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Abstract—Since only a small number of traces generated
from distributed tracing helps in troubleshooting, its storage
requirement can be significantly reduced by biasing the selection
towards anomalous traces. To aid in this scenario, we propose
SampleHST, a novel approach to sample on-the-fly from a stream
of traces in an unsupervised manner. SampleHST adjusts the
storage quota of normal and anomalous traces depending on the
size of its budget. Initially, it utilizes a forest of Half Space Trees
(HSTs) for trace scoring. This is based on the distribution of the
mass scores across the trees, which characterizes the probability
of observing different traces. The mass distribution from HSTs
is subsequently used to cluster the traces online leveraging a
variant of the mean-shift algorithm. This trace-cluster association
eventually drives the sampling decision. We have compared the
performance of SampleHST with a recently suggested method
using data from a cloud data center and demonstrated that
SampleHST improves sampling performance up to by 9.5×.

Index Terms—Distributed Tracing, Microservices, Anomaly
Detection, Sampling.

I. INTRODUCTION

Distributed tracing is tailored primarily to monitoring and
profiling applications built with the microservice-based archi-
tecture [1]. In a microservice ecosystem, with the increase of
services, the volume of the trace data, used for observability
of application performance and reliability, increases signifi-
cantly [2]. In a typical production setup, each server, hosting
hundreds of microservices, generates several tens of gigabytes
of trace data every day. Considering all the servers, the total
daily generated data are in the order of several terabytes.
Nevertheless, most of the traces do not report on application
anomalies and thus there is little value in storing them all.
The fraction that can be retained is constrained by a storage
budget [3] and the problem we study is how to select the
most interesting traces to help monitoring and diagnostics of
microservices runtime behavior. This entails sampling a mix
of traces that characterizes the overall user behavior but at the
same time retaining a high relative ratio of anomalous traces.

To accommodate the storage budget, we need to deploy a
sampling strategy. It is a common industry practice to use
uniform sampling [3], which is also referred as head-based
sampling. Under this strategy, the sampling decision is taken
once the request for a service is received, leading to a lower
hit rate of anomalous traces. To address this issue, it is
increasingly preferred to use a tail-based sampling strategy
[4], which can improve the selection accuracy as it takes the

sampling decision after the response is served, i.e., when the
entire trace for the service call chain is available. This allows
to reason on the information contained in the trace itself upon
deciding whether to store it or not.

Ideally, a tail-based sampling strategy should be online and
without any batch processing. This means that we must decide
either to save or discard a trace on-the-fly rather than storing
it temporarily for batch processing. Recently, researchers have
proposed different tail-based sampling strategies based on
unsupervised learning [3], [5], [6]. However, existing research
faces multiple challenges such as difficulties in performing
clustering due to high dimensionality of data, requirements of
batch processing, low amplitude scores for anomalous traces,
and no explicit consideration of the budget size. To address all
these shortcomings, we propose a novel method, SampleHST.
On the one hand, SampleHST focuses on sampling only
anomalous traces when the storage budget is comparatively
lower than the fraction of expected anomalies. On the other
hand, when the budget is higher, SampleHST samples both the
normal and anomalous traces, with a bias towards anomalous
ones. Such a bias is fair because it increases the representation
of the anomalous traces, which are rare compared to normal
ones, among the sampled traces. In other words, the bias
allows representative sampling [3], [5].

SampleHST leverages a Bag-of-Words (BoW) model [7]
as a count-based representation for each trace. By taking this
representation as an input, we can generate a distribution of the
mass values obtained from a forest of a tree-based classifier,
namely Half Space Trees (HSTs) [8]. This distribution is then
used to perform an online clustering of the traces based on
an algorithm we have developed which is part of the mean-
shift clustering algorithm family [9]. Once the clustering is
complete, we decide to sample the trace based on its cluster
association, i.e., a trace is more likely to be sampled if it is
associated with a cluster with low mass values as such clusters
represent rarely observed traces.

We evaluate the performance of SampleHST, using data
provided by a commercial cloud service operator and com-
paring the results with a recently proposed approach for point
anomalies developed in [3]. For this production dataset, we
see that SampleHST yields 2.3× to 9.5× better sampling
performance in terms of precision, recall and F1-Score than
prior work. When we consider representative sampling in a
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high budget scenario, we see SampleHST is 1.6× fairer with
respect to the Jain fairness index [10]. In summary, the key
contributions are:
• A novel approach to sample distributed traces by forming

clusters using the mass distribution of the traces obtained
from Half Space Trees.

• An online clustering method, generalizing the mean
shift algorithm [11], that considers non-spherical cluster
shapes such as hyper-cubes and hyper-rectangles.

• Experiments using real-world data to compare the sam-
pling performance of SampleHST with a recent tail-based
sampling approach [3].

The rest of the paper is organized as follows. Section
II presents the related work and motivation for developing
SampleHST. Section III demonstrates how to model traces
and detect anomalies. Section IV discusses how to transform
anomaly detection processes to a sampling method. Section
V and VI present the SampleHST clustering and sampling
algorithms respectively. Section VII evaluates the sampling
performance. Section VIII concludes the paper. Proofs are
given in the Appendix.

II. BACKGROUND

A. Related Work

The first step of designing a sampler is to differentiate the
anomalous traces from the normal ones. There have been
many works on anomaly detection for microservices using
their generated traces. The authors in [12], [13] learn from
the patterns of call trees and request execution respectively to
detect anomalies. Some studies [14]–[16] also consider deep
learning based methods focusing on different aspects, e.g.,
response times and causal relationships. However, these works
do not consider our sampling scenario, i.e., they only focus
on anomaly detection but not on transforming the anomaly
detection result to a sampling decision.

To the best of our knowledge, there are only a few research
papers focusing on sampling anomalous traces generated by
microservices. In [3], the authors propose a sampler based
on a hierarchical clustering method PERCH [17]. Authors
demonstrate that their method can achieve representative sam-
pling, meaning equal share for both normal and anomalous
traces. Such clustering methods can incur the curse of the data
dimensionality [18] and they often require batch processing,
which is not always supported under low latency requirements.

Sifter [5] avoids batch processing by taking sampling de-
cisions trace-by-trace. It generates a sampling probability by
utilizing the loss of training a neural network for a particu-
lar trace. A potential issue with loss-based methods is that
anomalous traces may still have small probabilities overall,
closer to 0 than to 1, allowing several anomalous traces to
go unsampled. This problem is studied in recently proposed
sampler, Sieve [6], which uses a threshold to first separate the
anomalous traces and then amplify the sampling probability.
This still leaves an open challenge regarding the optimal and
automated choice of threshold.

B. Sampling performance
As a classification problem, it may be natural to study trace

sampling performance in terms of F1-Score, as this strikes a
balance between Precision and Recall. We however observe
that this is not always an ideal performance criterion in the
presence of budget constraints. For example, an abundant
storage budget with few constraints is more appropriate to
consider Recall, while a heavily constrained storage budget
expects more from achieving high Precision. Summarizing, we
set the following overall performance evaluation principles for
trace sampling methods:
• For infrequent anomalous traces, where the prevalence

of anomalies is less than the storage budget, the primary
evaluation metric should be the Recall.

• For low storage budgets, where the prevalence of anoma-
lies is greater than the storage budget, the primary eval-
uation metric should be the Precision.

• When sampling N traces from a collection of traces
containing N anomalies, the primary evaluation metric
should be the F1-Score.

C. Comparing State-of-the-Art Anomaly Detection Methods
Since anomaly detection is a key step for a sampling

process, we here illustrate why off-the-shelf anomaly de-
tection methods are not fit for purpose. We consider the
following popular techniques: 1) local density estimate: K-
Nearest Neighbor (KNN) and Local Outlier Factor (LOF),
2) tree-based classification: Isolation Forest and Half Space
Trees (HST) [8], 3) boosting: Lightweight Online Detec-
tion of Anomalies (LODA) [19], and 4) neural network:
Deep Belief Net and One Class Support Vector Machine
(DBN+OCSVM) [20]. A notable advantage of using the tree-
based methods is that they can work on one trace at a time,
while the other methods, off-the-shelf, require batching.

To evaluate the performance of the above methods, we con-
sider a production dataset from a cloud data center consisting
of trace data spanning a week over a set of 14 microservices.
As the trace is unlabelled, we identify ∼ 5% point anomalies
using the popular offline DBSCAN clustering algorithm, and
evaluate the ability of the listed methods to obtain similar
results. DBSCAN, being resource intensive, is not feasible in
an online scenario such as distributed trace sampling, but is
considered as a generally reliable technique in industry [21].
We use Matlab’s native implementation of DBSCAN with
ε = 2.5 and minpts = 5, where ε indicates the size of the
local neighborhood of the data points and minpts indicates
the minimum number of points per cluster. Once the traces
are clustered, we regard the smallest clusters as anomalies,
accounting for ∼ 5% of the total traces.

The results of the experiment are presented in Table I. The
dataset contains traces from six consecutive days with 77577
traces. For all the batch methods, we keep a similar batch
size of 2000 traces. We see that HST is the best method with
respect to F1-Score. This motivates further investigation in
HST methods to address the problem under study. In addition,
HST has other benefits from the perspective of a streaming
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TABLE I
RESULTS OF DIFFERENT ANOMALY DETECTION METHODS ON THE

PRODUCTION DATASET

Isolation
Forest KNN LOF LODA DBN +

OCSVM HST

Precision 0.73 0.77 0.73 0.62 0.47 0.94
Recall 0.72 0.72 0.72 0.60 0.97 0.70
F1-Score 0.73 0.74 0.73 0.61 0.64 0.80

platform. Due to the way HSTs are designed, for a particular
trace, we only need to update a single mass value [22] per
tree. To determine whether a trace is normal or anomalous,
the mean mass value (m) of the HSTs, for that particular
trace, is compared against a threshold. An HST only needs to
query its already stored mass values, resulting in a very low
computational footprint in the order of less than a millisecond
per trace. This will reduce the time taken during the training,
where we can only use the computing resource to update the
mass values of the node. Due to all these benefits, the rest of
the paper focuses on HST as a baseline classifier.

III. HALF SPACE TREES FOR ANOMALY DETECTION

Half Space Trees (HST) [8] are an ensemble of decision
trees. The structure of the decision trees is a simple Binary
Tree. Each HST has a depth d, and the corresponding binary
tree will have 2d+1−1 nodes. Each tree stores split points for
a random subset of dimensions, and possibly multiple splits
per dimension, together with a count of how many points
are within the subspace defined by a path (a metric called
mass). Mass is simply defined as a count of data points, thus
it is easier to calculate than density measures used in other
methods, e.g., which require likelihood estimation. Normally,
an ensemble of t Binary Trees is used, with identical depth h,
which are independently trained on a data window w.

HSTs are particularly suitable for streaming data as its core
processes - building the tree data structure and characterizing
the data points using the mass values - are both lightweight [8].
In this study, we assume that such data points will be available
of continuously arriving streams of spans generated in a cloud
data center from a heterogeneous collection of microservices.
A span is an immutable data structure that supplies the value
of a collection of categorical and continuous variables at a
particular point in time. The spans contain a traceId, based
on which they can be grouped to form traces. We propose to
abstract each trace as a document where the span properties are
considered as words or terms. The document is subsequently
converted to a bag of words [7].

During the conversion, the span properties that are not
relevant to performance and reliability analysis are ignored.
We restrict our attention to discrete fields, some of which, e.g.,
HTTP code, can be categorical i.e., they have a fixed number
of possible values. In addition, we do not explicitly address
latency anomalies as they are often best studies with with
anomaly detection based on continuous response time distri-
bution estimators, which can be already done with specialized
methods in the literature [23]–[25]. Alternatively, latencies can

be discretized and considered as one of the features considered
by our method. We represent each trace using a count vector
x = (x1, . . . , xd, . . . , xD), where D is the number of different
terms that have been seen across all the traces. For example,
the HTTP code 200 is one term and a specific URL could
be another one. Each dimension xd ≥ 0 is an integer value
counting how many time a particular term appears in a trace.
The resulting count data assures knowledge of the dimension
D and the mappings of dimensions to terms. In a production
implementation, such knowledge can be acquired from an
initial monitoring period and periodically updated.

In production data, sparsity is frequently observed. Once the
categorical properties of the spans are vectorized as count data,
there are relatively few types of traces that occur repeatedly,
thus the HST mass could accumulate within a small set of
terminal nodes. This is confirmed from our production data
where we observe that only 0.003% of the trace count vectors
are unique. We thus focus on a variant of HST known as
HS*-Trees (HS*T) [22], which aims to deal with the sparsity
in the tree structure. In HS*T, nodes that have fewer than
SizeLimit samples are not further expanded during the training
phase. This reduces memory consumption and also the time
to traverse the trees. Thus, we have opted for HS*T as our
chosen HST variant. In the rest of the study, we use the term
HST and HS*T interchangeably.

We incorporated two further modifications to HS*T. Firstly,
we opted for depth-dependent split dimension. This means that
when splitting a node, instead of using the normal procedure
of picking a dimension at random, we require all nodes at
the same depth level to use the same split dimension, which
largely reduces memory usage since a single dimension is
stored at each level. Secondly, as suggested in [8], we opted
for a [0, 1] workspace. This means that, the maximum and
minimum values of the features are assumed by the HS*T to
be 1.0 and 0.0, rather than in the min-max range observed
in the data. This can simply be achieved with min-max
scaling. However, an issue with such count data scaling is
that outliers can often cluster the normal values at one end
of the range, making the prediction particularly difficult for
tree based methods since they rely on randomized partitioning
of the input space, i.e., random split points will be chosen
in the segment [0,1] to branch the tree along a dimension.
Therefore, if the points are all clustered in a small portion of
the range [0,1] the HS*T will struggle to separate the samples
along that dimension. To address this, we apply the following
transformation in place of the min-max scaling

f(x) =
1

1 + g(x)
. (1)

that allows us to control the stratification of the count data.
We have found it sufficient to use g(x) = x but we could also
define, for example, g(x) = log(x) considering large values
of x. Using (1), the large outliers will be squeezed near 0,
therefore not suppressing the ability to resolve the normal
values That are critical to HST training. We illustrate the
impact of this transformation in Fig. 1 using 5000 randomly
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(b) Transformation function f

Fig. 1. Comparing the scaled value of HTTP 200 code counts with min-max
scaling and the transformation function f

chosen traces, where we scaled the feature corresponding to
the frequency of HTTP code 200 in the trace.

As before, we used the production data from Section II-C
to test these modifications. We consider each day as a window
and use the first day to build the trees. We observe that the
F1-Score improves from 0.8 to 0.97. This indicates that the
changes aid in anomaly detection from the trace streams.

IV. MASS-BASED CLUSTERING FOR SAMPLING

Although HSTs can help in classifying the anomalous
traces, in reality we need to utilize this classification output
in a sampling process. This process is complex because of
the trade-off between sampling normal and anomalous traces.
While sampling, the proportion of the storage budget and
the expected percentage of anomalies should be taken into
account. If the budget is lower than the anomaly percentage,
the focus should be on sampling mostly the anomalous traces.
The normal traces should gain more attention only when the
budget is higher than the anomaly percentage. In addition,
while sampling the anomalous traces, the target should be
representative sampling from that group of traces i.e. sampling
from different “groups” of traces fairly.

To achieve this, we propose to cluster the traces and
decide whether to sample a trace or not based on its cluster
association. However, when clustering in a high-dimensional
space it is harder to achieve accurate density estimation [26],
in addition to incurring a higher computational cost. This
is expected in the normal behavior of our system, as our
production data contains hundreds of features. Therefore, we
propose a new approach considering the distribution of mass
across the trees in the HS*T forest and selecting a mean
mass score m and a low percentile of the mass score p. Low
percentiles are expected to significantly differ from the mean
when there is at least a subset of trees in the forest that
identifies the trace as an anomaly. We refer to this method
as SampleHST as we are using the the mass distribution of
HST to perform sampling.

Since we want to use a low percentile (p) value along
with the mean (m), we represent each trace with a unique
pair (m, p) that will be used for clustering. The projection of
the production traces from Section II-C in this 2-dimensional
space is shown in Figure 2. The figure shows in different
colors the clusters obtained by DBSCAN. It is clearly seen that
the mass-based properties cluster the traces in distinct groups
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Fig. 2. The production trace plotted using the mass-based properties. The
colors and marker shapes indicate the DBSCAN original clusters. The cluster
centers are estimated with a baseline online clustering method.

and the cluster centers are also appropriately detected using a
baseline streaming clustering method [27]. Another potential
benefit of using the low percentile value is a better separation
of trace groups. As seen from Fig. 2, ignoring the percentile
value will result in multiple trace groups being merged to-
gether, eventually affecting the sampling performance.

This mass-based clustering is at the core of our sampling
approach. Once a trace is formed with its spans, to take a
sampling decision, it is moved through two key components:
• SampleHST Clustering: Cluster the trace based on the

its mass based properties.
• SampleHST Controller: Makes the sampling decision

based on budget and trace-cluster association.
We discuss these components in details in the next sections.

V. SAMPLEHST CLUSTERING

SampleHST Clustering is primarily based on the underlying
theory of mean-shift analysis [9] and the CEDAS algorithm
[27] yielding a data-driven online approach that generalizes the
hyper-sphere cluster shape commonly assumed in the literature
to hyper-rectangles and hyper-cubes. Broadly speaking, our
method receives the mass score of a trace in the form of a pair
(m, p), which is generated using the HST mass distribution.
Subsequently, the method aims to find the association of the
new trace with an existing cluster, if the association condition
is not met a new cluster is created and a signal is send.
Furthermore, the method is able to remove clusters that have
not received a new trace for a pre-defined period of time
modulated by the decay and the life (energy) parameters and
also merge clusters together whenever an overlapping occurs.
These steps can be broadly grouped into two sets of tasks:
trace association and cluster management. We now discuss
the key aspects of these tasks.

A. Trace Association

1) Cluster Shape: A common assumption for online clus-
tering algorithms for data streams is that the cluster shape
is a hyper-sphere [9], [27]. In our case, the problem with
such shapes is that they can lead to inaccurate partitioning
of the traces because the normalized values of the unique pair
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Fig. 3. Demonstrating cluster merging process. Initially, though there is an
overlap between the boundary of cluster c2 and c3 they are not merged.
Once their centroids overlap, they are merged into single cluster c3

(m, p) belong to the unit hyper-cube. To address this issue we
consider instead an arithmetic average kernel whose support
is a hyper-rectangle [28]. Assuming d data dimensions, the
kernel considered is presented in (2) for which we further
show in Theorem 1 that the mean-shift property is achieved if
the clustering bandwidth [29] is equal in all dimensions.

Theorem 1. For the additive kernel defined as

Kd(u1, . . . ud) =

 3
d2d+1

d∑
k=1

(
1− u2k

)
if |uk| < 1,∀k

0 otherwise,
(2)

the mean-shift algorithm at each iteration shifts each sample
with a value equal to the local mean if the support is given
by a hyper-cube.

The proof is given in the Appendix.
2) Cluster Assignation: The assignment step requires a pre-

defined clustering bandwidth. We define the bandwidth vector,
H = {h ∈ Rd|∀i = 1, . . . , d, 0 < hi ≤ 1}, where each value
hi ∈ H defines the Manhattan distance from the center to the
boundary of the cluster in the ith dimension. Now, if we define
a vector of Manhattan distances between a cluster centroid and
a new data point as M = {m ∈ Rd|∀i = 1, . . . , d, 0 ≤ mi ≤
1}, then if ∀i mi ≤ hi, we assign the data point to that cluster.
Otherwise, a new cluster is created with that point.

3) Centroid Update: Appropriately updating the cluster
centroid is critical since SampleHST uses the centroid distance
to decide the mapping of traces to clusters. In general it is
preferable to update the centroid giving more importance to
traces that are unequivocally within that cluster. This is the
concept of cluster kernel region [27]. Given the clustering
bandwidth vector H, we can define the kernel region as the
sub-space within a cluster with bandwidth rH, where the
scalar r quantifies the proportion of the cluster considered as
the kernel region.

B. Cluster Management

1) Cluster Merging: To address the overlaps among clusters
as they are indications of possibly inaccurate clustering, we opt
for the policy that merges two clusters only when the centroid
of one overlaps with the boundary of the other. This policy is
less drastic than merging two clusters when their boundaries
overlap because one distant point cannot shift the cluster center
unless the cluster has a very few samples. An illustration of
this policy is presented in Fig. 3.

2) Cluster Removal: We need to regularly remove the
clusters whose population have remained static for a while
since they are unlikely to be relevant and might affect the
sampling policy. We realize this by using the decay and
life (energy) parameters for the clusters as in [27]. The life
property is initially set to one and gradually reduced using the
decay value, which is set as the average number of traces
in the work cycles, defined as a sequence of consecutive
periods where we received at least 1 trace, within the sampling
window.

VI. SAMPLEHST CONTROLLER

A. Overview

The SampleHST controller ultimately decides whether to
sample a trace or not by utilizing the clustering method we
have presented. The controller initially calculates the number
of traces (sw) that need to be sampled from the next sequence
of w traces. We refer to this number as sampling limit and the
sequence as a window. For a given budget τ , the sampling limit
is defined as sw = τw. The budget is held constant, therefore
the sampling limit only varies with w over the runtime. The
sampling process runs continuously according to Algorithm 1,
using HST mass scores xm. The algorithm expects a set of
inputs that defines the size of the sampling window (w), the
budget (τ ), the total number of traces to be sampled in this
window (sw), the relative position of the current trace in the
window (w(p)

i ), the number of traces that still remain to be
sampled (sr), the current clusters status (C), the clustering
bandwidth vector (H) and the length of the work cycle (β).

The first step in this algorithm is to make any needed
adjustments to the sampling window size estimate and the
sampling target. This is followed by log-transformation and
min-max scaling of mass scores: x

(s)
m = [logb(xm) −

min(xsm)]/[max(xm)−min(xm)]. The cluster centers are re-
scaled only if the minimum or maximum values change along
with the new mass scores in the sampling window. Once this
pre-processing part is completed, the locality of the trace,
represented by the cluster which in it falls, is determined by
the SampleHST clustering method. If the sampling target is
not reached, the final step is to make a decision based on the
inclusion of the trace in a set of prioritized clusters, which we
refer as the selection pool. This step is skipped if the sampling
target has already been reached.

Since we already discussed the SampleHST clustering
method, we only present the other key aspects of the controller
in the following sections.

B. Online Score Scaling

The SampleHST clustering method uses the mean and the
5th percentile of the mass to cluster the traces (p = 0.05). Since
we are using HS*T, we use the mass value m[l]2l, where m[l]
is the mass of the terminal node where the trace falls into and
l is the depth of the corresponding tree node. To standardize
the mass scores, we scale down the augmented mass using the
maximum mass value possible, which is w2d where d is the
tree depth and w is the number of observed traces.
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Algorithm 1 Sampling Process

Require: massScores (xm), budget (τ ), idxPriWindow (w(p)
i ),

windowSize (w), remainingTarget (sr), windowTarget
(sw), clusters (C), bandwidth (H), workCycleLen (β)

Ensure: decision
1: if w(p)

i > w then
2: AdjustParameters()
3: end if
4: x

(log)
m = logb(xm)

5: x
(s)
m = ScaleScores(x(log)m )

6: if HasMaxMinChanged() then
7: ReScaleClusterCenters()
8: end if
9: (C, xc)← GetTraceLocality(x

(s)
m , C,H, 1

β)

10: R =
w

(p)
i

w
11: U = sw−sr

sw
12: if sr > 0 then
13: decision = IsTraceInSelectionPool(C, xc, τ, R, U)
14: end if
15: if decision then
16: sr = sr − 1
17: end if

C. Sampling Decision

The sampling decision procedure needs to decide on-the-fly
whether to sample a trace or not. If a new cluster is created
by a trace the methods always sample it. For the case where
the trace is associated with an existing cluster, we rely instead
on generating a prioritized pool of clusters, which we refer as
selection pool and use it to take the decision. This is done in
three steps, which are described as follows.

1) Distance-based Cluster Ranking: The first step is to rank
the clusters. Two methods of ranking were considered: size of
the cluster and Euclidean distance from the origin. Cluster size
is an obvious method of ranking, but since SampleHST creates
and deletes clusters online, smaller clusters might not always
represent less frequent traces. A cluster might be smaller but
all of its traces can have high mass values. This means that
the traces have hit HST nodes with a high mass count which
indicates that these traces are quite frequent. In addition, the
most interesting and possibly smallest clusters are likely to
be near the origin, which represents a low mass region in the
clustering place. Therefore, we chose Euclidean distance of
the centroids to the origin (0, 0) and if a cluster is closer to
the origin, traces associated with it will be sampled first even
if that cluster is not the smallest.

2) Selection Pool: Once the clusters are ranked, we decide
how many of those will form the initial selection pool. Clusters
are added according to the above ranking, starting with the one
closest to the origin, until the threshold θ is reached. If two
clusters are equidistant, the one created first is prioritized.

After creating the initial selection pool, we start the second
phase by checking the actual value of the percentage total
population in the selection pool denoted by θ̂. If the actual

percentage is less than α% of the budget, we add more clusters
in the selection pool. The clusters are added depending of
the magnitude M of the budget (τ ) in comparison to θ̂.
This is defined as M =

⌊
(τ − θ̂)/θ̂ + 1

2

⌋
. We then make

M independent attempts to add the clusters in a probabilistic
manner, where in the kth attempt, the kth closest cluster to
the origin, which is not yet included in the selection pool,
is chosen with a probability P k. Here each attempt of being
successful has the same probability P = max(τ, S), where τ
is the budget and S is the sampling eagerness defined as

S = R(1− U). (3)

This sampling eagerness is bounded between [0, 1] and a
high value indicates to sample more. It is defined in terms
of the budget utilization (U ), which is the ratio of number
of sampled traces to the sampling limit, and the relative trace
position in the current window (R), which is the ratio of the
trace index in the current window to the sampling window
size.

3) Decision Process: After the selection pool has been
decided, we sample the new trace only if it is associated with
any of the clusters in the pool. If that is the case, one of
two paths may be followed. If the budget is greater than or
equal to the actual percentage of population in the selection
pool (τ ≥ θ̂), we sample the trace straightaway. Conversely,
if the budget is less than the actual percentage, we follow the
second path that takes a probabilistic sampling decision. This
is to sample cautiously as we may have larger clusters in the
selection pool containing common traces. In this path, we set
the probability of sampling as

Ps =


τ

θ̂
if Γc > Γµ + kΓσ

1 otherwise.
(4)

Here we set the probability based on the cluster size. Firstly,
if the size of the cluster (Γc), which is associated with the
current trace, is greater than the sum of mean (Γµ) and k
standard deviation (Γsigma) of the cluster size in selection
pool, we set the sampling probability to τ/θ̂. This means
that, if there are N traces, the size of the selection pool
will be Nθ̂ and we would like to sample Nτ traces from
those in the selection pool. Secondly, if Γc ≤ Γµ + kΓσ , we
set the sampling probability to 1. This means if the cluster
is sufficiently small, we decide to sample the corresponding
trace. The value of k is set using Chebyshev’s inequality [30],
which estimates the minimum percentage (V ) of values within
k standard deviation of the mean. For a given V , we can
solve the inequality to determine the value of k. We notice
that, this percentage V is related to the ratio of τ/θ̂. Because,
if τ is much smaller than θ̂, we want to sample only if the
associated cluster is smaller than the majority of the clusters.
As the value of τ increases compared to θ̂, we can consider
the larger clusters i.e., larger value of V . Thus, we consider
V̂ = τ/θ̂, where V̂ is and estimate of the minimum percentage
V , we can calculate the value of k using (5).
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k =

√√√√ 1

1− τ

θ̂

≡

√
θ̂

θ̂ − τ
. (5)

VII. SAMPLING PERFORMANCE

A. Experimental Setup

To test model performance we use a dataset provided by
a cloud data centre composed of 77,577 traces. Each trace
contains at least one span and the following four categorical
features: Service Name, URL, Process Id, and Node Id. The
dataset includes 17 different services with six of them con-
taining 98.59% of the spans; more than 40 different URLs
with two accounting for 98.55% of the spans; more than 50
different Process Id’s with six containing 88.31% of the spans;
and 8 different node Id’s with two containing 86.8% of the
spans. The traces are represented as a count vector the Bag
of Words model as detailed in Section III. Through this, we
obtain 105 unique features. Ignoring timestamps, the 77,577
traces map to 308 unique traces.

To test the SampleHST robustness, we consider 5 cases
with different storage budgets. First, since we have about 5%
anomalies in our data, we include a case where the budget is
5%. The evaluation criteria for this case is the F1-Score. We
have also chosen 3 smaller budgets (0.5%, 1% and 2%) where
the evaluation criteria is precision. Finally, we also consider
a high budget case of 10%, where the evaluation criteria
is recall. We compare the results with two other samplers:
uniform random sampler, implemented following the Head-
based sampler in [5], and the PERCH-based method [3].

Since sampling methods such as [3], [5] focus on repre-
sentative sampling, we also compare their fairness in terms
the Jain index [10]. The index can be calculated using (6)
where Xi = Ti

Oi
. Here, for each cluster i, Ti is the number

of traces sampled by a method and Oi is the optimal number
of traces that should be sampled. This metric indicates what
percentage of the groups are treated fairly. In our case, the
groups are the clusters that we obtain offline from DBSCAN
clustering. Note that, to calculate the index, we need to know
the optimal number of traces that should be sampled. As we
know the overall distribution of the traces among the groups
and sampling budget, we calculate it offline using the max-min
fair allocation approach [31].

J (X1, X2, . . . , Xn) =

(
n∑
i=1

Xi

)2

n
n∑
i=1

X2
i

Xi ≥ 0 (6)

B. Results

SampleHST Clustering Operation. We begin by illustrating
in Fig. 4 the operation of the SampleHST method. Since,
this is an online clustering method, we divide the total time
frame in 20 periods and show the clustering status for those
periods. We immediately see that in the first window, the data

0 0.5 1

1

0 0.5 1

1

0 0.5 1

1

0 0.5 1

1

0 0.5 1

1

0 0.5 1

1

Fig. 4. Output of the SampleHST clustering algorithm. The X-axis and Y-axis
represent mean and 5th percentile of mass respectively. The colored symbols
represent different DBSCAN labels. The + signs are the cluster centers
estimated by the SampleHST clustering algorithm. The output is presented
in 6 windows. As we move from left to right, we move towards the next
window.

points are less segregated. This is because of the online min-
max scaling. In the initial period, the min-max values are not
steady, which affects the data points as well. As we progress
towards the end, we can see that the clusters are increasingly
segregated. We also see that the number of clusters continue to
change throughout these periods. The clusters around the top
right corner remains stable, but the ones around the bottom
left corner change their positions frequently as the top right
clusters are of frequent traces whereas the bottom left ones
are of the infrequent ones. The infrequent trace clusters decay
quickly by not receiving traces in some work cycles.
Comparative experiments. We now compare the performance
of SampleHST against the uniformly random and PERCH-
based methods. In Table II we see that SampleHST with
a bandwidth of h = 0.1 is the best method across all
budgets, with the uniform random sampler performing the
worst. We also see that the PERCH-based method does not
perform significantly better with respect the precision, recall
and F1-Score. From the fairness perspective, the PERCH-
based method scores much higher than the random sampler,
but still it cannot outperform SampleHST. The results show
that even though the PERCH-based method can achieve better
Jain score in low budgets, it is not precise in sampling the
anomalous traces as made evident by the precision score.

As we mentioned earlier, identifying anomalous traces is
difficult for clustering methods due to the high number of
dimensions of the input data, as in the present case with 105
dimensions. SampleHST, on the other hand, eliminates this
problem by using the mass scores, which are low dimensional.

We now focus on the case with high budget (10%). Firstly,
we see that SampleHST easily outperforms the PERCH-based
method considering the primary evaluation criteria recall. Sec-
ondly, when we consider representative sampling, we see that
the Jain score produced by SampleHST is 1.6× better than the
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TABLE II
PERFORMANCE OF DIFFERENT SAMPLERS WITH DIFFERENT BUDGET

0.5% 1% 2% 5% 10%

Uniform

J 0.10 0.10 0.11 0.13 0.18
P 0.05 0.04 0.06 0.05 0.05
R 0.01 0.01 0.03 0.05 0.10
F1 0.01 0.01 0.04 0.05 0.06

PERCH-
based

J 0.32 0.24 0.32 0.47 0.56
P 0.41 0.18 0.13 0.11 0.09
R 0.03 0.03 0.04 0.09 0.15
F1 0.05 0.04 0.07 0.10 0.11

SampleHST

J 0.40 0.59 0.72 0.75 0.88
P 0.84 0.83 0.86 0.92 0.80
R 0.10 0.18 0.37 0.91 0.94
F1 0.17 0.30 0.52 0.92 0.87
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Fig. 5. Comparing clusters with equal and unequal clustering bandwidth

PERCH-based method. The reason for SampleHST performing
better is as follows. The primary objective of SampleHST
is to sample as much as anomalous traces possible. In high
budget cases, it only shifts focus towards normal traces when
the primary objective is fulfilled. Anomalous traces can create
many groups, each with a small size, whereas normal traces
create a small number of large groups. This is indeed the
case with the production data. As a result, when SampleHST
samples most of the traces from anomalous groups, it satisfies
the demands of majority of the groups, making it more fair
which is reflected in the Jain score.
SampleHST with Hyper-Rectangles. The mass scores work
as anomaly signals to the SampleHST, which are not always
likely to be equally strong in all clustering dimensions. In
such cases, the traces may not be segregated ideally in
that dimension. This is not a problem as long as we can
separate anomalous traces from normal ones. However, if the
bandwidth in that dimension is small, we can have multiple
clusters in a particular region in the clustering hyper-plane,
which represents traces of similar types. Thus rather than using
a small clustering bandwidth in that dimension, as illustrated
in Fig. 5, we can chose a large one to remove clusters
containing similar traces, allowing a more precise clustering.
In other words, we can opt for hyper-rectangles, with unequal
clustering bandwidths in each dimension, instead of hyper-
cubes. When we observe the clustering status, as presented
in Fig. 5, indeed with hyper-rectangles there are less number
of clusters in the top right corner, that represents normal
traces. Having less number of traces reduces the probability of
sampling from normal groups, which is essential in low and
moderate budget cases. This is also reflected in the sampling

TABLE III
PERFORMANCE OF SAMPLEHST CONSIDERING HYPER-RECTANGLES

Jain Precision Recall F1-Score
0.05, 0.1 0.76 0.90 0.91 0.91
0.05, 0.2 0.75 0.91 0.91 0.91
0.05, 0.3 0.74 0.93 0.91 0.92

0.1, 0.2 0.74 0.94 0.91 0.92
0.1, 0.3 0.73 0.97 0.92 0.95

TABLE IV
SAMPLING RESULTS WITH HYPER-CUBES AND HYPER-RECTANGLES

h = 0.1 [h1, h2] = [0.1, 0.3]
J P R F1 J P R F1

0.5% 0.40 0.84 0.10 0.17 0.41 0.94 0.10 0.18
1% 0.59 0.83 0.18 0.30 0.50 0.95 0.21 0.34
2% 0.72 0.86 0.37 0.52 0.47 0.96 0.41 0.58
5% 0.75 0.92 0.91 0.92 0.73 0.97 0.92 0.95
10% 0.88 0.80 0.94 0.87 0.88 0.79 0.94 0.86

performance. In Table III we present the results, for the
5% budget case and for different sizes of hyper-rectangles.
From these results, we can appreciate that the F1-Score for
bandwidth [0.1, 0.3] reaches 0.95, which is higher than the one
we achieved for hyper-cubes presented in Table II. Moreover,
and considering the hyper-rectangle [0.1, 0.3] as our baseline
we can see in Table IV that the hyper-rectangles approach
yields significantly better results in the metrics considered. In
particular for low-budget scenarios we achieve on average an
improvement of 1.12× with respect to hyper-cubes.

VIII. CONCLUSION AND FUTURE WORK

In this paper we propose a novel sampling method for
distributed tracing namely SampleHST. The objective of Sam-
pleHST is to take its sampling decision based on the proportion
of sampling budget and the fraction of expected anomalous
traces. If the budget is lower, the priority is to sample the
anomalous traces. On the other hand, when the budget higher,
the normal traces are sampled as well. This sampling process
is based on an online clustering mechanism. The traces are first
clustered using their mass scores generated using a forest of
HST. After that, if the budget permits, the sampling decisions
are taken based on the association of a trace with a cluster,
where the clusters more likely to contain anomalous traces
are prioritized. Our experiments, that considers production
data from a cloud data center, show that SampleHST by far
outperforms the recent approach targeting point anomalies.

A possible line of future research direction could be in-
tegrating the continuous trace properties, like the response
time, to identify also the latency anomalies in an integrated
approach.
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APPENDIX

Proof. Assume that we have N observations {xi}Ni=1, with
each data point having d dimensions, that is xi =
(xi,1, ..., xi,d), then we can define the density gradient estimate
∇̂p(x) ≡ ∇p̂(x) at x = (x1, ..., xd) as

∇p̂(x) =
1

Nhd

N∑
i=1

∇K
(
x1 − xi,1

h
, . . . ,

xd − xi,d
h

)

=
1

Nhd

N∑
i=1

d∑
k=1

∂

∂xk
K

(
x1 − xi,1

h
, . . . ,

xd − xi,d
h

)
· ek

(7)
where p̂(x) is the kernel density estimator [9], [28] for an
unknown density p, h is the bandwidth in all d dimension,
K(·) is the kernel function and ek is the k-th standard unit
vector. Now using (2) as our kernel function, we get

d∑
k=1

∂

∂xk
K

(
x1 − xi,1

h
, . . . ,

xd − xi,d
h

)
· ek

=

d∑
k=1

∂

∂xk

[
3

d2d+1

d∑
l=1

(
1−

(
xl − xi,l

h

)2
)]
· ek

=
3

d2d+1

d∑
k=1

∂

∂xk

(
1−

(
xk − xi,k

h

)2
)
· ek

=
3

d2dh2

d∑
k=1

(xi,k − xk) · ek

(8)

Substituting ∇K(·) in (7) with (8), the density gradient
estimate is

∇p̂(x) =
1

Nhd
3

d2dh2

N∑
i=1

d∑
k=1

(xi,k − xk) · ek

=
Nx
Nhd

3

d2dh2

d∑
k=1

1

Nx

∑
xi,k∈Sr(x)

(xi,k − xk) · ek

=
Nx
Nhd

3

d2dh2

d∑
k=1

(µk − xk) · ek

(9)
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Here, in (9), Nx is the number of data points for a region
Ah(x), µk is the mean of all the data points in that region
along the kth dimension. Note that, the volume of the region
Ah(x) is hd and the probability density estimate p̂(x) over the
region using a uniform kernel is Nx

Nhd .
The objective of the mean shift algorithm is to move away

from the valley and towards the function mode. This can be
achieved through gradient ascent. That is, for two consecutive
iteration t and t+1 the shift in the variable xj in kth dimension
can be expressed as

xt+1
j,k = xtj,k + c

∇p̂(x)

p̂(x)
(10)

Now substituting the value of p̂(x) and ∇p̂(x) and consid-
ering c = d2dh2

3 in (10), we show in (11) that the shift is equal
to the mean of x in dimension k. This mean that, from the
online clustering perspective, with the arrival of each sample,
the cluster center shifts uk in dimension k.

xt+1
j,k = xtj,k +

(
µk − xtj,k

)
= µk (11)

Based on (11), we conclude that the mean shift algorithm
is applicable to the kernel in (2) when the cluster bandwidth
h is equal in all dimensions.
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