2305.13287v1 [cs.CR] 22 May 2023

arxXiv

As seen in 8th IEEE/IFIP International Workshop On Analytics For Network And Service Management, May
2023, Miami, Florida, USA.

Data-Centric Machine Learning Approach for
Early Ransomware Detection and Attribution

A. Vehabovic!, H. Zanddizari?, N. Ghani!, F. Shaikh!, E. Bou-Harb?, M. Safaei Pour?, J. Crichigno4
YUniv. of South Florida, >Univ. of Texas San Antonio, 3San Diego State Univ., *Univ. of South Carolina

Abstract—Researchers have proposed a wide range of
ransomware detection and analysis schemes. However,
most of these efforts have focused on older families
targeting Windows 7/8 systems. Hence there is a critical
need to develop efficient solutions to tackle the latest
threats, many of which may have relatively fewer samples
to analyze. This paper presents a machine learning (ML)
framework for early ransomware detection and attribu-
tion. The solution pursues a data-centric approach which
uses a minimalist ransomware dataset and implements
static analysis using portable executable (PE) files. Results
for several ML classifiers confirm strong performance in
terms of accuracy and zero-day threat detection.

Index Terms—Cybersecurity, malware analysis, ran-
somware detection and attribution

I. INTRODUCTION

Ransomware operates by encrypting files on a host
computer and demanding some form of payment to
release the keys. This malware has become the most
lucrative revenue source for cybercriminals, and many
ransomware “families” have impacted a wide range of
users. Moreover, numerous cyber-criminal affiliates are
also offering ransomware-as-a-service (RaaS), further
reducing the barrier to such extortion [/1].

Ransomware follows a multi-stage “kill-chain” com-
prising of reconnaissance, distribution, installation,
communication, encryption, and extortion [2]], [3[]. To
date, numerous designs have been evolved with increas-
ing levels of secrecy, speed, and complexity. For exam-
ple, various methods have been used to breach systems
(e.g., remote access, drive-by, and privilege escalation)
and encrypt data in collaboration with command and
control (C&C) servers. Data exfiltration has also been
used to extort users (double ransomware) [2]]. As this
threat continues to grow, surveys indicate that almost
half of large corporations have experienced such attacks
[4]. Windows ransomware is of particular concern as
this operating system (OS) is still the most prevalent.

In light of the above, researchers have proposed a
range of ransomware analysis solutions. Many of these
schemes extract information from network traces or
host files/logs to train advanced machine learning (ML)
classifiers. However, most efforts have focused on a
specific ransomware family or older families targeting

dated Windows 7/8 systems. As such, these methods
may not be applicable to the latest threats facing
Windows 10/11 users. Hence there is a pressing need
to detect new ransomware designs and classify them
for improved mitigation, i.e., attribution. Preferably,
ransomware should be tackled early in the kill-chain
to minimize damage [1]. Since new ransomware re-
leases will likely have fewer available samples, solutions
must also operate effectively with smaller “minimalist”
datasets. This requirement is very much in line with
current trends in artificial intelligence (Al) to develop
more focused “data-centric” solutions [5].

Accordingly, this paper presents a novel ML so-
lution for ransomware detection and attribution us-
ing static analysis. First, a unique malware repository
is built by collecting samples of some of the lat-
est ransomware families, i.e., Babuk/Babyk, BlackCat,
Chaos, DJVu/STOP, Hive, LockBit, Netwalker, Sodi-
nokibi/REvil, and WannaCry (after 2017). Next, feature
extraction is done using Windows portable executable
(PE) format file information. Finally, several supervised
ML classifiers are trained and tested on these extracted
features, including support vector machines (SVM),
random forest (RF), extreme gradient boost (XGBoost),
and feed-forward neural networks (FNN) [6]]. Overall,
this solution has very amenable run-times and can be
integrated into network/host-based defenses to target
ransomware early in the kill-chain (prevention).

This paper is organized as follows. Section [[I| reviews
some key studies on ransomware analysis. Next, Section
details the proposed ML-based framework, including
dataset collection and feature extraction. Performance
results are then presented in Section followed by
future work directions in Section

II. LITERATURE REVIEW

A range of ransomware analysis schemes have been
proposed, and survey articles have detailed various
(overlapping) taxonomies to classify these methods,
e.g., static or dynamic analysis, network- or host-based,
etc [1f]- [3]. These efforts are further reviewed here.

Static analysis examines executable files to detect
artifacts of maliciousness, e.g., via author attribution,

code/segment identification (de-anonymization), etc [[1]].
Some common methods used here include binary code
analysis (BCA), source code analysis via reverse en-
gineering, and C&C server domain prediction [2]]. For
example, [7] specifies a multi-level framework to de-
tect ransomware from raw binaries, assembly code,
and libraries. ML classifiers are then trained with the
extracted data, yielding detection rates around 90%.
Meanwhile, [8]] transforms code sequences into N-grams
and extracts frequency-based features for classification.
Results show detection rates around 91% for several
ML classifiers (decision tree, RF, etc). However, code-
based analysis is very labor-intensive [9] and represents
a more latent “post-infection” forensics approach.
Recent efforts have also used other static features to
analyze ransomware. For example, [10] leverages image
processing techniques to convert ransomware binary
files into grayscale images and then performs texture
analysis for feature extraction. Results for several ML
classifiers show high accuracy (97%) for a small dataset
with a mix of old and new ransomwares (379 samples).
However, this scheme imposes added computational
burdens and does not consider benign applications.
Meanwhile, [11] details another static analysis scheme
which extracts entropy and image-based features to train
a specialized Siamese NN classifier. Tests with a small
dataset (about 1,000 samples and 10 families) show
accuracy values in the mid-90% range but notably lower
precision and recall rates (upper 70% range). Also, most
of the ransomware families used here are older (mid-
2010s) and benign applications are not considered.
Studies have also used static PE header file data for
broader malware detection (not just ransomware). How-
ever, these efforts focus on detection and not attribution.
For example, [[12] collects many samples (over 100,000)
from a repository called VX Heaven (now inactive)
and trains ML classifiers using 7-10 extracted PE file
features. Results show detection rates in the upper 90%
range. Also, [13]] extracts PE features from about 5,500
malware samples and 1,200 benign applications (early
2010s). Detection is done using a set of heuristics,
achieving 95% accuracy. Finally, [14] extracts 9 PE
file features (on sections, data directories, and entropy)
from a dataset with 1,200 malicious and benign samples
each. Results for several classifiers show 95% detection
rates. However, these studies present no details on their
malware datasets, most of which are over a decade old.
By contrast, dynamic analysis scans run-time ac-
tions and event sequences for ransomware activity.
Specifically, dynamic network-based schemes examine
packet traces for C&C communications, domain name
service (DNS) queries, network storage access, etc. For
example, [[15] presents a detection system for Locky
ransomware which uses traffic features to train classi-

fiers and yields over 95% detection rates. Meanwhile,
[16] analyzes server message block (SMB) protocol
patterns to detect older ransomware (2015-2017). The
NetConverse scheme [17] also uses ML methods to
analyze host traffic for earlier threats and achieves high
detection rates (over 95%). Finally, [18]] uses deep learn-
ing to analyze network activity and classify abnormal
operation in Windows 7. Results show high detection
rates for several families (over 97%).

Meanwhile, dynamic host-based schemes monitor lo-
cal system activity to detect ransomware, €.g., memory
and file operations, application programmer interface
(API) function calls, dynamic link library (DLL) calls,
etc. For example, [19] uses a sandbox to track file
encryption/deletion, persistent messages, etc. Results
show 96% detection rates for older ransomware types
(mid-2010s). Also, [20] presents a scheme to monitor
and store encryption keys for ransomware detection and
file recovery. Results show successful mitigation of 12
out of 20 families. Similarly, [21] scans input/output
requests for ransomware activity and flags affected
files. Studies have also proposed ransomware ‘“paranoia”
schemes that try to detect environments and avoid
fingerprinting/detection, e.g., [22] tracks API calls.

Although the above works present some notable con-
tributions, key concerns still remain. Foremost, studies
have largely focused on older ransomware targeting
Windows 7/8 systems (mid-2010s). Given the expanding
nature of this threat, it is imperative to study newer
families targeting Windows 10/11. However, there are
few datasets here, and new malwares may have smaller
sample sizes to analyze (a challenge for ML schemes).
Hence effective “data-centric” [S]] schemes are required
for minimalist datasets. Finally, ransomware detection
and attribution schemes must have amenable run-times
and preferably target ransomware earlier the distri-
bution/delivery stages to minimize damage [2]. It is
here that static analysis offers an expedient approach
for tackling malicious payloads prior to infection. By
contrast, dynamic analysis requires more indepth exam-
ination of network or host activities over longer intervals
in virtual environments. As a result, a static analysis
solution is presented using PE format file analysis.

III. DATA-CENTRIC STATIC ANALYSIS USING ML

The static analysis framework for ransomware detec-
tion and attribution (classification) is shown in Fig. [I]
and comprises of several stages. The first stage (Empir-
ical Data Collection) builds an up-to-date repository of
some of the latest Windows 10/11 ransomware threats
(since 2017). Regular benign Windows-based applica-
tions are also added here to improve classifier perfor-
mance. The second stage (Feature Selection/Extraction)
processes raw executables to extract key features. An

Feature Selection/Extraction

ML Training/Testing

NumberOfSections
SizeOfCode
SizeOfInitializedData

Dataset 1

Support Vector Machine (SVM)

A A A
A A

N

A

Labelled datasets

sizeOfOptionalHeader

® VirusShare,) 5 features .
VirusTotal, etc * Babuk (Babyk) S'ZEOfHeade_rS_ (t?{rll,r!g,'f?ﬂ) Random Forest (RF)
« 9 ransomware e BlackCat DlICharacteristics] |
families (2017-) * Chaos) o Dataset 2 a '
° 120-140 samples = DJVu (Stop) © SRl 7 features
each (1,240 total) | | = Hive = MajorOperatingSystemVersion % .
* LockBit r

Benign « Netwalker - SizeOfimage Dataset 3 Extr. Grad. Boosting (XGBoost)
. . N 10 features
* Sodinokibi/REvil « TotalDLLCalls (computed) ./Q_.. — ees
* WannaCry
= MajorLinkerVersion
 MinorLinkerVersion Dataset 4
e = MajorlmageVersion 15 features Feedforward NN (FNN)
’ " « MajorSubsystemVersion &
. Wlm.iowzs 10, 11 . System_utllltv « NumberOfRvaandsizes @ OO
applications * Entertainment

.

Multiple types = User productivity

* 2,000 samples

Windows PE Format File

Fig. 1. Overview of static analysis ML framework for ransomware detection and attribution

efficient static analysis approach is proposed here using
Windows PE format files. Finally, the last stage (ML
Training/Testing) uses the feature datasets to train ML
classifiers to detect and attribute ransomware. On a high
level, this setup follows a well-defined ML approach,
similar to that used in other studies. However, the
novel contributions here include the collection of new
ransomware datasets and extraction of lightweight static
feature sets. Further details are now presented.

TABLE I
EMPIRICAL DATASET

[Family | Samples | Avg. Size | Avg. PE File |
Babuk (Babyk) 140 0.19 MB 32.68 KB
BlackCat 120 3.91 MB 1,147 KB
Chaos 140 0.49 MB 35.2 KB
DJVu (STOP) 140 0.71 MB 66.2 KB
Hive 140 3.51 MB 403.9 KB
LockBit 140 1.30 MB 171.5 KB
Netwalker 140 0.26 MB 35.72 KB
Sodinokibi 140 0.30 MB 50.89 KB
WannaCry 140 7.62 MB 21.83 KB

[Benign [2,000 | 2686 MB | 15538 KB_|

A. Empirical Data Collection

As per Section [[I} existing studies on PE file analysis
provide little/no details on their datasets, e.g., type of
malwares, executable file sizes, collection time frames,
percentage of ransomware, etc. Many of these malwares
are old and related repositories are inactive [12]. Hence
a new repository is curated for the latest ransomware
families. Now given the rapidly changing nature of the
ransomware threat, it may be difficult to get sufficient
samples of each. Hence realistic “data-centric” ML
frameworks must achieve good detection and attribution
with minimalist datasets (perhaps only hundreds of

samples). However, limited dataset size/diversity can
also have a negative impact on classifier performance.

Now many active repositories host malware executa-
bles, e.g., MalwareBazar, Triage, VirusShare,
and VirusTotal, etc. These sites provide varying
degrees of access and usability, e.g., VirusTotal and
VirusShare require registration to access uploads.
Detailed cross-checking and analysis also shows no-
table duplication across portals, e.g., many Sodinokibi
samples on MalwareBazar match those on Triage.
There are also discrepancies between the number of
samples for each family, e.g., DJVu is abundant whereas
Babuk/Babyk and BlackCat are more scarce. Finally,
some repositories (VirusShare and VirusTotal)
do not organize or label their data, further complicating
collection. Hence unlabeled data dumps have to be
tediously analyzed using hashing and cross-checked
with labelled samples. Hence there is potential for a
lack of diversity, even scarcity, of new ransomware.

In light of the above, a smaller “minimalist” data
repository is curated with 9 active ransomware families,
i.e., Babuk/Babyk, BlackCat, Chaos, DJVu/STOP, Hive,
LockBit, Netwalker, Sodinokibi/REvil, and WannaCry
(Table). These families are amongst the most prevalent
ransomware threats in 2022, as per the IBM X-Force
Threat Intelligence Index, i.e., LockBit (17%) followed
by WannaCry (11%) and BlackCat (9%). A total of 140
unique executables are collected for each family, except
for BlackCat which only yielded 120 samples due to
scarcity, i.e., total of 1,240 malicious samples. Many
Windows 10/11 applications are also added to construct
a benign class (2,000 samples). These programs are
collected from a range of websites and include system
utility, entertainment, and productivity tools (Fig. [I)).
Overall, having a large set of non-malicious training
data is very beneficial since regular applications down-

loads will exceed (unintended) ransomware downloads,
This addition contrasts with work in [10], [11].

B. Feature Selection/Extraction

ML classifier performance is heavily dependent upon
input training data. Hence feature extraction (engineer-
ing) plays a vital role in transforming raw executables
to generate meaningful information for classifiers [6].
As per Section [lI} static analysis is more expedient for
tracking ransomware early in its kill-chain. Hence this
strategy is applied to Windows PE format files which
contain data structures to support program execution in
32-bit and 64-bit Windows OS environments. Namely,
these files use the common object file format (COFF)
and contain information for the OS loader to setup/run
wrapped executable code (including memory mapping
and permissions). For example, a PE format file has
several initial lead-in headers along with multiple sec-
tions. Here each section specifies file content (i.e., code
or data) and also contains its own section header.

As per Section I} studies on PE format files have con-
sidered a range of malwares for Windows 7/8 [[12]- [|14]
(mostly unspecified and not necessarily ransomware).
Hence there is a further need to extend such analysis
to Windows 10/11 ransomware threats. Now PE files
contain a wealth of information, and programs can have
unique non-overlapping parameters (depending upon
functionality). Hence when extracting PE format data, it
is important to select a subset of parameters which exist
across all sample files and also exhibit good variability.

In light of the above, PE files are generated for all
exectuables, with the resultant sizes shown in Table
A total of 4 datasets are built by extracting feature
vectors with 5, 7, 10, and 15 parameters, labeled as
Datasets 1-4, respectively (Fig. [I). Each successive
vector expands upon its predecessor by adding new
parameters. Now the exact parameters are chosen using
careful experimentation with the Image_File_Header,
Image_Optional_Header, and Image_Section_Header
sections. Some key features include NumberOfSections,
SizeOfCode, SizeOfHeaders, etc. Note that PE files
also contain information on dynamic-link library (DLL)
calls which are indicative of functionality. For example,
ransomware typically calls encryption, socket communi-
cations, and registry-modification functions. Hence the
total number of DLL calls is also added to the 10 and 15
feature vectors (TotalDLLCalls, Fig. . Note that this
is a computed feature and not an extracted parameter.

IV. PERFORMANCE EVALUATION

The static analysis framework is now evaluated using
the data repository from Section Namely, feature
vectors extracted from the PE files are labelled to
generate input datasets. These datasets are then used

to train/test supervised ML classifiers, i.e., SVM, REF,
XGBoost, and FNN [6] (Fig. E]) All evaluation is done
using the Keras and TensorFlow toolkits, as well
as Pandas and Sklearn. As per Section a
total of 9 malicious ransomware families are evaluated
along with a set of benign applications, i.e., 10 classes.
As noted earlier, there are a total of 1,240 malicious
samples (140 samples for each family except BlackCat
which has 120 samples). The samples for each class
are further partitioned to generate separate training and
testing pools. Namely, 20 random samples of each class
are selected for testing and the remainder are used for
training, i.e., 120 training samples for all classes except
BlackCat which only has 100 samples. Furthermore,
1,700 benign samples are selected for training and the
remaining 300 samples are used for testing. This par-
titioning reflects an approximate 85/15 training/testing
split. All results are averaged over 100 trial runs, with
each using a different randomized 85/15 partitioning of
the datasets. Detailed findings are now presented.

90

Accuracy (%)

80

——FNN

—O—RF ——XGBoost

70
5 7 10 15
Feature vector size

Fig. 2. Average multi-class accuracy (100 trials)

The average accuracy values (over all runs) are plot-
ted for different feature vector sizes in Fig. E], i.e., multi-
class attribution. Results show improved performance
for all schemes with increasing feature vector sizes.
In particular, the SVM and FNN classifiers give the
best improvement, with accuracy gains of 15-20%.
Conversely, the RF and XGBoost classifiers have much
lower gains as feature vector sizes increase from 5 to 15
parameters, i.e., 0.5-1.5% range. These two classifiers
also give the best accuracy (94-96% range). However,
the FNN scheme approaches these methods with 15
features, i.e., 91% accuracy. These findings are very
encouraging given the relatively small-sized training
datasets and feature vectors used. The results also match
those for other schemes using much heavier feature
extraction and ML algorithms, e.g., image and entropy-
based features, deep NN algorithms, etc [10], [[11].

Next, consider attribution errors in more detail. In-
deed, mis-classifying ransomware as benign is much
more harmful than mis-classifying it as the wrong type

of ransomware, i.e., since such errors can allow malware
to bypass network or host defenses and infect host
machines. Hence to quantify this behavior, a modified
ransomware detection rate (RDR) is defined as:
_ T (1)
TTS + F'I”S
where T,.s is the total number of ransomware samples
classified as (any class of) ransomware, and F, is the
total number of ransomware samples mis-classified as
benign, i.e., total number of ransomware test samples is
(Ts + Fs). This metric essentially captures the binary
detection capability of a multi-class classifier and is
similar to the recall formula, i.e., tracks false negatives.
A benign detection rate (BDR) is also defined as:
_ Tbn

Tbn + F bn
where Ty, is the total number of benign samples clas-
sified as benign, and Fj, is the total number of be-
nign samples mis-classified as ransomware. In general,
though, false negative attribution of benign executables
is less of a security concern.

RDR =

BDR @)

100

A’—/’4>
90

80

70
——FNN

o—RF ——XGBoost
60

Ransomware Detection Rate (%)

50
5 7 10 15
Feature vector size

Fig. 3. Average ransomware detection rate (100 trials)

100

©
0

0
B

Benign Detection Rate (%)
(o]
a

~ “O0-SVM —o-FNN
. oO-RF —~—XGBoost
92
5 7 10 15

Feature vector size
Fig. 4. Average benign detection rate (100 trials)

Accordingly, Fig. [3] plots the binary RDR results
averaged over 100 trails. Akin to the multi-class case,
the RF and XGBoost schemes give the highest ran-
somware detection rates, close to 95%. Again, larger

feature vector sizes also give smaller improvements with
these classifiers, i.e., 2% range. By contrast, the SVM
and FNN schemes give very poor results for small fea-
ture vectors, with ransomware mis-classification rates
around 50% (1-RDR). These classifiers are also very
sensitive to feature vector size. Nevertheless, the FNN
scheme still approaches the performance of the RF
and XGBoost schemes with larger feature vectors, i.e.,
92% RDR. The BDR results are also plotted in Fig.
E} As expected, these values are higher than the RDR
values since a larger amount of benign data is used
for training. Again, the RF and XGBoost schemes give
the lowest benign program mis-classification rates, close
to 99%. Although the other methods (SVM, RF) give
slightly lower BDR rates, they are still over 92% (less
than 1 error in 12). Note that these binary detection
rates closely match those from other malware detection
studies which make use of much larger datasets and
more elaborate feature extraction schemes (Section [I).

Meanwhile, Fig. [|shows an average confusion matrix
for the XGBoost classifier (classes 0-8 represent the 9
ransomware families and class 9 represents the benign
class). Here, the numbers in row 9 are larger as there
are more benign test samples. These results confirm
that most samples are classified correctly, i.e., diagonal
numbers dominate. Moreover, even when ransomware
samples are mis-classified, they are mostly flagged as
another ransomware (mirroring RDR results in Fig. [3).

Confusion Matrix (weighted)

Fig. 5. Confusion matrix (XGBoost, 15 features)

Tests are also done to gauge zero-day attack de-
tection. Namely, 8 out of the 9 ransomware families
are aggregated into a single malicious class and used
to train a binary classifier (versus benign class). The
remaining family is then tested as a zero-day threat,
i.e., to see if the binary classifier can flag it as ran-
somware. Hence all samples are either used for training
or testing. The associated detection rates are shown
in Table [II] for all possible zero-day attack scenarios.
These results show very good performances for several

classifiers. For example, the RF (XGBoost) scheme
gives approximately 80-99% detection rates for 8 (6)
out of the 9 ransomwares tested, i.e., at least 4 out of
5 zero-day attacks detected. However, the WannaCry
malware is very effective at evading all schemes and has
low detection rates in 14-20% range, i.e., only 1 in 7
detected. Hence additional PE file features (parameters)
or other static parameters may need to be incorporated.

TABLE II
ZERO-DAY ATTACKS (DETECTION ACCURACY)

[Zero-Day [SVYM | RF [XGB | FNN |
Babuk/Babyk 81.43% | 94.86% | 93.57% | 74.38%
BlackCat 36.67% | 78.17% | 35.83% | 65.70%
Chaos 93.57% | 87.00% | 87.14% | 83.95%
DJVu/STOP 82.86% | 98.64% | 90.71% | 79.40%
Hive 15.71% | 82.71% | 82.88% | 72.30%
LockBit 57.14% | 84.79% | 62.86% | 63.06%
NetWalker 95.00% | 97.36% | 97.14% | 98.21%
Sodinokibi/REvil | 95.00% | 91.00% | 90.05% | 89.86%
WannaCry 13.57% | 14.86% | 14.29% | 19.81%

Finally, run-times are measured by averaging PE
format file generation, feature extraction, and ML at-
tribution times. Tests are done on a Windows 11 server
with a 3.60 GHz Intel Core 19 processor and 64
Gb of random access memory (RAM). Only trained
ML models are timed to reflect operational settings,
and PE file generation is done using a Github pack-
age (https://github.com/erocarrera/pefile). Results show
that PE file generation times are directly correlated to
executable file sizes (Table[l). For example, benign files
average 1.46 sec, whereas ransomware files range from
50-300 ms (larger for LockBit, DJVu/STOP, and Hive).
Meanwhile, classification times vary between 2-8 ms for
the SVM, RF, and XGboost classifiers, but are higher
for the FNN scheme at 47 ms. Overall, many operators
are willing to accept these delays for scanning incoming
downloads/attachments in network/host-based defenses.

V. CONCLUSIONS

It is imperative to track the latest ransomware releases
and develop effective solutions for mitigating these
threats. This paper presents a static analysis scheme
for ransomware detection and attribution. First, a new
dataset is curated with the latest Windows 10/11 ran-
somware families. Windows portable executable (PE)
format files are then used to extract feature vectors and
train machine learning (ML) classifiers. Overall findings
show very good performance in terms of ransomware
detection, attribution, and zero-day threat detection.
These results are achieved using minimalist datasets
with about 100-120 training samples per class and
relatively compact feature vectors. The solution also
gives very amenable run-times for realistic settings. This
work presents a strong basis from which to expand into

future work. Specifically, more ransomware families can
be added to the repository and refined feature extraction
and ML methods can also be studied.

REFERENCES

[1] R. Moussaileb, N. Cuppens, J.-L. Lanet, and Bouder, “A survey
on windows-based ransomware taxonomy and detection mech-
anisms: Case closed?” ACM Computing Surveys, vol. 54, no. 6,
July 2022.

[2] A. Vehabovic, N. Ghani, E. Bou-Harb, J. Crichigno, and A. Yay-
imli, “Ransomware detection and classification strategies,” in
IEEE Black Sea Comm 2022, Sofia, Bulgaria, June 2022.

[3] E. Berrueta, D. Morato, E. Magaiia, and M. Izal, “A survey
on detection techniques for cryptographic ransomware,” IEEE
Access, vol. 7, pp. 144 925-144 944, October 2019.

[4] A. Kapoor, “Ransomware detection, avoidance, and mitigation
scheme: A review and future directions,” Sustainability, vol. 14,
no. 1, December 2021.

[5] A. Ng, “Ai minimalist,” IEEE Spectrum, vol. 59, no. 4, pp. 23—
25, April 2022.

[6] A. Geron, Hands-On Machine Learning with Scikit-Learn,
Keras, and TensorFlow, Second Edition. O’Reily Media, 2019.

[7]1 S. Poudyal, K. P. Subedi, and D. Dasgupta, “A framework
for analyzing ransomware using machine learning.” IEEE 2018
SSCI, Nov. 2018.

[8] H. Zhang, X. Xiao, F. Mercaldo, S. Ni, F. Martinelli, and
A. Sangaiah, “Classification of ransomware families with ma-
chine learning based onn-gram of opcodes.” Future Generation
Computer Systems, vol. 90, pp. 211-221, 2019.

[9] D. Mulders, “Network based ransomware detection on the
samba protocol,” MS Thesis, Department of Mathematics, TU
Eindhoven, 2017.

[10] B. Wang, H. Liu, X. Han, and D. Xuan, “Image-based ran-
somware classification with classifier combination,” in ACM
Advanced Information Science and System (ACM AISS) 2021,
Sanya, China, November 2021.

[11] J. Zhu, J. Jaccard, A. Singh, I. Welch, and H. A.-S. amd
S. Camtepe, “A few-shot meta-learning based siamese neural
network using entropy features for ransomware classification,”
Computers & Security, vol. 117, pp. 1-11, June 2022.

[12] D. Kim, S. Woo, D. Lee, and T. Chung, “Static detection of
malware and benign executable using machine learning,” in
Internet 2016, Barcelona, Spain, November 2016.

[13] Y. Liao, “Pe-header-based malware study and detection,” in
Semantic Scholar, 2021.

[14] T. Rezaei and A. Hamze, “An efficient approach for malware
detection using pe header specifications,” in 6th International
Conference on Web Research (ICWR), Tehran, Iran, April 2020.

[15] A. Almashhadani, M. Kaiiali, S. Sezer, and P. O’Kane, “A multi-
classifier network-based crypto ransomware detection system: A
case study of locky ransomware,” IEEE Access, vol. 7, no. 1,
pp. 47053-47067, 2019.

[16] D. Morato, E. Berrueta, E. Magafia, and M. Izal, “Ransomware
early detection by the analysis of file sharing traffic,” Journal of
Network and Computer App., vol. 124, no. 1, pp. 14-32, 2018.

[17] O. Alhawi, J. Baldwin, and A. Dehghantanha, “Leveraging
machine learning techniques for windows ransomware network
traffic detection,” Adv. in Info. Security, p. 93—106, July 2018.

[18] K. C. Roy and Q. Chen, “Deepran: Attention-based bilstm and
crf for ransomware early detection and classification. informa-
tion systems frontiers,” Information Systems Frontiers, vol. 0,
pp. 1-17, 2021.

[19] A. Kharaz, S. Arshad, C. Mulliner, W. Robertson, and E. Kirda,
“Unveil: A large-scale, automated approach to detecting ran-
somware,” in USENIX Security 2016, Austin, TX, August 2016.

[20] E. Kolodenker, W. Koch, G. Stringhini, and M. Egele, “Pay-
break: Defense against cryptographic ransomware,” in ACM Asia
CCS 2017, Abu Dhabi, UAE, April 2017.

[21]

[22]

A. Kharraz and E. Kirda, “Redemption: Real-time protection
against ransomware at end-hosts,” in RAID 2017, Atlanta, GA,
October 2017.

A. AlSabeh, H. Safa, E. Bou-Harb, and J. Crichigno, “Exploiting
ransomware paranoia for execution prevention,” in IEEE ICC
2020, Dublin, Ireland, June 2020.

	I Introduction
	II Literature Review
	III Data-Centric Static Analysis using ML
	III-A Empirical Data Collection
	III-B Feature Selection/Extraction

	IV Performance Evaluation
	V Conclusions
	References

