree

Here we concentrate on permanent labels.

Ts = {(0,Ω)} // The initial label.

while T is not empty do

l = pop(T)
e = edge(l)
v = target(e)
// Add l to the set of permanent labels for vertex v.

Pv = Pv ∪ {l}
for each out edge e′ of v in G do

relax(e′, l)
return P

VII. CORRECTNESS

We propose an inductive proof for the generic Dijkstra

algorithm that also holds for the standard Dijkstra algorithm

since a total ordering (required by the Dijkstra algorithm) is an

extension of a partial ordering (required by the generic Dijkstra

algorithm). A total ordering is more restrictive as it does not

allow for incomparability, and that simplifies searching.

A. Intuition

Generic Dijkstra algorithm is correct for two reasons. First,

from among the tentative labels (that are a link away from

efficient labels), the priority queue provides at the top an

efficient label l, because labels are sorted with ≤: the relation

l ≤ l′ holds for any other label l′ in the queue, and so no label

l′ is better than l, i.e., l ≤ l′ ⇐⇒ l � l′ or l ‖ l′ ⇐⇒ l′ ⊀ l.
Second, relaxation replenishes the priority queue with labels

l′ derived from l, and so, by Proposition 3, they cannot be

better than l.
Relaxation is not necessary for the algorithm correctness.

Instead of relaxation, it would suffice to ensure a candidate

label l′ for vertex v′ does not represent a loop (a path that

returns to one of its vertexes) before inserting it into the

queue, and is not worse than any permanent label for vertex v′

before making it permanent. Such procedure, however, would

be inefficient: a candidate label that is worse than any known

label would be inserted, retrieved, and inevitably discarded.

Relaxation improves efficiency. By two steps. The first

inserts into the queue a candidate label l′ only if it is promising

Algorithm 2 relax
In: edge e′, label l
Here we concentrate on tentative labels.

c′ = cost(l)⊕ cost(e′)
v′ = target(e′)
for each RI I ′ 6= ∅ in RI(l) ∩ AU(e′) do

l′ = (c′, I ′)
// Can the candidate label l′ become tentative?

if ∄lv′ ∈ Pv′ : lv′ � l′ then

if ∄lv′ ∈ Tv′ : lv′ � l′ then

// Discard tentative labels lv′ such that l′ � lv′ ,

// leave in Tv′ only labels incomparable with l′.
Tv′ = Tv′ − {lv′ ∈ Tv′ : l′ � lv′}
// Add l′ to the set of tentative labels for vertex v′.
Tv′ = Tv′ ∪ {l′}

at the time of relaxation, i.e., incomparable with the known

labels for vertex v′. The second discards the tentative labels

for vertex v′ which turn out to be worse than the candidate

label l′ to be inserted into the priority queue. Even though

we look for worse labels, we use � because its definition is

simpler than that of ≺ and because the equality would never

hold, as checked by the first step.

B. Proof

Theorem 5. The algorithm terminates with a complete set of

efficient labels.

Proof. We prove by induction. The induction step corresponds

to an iteration of the main loop. The induction hypotheses are:

1) P has efficient labels derived from efficient labels,

2) T has incomparable labels derived from efficient labels.

Basis. |P | = 1. In the first iteration, the initial label (0,Ω)
for vertex s is retrieved from Ts and added to Ps. This label

is the root of the efficient-path tree, and is the only label that

has not been derived.

The initial label is efficient because no better label could

exist. Such a better label would describe a path from s to s
either of cost lower than 0 (and that cannot be since, by the

problem assumption, adding an edge cannot decrease cost),

or of units that properly include Ω (and that cannot be either

since, by the continuity constraint, traversing an edge cannot

add units).

Inductive step. In an inductive step, efficient label l from

the top of T is moved to P . Label l is for vertex v.

To prove that label l is efficient, we show that any other

label l′ for vertex v could not be better, i.e., l′ ≺ l cannot

hold. Label l′ must be unknown because otherwise l would

not be in T by the second hypothesis.

Label l′ must be derived from a known label lu for some

preceding vertex u. Label lu must be tentative because other-

wise (i.e., lu is permanent) l′ would be known (tentative) by

the induction hypotheses. The algorithm would never produce

such l′ derived from tentative lu, but that would prove the

algorithm incorrect if l′ turns out to be efficient.

Relation lu ≤ l′ holds by Proposition 3. Relation l ≤ lu
holds, since it was label l that was retrieved from the top of

the priority queue. Relation l ≤ l′ holds, since l ≤ lu ≤ l′,
and since ≤ is transitive by Lemma 4. Therefore l′ ≺ l cannot

hold (because l′ < l does not), and so l is efficient.

The efficient label l added to P preserves the first hypoth-

esis. Relaxation preserves the second hypothesis using the

equations of the generic principle of optimality: incomparable

labels l′ derived from l are produced, and labels worse than

l′ are discarded.

Termination. The algorithm terminates when the priority

queue gets empty, and then set P is complete. The algorithm

terminates as set P is finite: P is replenished by T , and the

number of labels in T is polynomially bounded (see Section

VIII).

VIII. TRACTABILITY

We argue the problem is tractable because the size of the

search space is polynomially bounded. The worst-case number

L of labels to process, which is the number of incomparable

labels for all vertexes, is L = S|V |, where S is the number

of incomparable labels a vertex can have.

Number S depends on |Ω| only, and is given by (11). The

maximal set of incomparable labels has labels whose cost

increases along with the size of their RIs. The set has |Ω|
subsets: the first has |Ω| labels with RIs of a single unit and

the lowest cost; the second has |Ω|− 1 labels with RIs of two

units and a higher cost, . . . ; and the last has a single label with

the RI of |Ω| units and the highest cost. The set therefore has

1 + 2 + . . .+ |Ω| = (|Ω|+ 1)|Ω|/2 incomparable labels.

Therefore, O(L) = O(|Ω|2|V |), a polynomial bound.

S =
(|Ω|+ 1)|Ω|

2
(11)

IX. CONCLUSIONS

Routing of a single connection is one of the most important

tasks of network operations and management. We have shown

that in networks with discrete resources under the contiguity

and continuity constraints, that task can be efficiently and

exactly performed with the generic Dijkstra algorithm.

As future work, the average and worst-case complexities

of time and memory could be analytically evaluated to allow

for comparison with other algorithms, e.g., the filtered-graphs

algorithm. The simulative results demonstrate that the generic

Dijkstra algorithm is efficient. Whether the algorithm is the

most efficient in comparison with other algorithms, perhaps

even optimal, deserves further research.

X. ACKNOWLEDGMENT

We dedicate this work to Alexander Stepanov for his

decades-long inspiration, and his contributions to generic

programming and C++. This work was funded by the Pol-

ish Ministry of Education and Science under grant number

020/RID/2018/19.

REFERENCES

[1] Edsger Dijkstra. A note on two problems in connexion with graphs.
Numerische mathematik, 1(1):269–271, 1959.

[2] Ireneusz Szcześniak, Andrzej Jajszczyk, and Bożena Woźna-Szcześniak.
Generic Dijkstra for optical networks. IEEE/OSA Journal of Optical

Communications and Networking, 11(11):568–577, November 2019.
[3] Ireneusz Szcześniak, Ireneusz Olszewski, and Bożena Woźna-

Szcześniak. Towards an efficient and exact algorithm for dynamic
dedicated path protection. Entropy, 23(9), 2021.

[4] Piotr Jurkiewicz, Edyta Biernacka, Jerzy Domżał, and Robert Wójcik.
Empirical time complexity of generic Dijkstra algorithm. In 2021

IFIP/IEEE International Symposium on Integrated Network Manage-

ment, pages 594–598, 2021.
[5] Richard Bellman. On the theory of dynamic programming. Proceedings

of the National Academy of Sciences, 38(8):716–719, 1952.
[6] Richard Bellman. On a routing problem. Quarterly of Applied

Mathematics, 16:87–90, 1958.
[7] M. Sniedovich. Dijkstra’s algorithm revisited: the dynamic programming

connexion. Control and Cybernetics, 35(3):599–620, 2006.
[8] K.-C. Lee and V.O.K. Li. Routing and switching in a wavelength

convertible optical network. In IEEE INFOCOM ’93 The Conference

on Computer Communications, Proceedings, volume 2, pages 578–585,
1993.

[9] Ireneusz Olszewski. Improved dynamic routing algorithms in elastic
optical networks. Photonic Network Communications, 34(3):323–333,
Dec 2017.

[10] Ravindra K. Ahuja, Thomas L. Magnanti, and James B. Orlin. Network

flows: theory, algorithms, and applications. Prentice Hall, 1993.
[11] Ernesto Queirós Vieira Martins. On a multicriteria shortest path problem.

European Journal of Operational Research, 16(2):236 – 245, 1984.

	I Introduction
	II Related works
	III Preliminaries and terminology
	III-A Resource interval
	III-B Network model
	III-C Label
	III-C1 The relation
	III-C2 The < relation

	IV Generic principle of optimality
	IV-A Reformulation
	IV-B Generalization
	IV-C Constriction

	V A shortcoming of the generic Dijkstra
	V-A A failing example
	V-B A correction of the shortcoming

	VI Problem statement
	VI-A The algorithm

	VII Correctness
	VII-A Intuition
	VII-B Proof

	VIII Tractability
	IX Conclusions
	X Acknowledgment
	References

