
HAL Id: hal-04180419
https://inria.hal.science/hal-04180419

Submitted on 12 Aug 2023

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Distributed under a Creative Commons Attribution 4.0 International License

Multi-label Classification of Hosts Observed through a
Darknet

Enzo d’Andréa, Jérôme François, Olivier Festor, Mehdi Zakroum

To cite this version:
Enzo d’Andréa, Jérôme François, Olivier Festor, Mehdi Zakroum. Multi-label Classification
of Hosts Observed through a Darknet. NOMS 2023 - IEEE/IFIP Network Operations and
Management Symposium (NOMS) - Experience Session, May 2023, Miami, United States.
�10.1109/NOMS56928.2023.10154356�. �hal-04180419�

https://inria.hal.science/hal-04180419
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
https://hal.archives-ouvertes.fr


Multi-label Classification of Hosts Observed
through a Darknet

Enzo d’Andréa
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Abstract—To observe compromised hosts at Internet-scale, a
darknet or network telescope collects Internet background radia-
tion that includes large-scale phenomena like DDoS (Distributed
Denial-of-Service) or scanning. Gathered data is however very
partial and labeling such traffic to precise activities thanks to
external databases is far from being satisfactory (8.4% of IP
addresses in our case). In addition, as compromised hosts are
used for multiple malicious activities, they cannot be classified in
a unique category. We propose in this paper a new multi-label
classification method by representing traffic generated by a host
as a graph and leveraging machine learning algorithms (Node
embedding and Graph Convolutional Networks). From partial
information about IP addresses, our method can label addresses
with a precision of 0.80 and recall of 0.81.

I. INTRODUCTION

Darknets or network telescopes have been widely used to
observe cyber-threats at the Internet scale like botnet [1] and
scans [2]. A darknet silently collects all incoming traffic,
without creating outgoing traffic. Hence neither replies nor
real connections to services can be monitored. This traffic does
not have an inherent signification and external sources such as
AbuseIPDB or NERD would be required to give a signification
to the data. The characterization of this partial traffic and the
involved hosts is thus a challenging task. Moreover, a host
can be involved in multiple types of malicious activities like
DDoS, and regular scans. Hence, this is a multi-label clas-
sification problem, unlike binary or multi-class classification
tasks which have been widely considered.

Our goal is to classify each individual host (IP address)
observed in a darknet. Our approach relies on graph repre-
sentations of hosts behaviors. Although graph-based models
for network traffic have been already proposed [3], [4], they
assume the ability to capture active interactions. In contrast,
due to the absence of active connections in a darknet, we
design a model able to embed the whole behavior of a host
based on its probing activity (connection attempts).

To predict the labels of the graphs, several types of neural
networks are used: an auto-encoder creates TCP/UDP port
embeddings integrated into the graph nodes, and Graph Con-
volutional Networks (GCNs [5]) to infer latent representations
of the graphs. The method has been applied on one month of

traffic captured by a /20 darknet, for which less than 10% of
the IP addresses were labeled thanks to an external database.

The rest of this paper is organized as follows: Section II
presents related works, Section III formally defines the prob-
lem. Section IV describes the proposed method. Evaluation is
detailed in Section V. Section VI concludes the paper.

II. RELATED WORKS

Darknet traffic can be analyzed to serve multiple purposes
as presented in [6]. In [2], the objective is to characterize
scanning campaigns. Tracking botnets with the help of a
darknet has been also widely investigated [7], [8]. Soro et al.
[9] classify Autonomous Systems (ASs) using a unsupervised
machine learning method. TCP traffic is assembled into a
bipartite graph, from which ASs are grouped thanks to a
community detection algorithm. This method however does
not consider UDP and ICMP traffic. Unlike these works, our
goal is to label each individual host observed in a darknet
assuming several types of malicious activities.

Shaikh et al. [10] leverage supervised machine learning
algorithms to classify traffic as one of [Scanning, Backscatter,
Misconfiguration or Other] for IoT devices observed through
a darknet. Our work is similar by nature but differs from the
set of activities to be identified (7 in total) and by representing
the traffic of a host as a graph. In [11], the authors analyze
the sequence of ports targeted by the different IP addresses to
group them when they share common patterns.

Our graph-based model is close to other works representing
network traffic as graphs before using graph-based machine
learning techniques[12], [13]. Sun et al. [12] represent en-
crypted flows as nodes in a graph while GCNs are then used
to classify flows. Pan et al. [13] also rely on GCNs but for
anomaly detection (binary problem). In this paper, the network
traffic generated by each host is represented as a single graph
to embed its whole behavior and a GCN is used to associate
it to multiple labels representing its activities.

III. PROBLEM DEFINITION

A. Background on darknets

A darknet [14], also known as a network telescope or a
sinkhole, allows us to passively monitor internet-wide ac-



tivities. It consists of a subnet of unused but reachable IP
addresses. Because such IP addresses have never been in
use, they represent hosts that have never communicated with
any other host, and are therefore not expected to receive any
legitimate traffic. Such unused addresses receive a significant
amount of unsolicited traffic from internet-wide scans [15],
side effect of DDoS attacks [16] or misconfigurations [17].

Because of its passive nature, the observation of attacker
activities is limited. Therefore, we can only observe the
initiating packets, mostly with no payload.

B. Problem statement and Objective

Identifying the type of activities performed by each ob-
served host in a darknet could help in tracking ongoing
Internet-wide scale attacks and thus better defend against
them [18]. Inferring such information without prior knowledge
is known to be difficult [19]. Often, external services or
databases like AbuseIPDB1 or NERD2 are leveraged. They
are community-based tools whose aim is to collect reports
from users having experienced attacks in their own networks.
However, the coverage of this source of data is very limited. In
our case, as shown in Section V-B, only 8.4% of the monitored
IP addresses in the darknet can be labeled using AbuseIPDB.

To tackle this issue, our method automatically labels IP
addresses observed by a darknet according to their probing
activities. We refer here to a multi-labeling rather than a
multi-class classification problem as a host can be involved
in multiple activities. On one hand, the main challenge is
the partial nature of data because only the first packets of
connection attempts are observed. On the other hand, specific
probing or scanning strategies can convey information about
reconnaissance phase of an attack [20], and so possibly the
type of activities the host is involved in.

Formally, assuming a set of hosts H = {h1, h2, . . . , hn},
each represented by its IP address, we define the flow of
packets originating from hi as f (i) = ⟨p(i)0 , p

(i)
1 , ..., p

(i)
m ⟩. p(i)k

represents the kth packet received from the host hi and is
defined as a tuple p

(i)
k = ⟨timestamp, protocol, source port,

destination port, TCP flags, ICMP type, ICMP code⟩.
Obviously, some of these packet features are exclusive, like
TCP flags and ICMP code. Each hi is labeled with a set of
labels Li ∈ L = {l1, l2, . . . , lk}, extracted form a knowledge
base combining reports from different sources. Our goal is to
define a function L that maps Hdef ⊂ H to L and that predicts
the set of labels Lu to which a source host hu ∈ H , hu /∈ Hdef

belongs. L is partially defined for a subset of hosts Hdef .

IV. METHOD

A. Approach Overview

We propose a supervised classification technique taking as
inputs the traffic from the observed hosts. The main difficulty
resides in obtaining a meaningful representation from the
latter. In our case, we derive a graph representing how a host

1https://www.abuseipdb.com/
2https://nerd.cesnet.cz/

acts towards the different network services targeted. Figure 1
depicts an overview of our approach with 4 main steps:

1) Preprocessing to exclude noise or irrelevant data.
2) Ports embeddings to provide relevant features for repre-

senting TCP and UDP destination port numbers in Host
graphs.

3) Host graphs extraction to represent each source IP
address as a behavioral graph.

4) Host classification leveraging GCNs to infer the la-
bels from the extracted graphs. As it is a supervised
technique, AbuseIPDP is used as an external source of
information to label training data.

B. Network Flows Preprocessing

To discard meaningless data, three different filters are ap-
plied. The first one removes isolated packets, i.e. packets sent
by hosts that have sent at most 1 packet in 7 rolling days.
They are considered to have not enough relationship with other
packets to infer a specific behavior.

The second filter discards the vertical scans. Such scans are
easily detected (when a host probes many port numbers), and
their objectives are well defined. They are thus excluded from
this study. The boundary between vertical and non-vertical
scans is empirically defined in Section V-A

The third filter is called the periodic pattern filter. Its
objective is to discard the hosts scanning ports in a fixed
predefined manner, e.g. {80, 443, 80, 443,...} or {2, 4, 6,...}.
Indeed, they represent a deterministic behavior that does not
require complex analysis, again out of scope of our objective.

C. Port embeddings

Although TCP/UDP ports are commonly representative of
network services, their numeric values do not encode a mean-
ing, so using their raw format as inputs to a learning task is
inefficient. To tackle this issue, we infer latent representations
of ports by encoding their semantics based on how often a
pair of ports appear in a probing sequence. We rely on the
graph representation proposed in [20], but with both TCP and
UDP ports to capture inter-port relationship when they are
scanned by attackers. In details, a directed weighted graph
Gp = (Np, Ep, ωp) is created with:

Np The set of nodes of the graph. Each node represents a
unique port, either TCP or UDP.

Ep The set of edges of the graph. An edge ei,j from port
pi to pj exists if port pj has been probed right after pi
from the same source IP address.

ωp The weight function for edges defined as ωp(ei,j); the
weights calculated following the method in [20].

The weights are derived from the distribution θ of all θi,j ,
the number of times port pj follows pi in all network flows,
and its quartiles Q1 and Q3:

ω′
i,j =

θi,j −Q1(θ)

Q3(θ)−Q1(θ)



Fig. 1: Overview

Because values below Q1 become negative, final weights are
shifted using the minimum and maximum values:

ωi,j = (maxi,j(ω
′
i,j)−mini,j(ω

′
i,j))− (ω′

i,j −mini,j(ω
′
i,j))

Unlike the authors of [20] considering the shortest path
distances between pairs of nodes to infer a similarity, we create
an initial embedding for each port consisting of the distances
between the port and a set of randomly selected ports. We
then train an auto-encoder from this initial embedding. Each
layer consists of a fully connected layer with batch normal-
ization and a Rectified Linear Unit (ReLU) activation. The
encoder produces a latent representation for the network ports
through a linear hidden layer. Further details are provided in
Section V-C.

D. Host graphs extraction

To create a representation of the behavior of host i,
packets p

(i)
k of the flow f (i) are grouped according to

the tuple ⟨Protocol, Destination Port, TCP Flags,
ICMP Type/Code⟩ to form a unique node in the graph
Gh = (Nh, Eh, ωh):
Nh The set of nodes. Each node represents a group of

packets as defined above with the following features:
• Embedding of destination IP addresses (3 values):

number of addresses targeted in the darknet; A value
equal to 1, -1 or 0 if the addresses are reached in
increasing, decreasing or arbitrary order; A binary
value equal to 1 if all consecutive addresses between
the minimal and maximal addresses are reached,

• Source ports embedding: number of ports, one-hot
encoding of the class of the ports: well-known,
registered or dynamic according to [21].

• Embedding of the destination port (see Sec-
tion IV-C),

• One hot encoding of the protocol
(TCP/UDP/ICMP),

• TCP Flags on 8 bits, -1 for UDP and ICMP packets,
• ICMP Type and Code, -1 for TCP and UDP packets

Eh The set of edges. An edge ei,j from node ni to nj exists
if a packet corresponding to nj is followed by a packet
corresponding to ni or vice-versa.

Fig. 2: Host classification model

ωh The weight function for edges defined as ωh(ei,j) the
number of occurrences of a packet from nj followed by
a packet from ni or vice-versa.

E. Host multi-labeling

Hosts are classified using a two-block model but trained as
a whole during the learning process. As shown in Figure 2,
the first block consists of a GCN layer [5] transforming the
graph structure and node features into node embeddings. The
layer-wise propagation rule of a GCN layer is as follow:

H(l+1) = f(H(l), A) = σ(D̂− 1
2 ÂD̂− 1

2H(l)W (l)),

where H(l) is the representation of nodes features on the
lth layer, H(0) being the initial features as defined in Sec-
tion IV-D, Â = A + I , where I is the identity matrix and A
the adjacency matrix of the graph being classified, and D̂ the
diagonal node degree matrix of Â. Following the convolutional
layers, a mean pooling layer is added to aggregate the inferred
node embeddings into an entire graph embedding.

The second block is a classifier composed of fully con-
nected Perceptron layers with batch normalization and ReLU
activation. The output layer consists of a single fully connected
Perceptron layer with a sigmoid activation function. From the
embedding of a graph (from the first block), the outputs are
the labels that correspond to the host behavior. Each label
is associated to an output node of the model. During the
inference stage, if the value in an output node is higher than
a threshold τ (0.5 by default), the corresponding label is
predicted as an output.



Fig. 3: Weekly number of ports reached
per address (cumulative)

Fig. 4: Label set size per IP address
distribution

TABLE I: Labels distribution (Top 7
categories)

Category ID % of addr.
Port Scan 14 87.34%
Hacking 15 54.79%

Brute-Force 18 26.84%
Web App Attack 21 11.65%

SSH 22 11.00%
Exploited Host 20 3.08%
Bad Web Bot 19 2.31%

V. RESULTS AND EVALUATION

A. Darknet Dataset

Our dataset consists of packets collected by a /20 network
telescope over March 2021 from 2 millions unique source
IP addresses. The number of packets per IP addresses is
extremely unbalanced, with quartiles of 1 (Q1) and 9 (Q3)
packets but a maximum of 27 millions and a mean of 340.

Roughly 20 millions TCP packets are received each day, 1.5
million for UDP and 100,000 for ICMP. The weekly number
of destination ports reached per source IP address is shown in
Figure 3. 99% of the source hosts reach less than 20 TCP
ports per week and 99.9% reach less than 15 UDP ports.
These values are used as the limit between vertical and non-
vertical scans (Section IV-B). After preprocessing, 1.2 million
IP addresses are kept with on average 163 packets per IP
address and a total number of 59,385 unique TCP ports and
24,091 unique UDP ports.

B. Host Labeling

As stated in Section III-B, L is partially defined thanks to
AbuseIPDB and represents the ground truth used in our evalua-
tion. This database covers 24 distinct categories including Port
Scan, DDoS and SSH attacks. The reports of March 2021 cover
a total of 289,787 IP addresses of the darknet. Among these
addresses, 103,723 (8.4% of all addresses from the darknet)
are considered labeled because they have at least two reports in
one of the 7 most represented categories. Description of each
category can be found at AbuseIPDB3. All other categories are
excluded since they are present in less than 2% of the labeled
IP addresses. Table I details the overall proportion of each
individual label.

The distribution of the number of labels per IP address
(labelset size) is depicted in Figure 4. Around 50% of IP
addresses have a single label.

C. Hyperparameters

Hyperparameters (HP) for the auto-encoder are the number
of ports chosen as references, the size of the latent represen-
tation and the number of hidden layers in each halves of the

3https://www.abuseipdb.com/categories, accessed on 14 Sep 2022

TABLE II: HP tuning (bold values are selected)

Auto-encoder Classifier
# of ref. Emb. size # layers Layer size # GCN # FC

512 8/16/32 0/1/2
64/128/256 1/2/3 1/2/31024 8/16/32 0/1/2

2048 8/16/32 0/1/2

auto-encoder. For the classifier, the parameters are the size
of the first layer, and the number of layers in each part of
the model (GCN and Fully Connected). Layer sizes decreases
exponentially from the initial layer size to the final size, either
the size of the latent representation or the number of categories
to predict. They have been tuned with a grid-search and results
are summarized Table II.

Empirically, auto-encoder and classifier are trained with
Adam optimizer, learning rate of 0.001 (respectively 0.005),
a 256 (32) batch size and over 50 (20) epochs, stopped when
no improvement are made on the training loss after 5 (3)
consecutive epochs.

The models are trained on a machine with a 40-core Intel
Xeon CPU and 128 GB of RAM. The whole preprocessing task
needs roughly one hour to be completed, as for the creation of
port embeddings and the extraction of host graphs. Training
the classification model needs 30 to 40 minutes depending on
the hyperparameters being tested.

D. Overall per-label performance

In the first experiment, we assess the ability of our model
to predict each individual category. In multi-label problems,
prediction metrics (precision, recall, F1 score) are computed

TABLE III: Per-label prediction accuracy

Category Pre Rec F1 Support
Port Scan 0.90 0.98 0.94 87.1%
Hacking 0.67 0.73 0.70 54.6%

Brute Force 0.68 0.50 0.57 26.7%
Web App Attack 0.78 0.47 0.51 11.4%

SSH 0.56 0.43 0.55 10.4%
Exploited Host 0.40 0.54 0.46 3.0%
Bad Web Bot 0.25 0.58 0.35 2.2%



for each sample by comparing true and predicted labels
(categories) and then averaged over all the samples. Such
metrics are qualified as sample- or example- based [22]. The
dataset is divided into 5 random parts, one for testing and
the others for cross-validation. Training data is balanced by
oversampling with ML-ROS [23] until a 25% increase in size.

The sample precision on the test data is 0.80, with a recall
of 0.81 and a F1-score of 0.76, assuming a threshold τ = 0.5.
However, the accuracy highly varies depending on the category
as summarized in Table III. Per label F1-scores vary from
0.94 to 0.35 and are mostly correlated with the proportion
of samples of the given label. For instance, the most present
category Port Scan is the most predictable one, while Bad Web
Bot and Exploited Host have rather mixed results.

E. Impact of the threshold

Because our goal is to improve the characterization of the
hosts in a darknet, labeling all IP addresses is not necessary
but it must be precise for those which are labeled, even if it
decreases the recall.

The trade-off between precision and recall is adjusted thanks
to the threshold τ between a positive or negative prediction.
On one hand, when τ is higher, only labels with higher
output are considered and so the precision is improved as
shown in Figure 5(a). Category 14 (Port Scan) depicts a
very high precision throughout the whole range. This can
be explained because it is present in the majority of the test
samples (87.1%). Category 19 Bad Web Bot however, depicts
a significantly lower precision. It is also the least represented
category.

On the other hand, the recall value consistently decreases
with the increase of τ (Figure 5(b)). Category Port Scan is
again the category with the highest score while the categories
SSH and Bad Web Bot have the lowest score.

Based on the F1-score (Figure 5(c)), it can be noted that
while most of the categories reach their maximum value with
τ ∼ 0.4, the least represented one, Bad Web Bot, reach its
peak with τ ∼ 0.6.

F. Per-host performance

In order to evaluate the ability of our model to predict the
labels of a host, we consider the following metrics from [24]:

• Coverage error: the number of top predictions in the
output layer needed to predict all the true labels. In
average, our method needs to predict 2.24 labels while the
average number of true labels per IP address is 1.96. This
small difference indicates few wrong predictions before
finding all labels.

• Label ranking loss: the number of times the output value
of a wrong prediction is higher than a right one. The
value is rather low (0.039), a few wrong labels are usually
assigned along with the right ones to a host.

• Subset accuracy: the strictest metric measures whether or
not all the exact labels are predicted. Due to at least one
wrong prediction, it is low (0.405).

VI. CONCLUSION

This paper introduced a graph model to represent the
behavior of the hosts in a darknet. The sparse nature of traffic
flows forces to analyze the behavior of a host as a whole
rather than a per flow or per connection. Hence, the behavior
is a composed of multiple activities or categories leading so
to a multi-label classification problem. We leveraged an auto-
encoder to derive machine learning-usable representations of
TCP/UDP port numbers, a GCN to embed node and structural
graph information for multi-labeling purposes. We analyzed
data collected over one month on a /20 darknet, with a
total of 1.2 million hosts. The results showed an acceptable
performance even if all exact labels of an IP address cannot
be predicted.

While the port embedding is currently derived from the
measured distance from each port to randomly chosen ports,
future work will improve this selection.
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