
Federated learning for vehicular coordination use
cases

László Toka∗, Márk Konrád,
István Pelle, Balázs Sonkoly, Marcell Szabó

TMIT, VIK, Budapest University of Technology and Economics,
ELKH-BME Cloud Applications Research Group,

MTA-BME Network Softwarization Research Group, Hungary

Bhavishya Sharma, Shashwat Kumar,
Madhuri Annavazzala, Sree Teja Deekshitula,

Antony Franklin A
Indian Institute of Technology Hyderabad, India
∗Corresponding: toka.laszlo@vik.bme.hu

Abstract—Vehicular coordination and communication tasks
are crucial aspects of enabling autonomous driving, guaranteeing
safety and efficiency. In our present work, we explore methods
for collecting and distributing information among participants by
employing collaboratively-built high-definition maps that contain
fine-grained contextual data. We leverage a hierarchical federated
learning structure and anticipatory onboarding of the maps
through a mobility-aware content caching scheme and minimize
the delay of data delivery in both subsystems. We provide
analytical models built on queuing theory and integer linear
programming and evaluate essential system parameters in an
emulation testbed. Based on our results, we conclude that we can
significantly reduce the delay in delivering timely information
to vehicular clients by introducing intermediary layers in the
federated learning structure and by pre-loading current map
tiles corresponding to vehicle paths.

Index Terms—vehicular communication, edge platform, con-
tent distribution, federated learning, end-to-end latency

I. INTRODUCTION

Through diverse virtualization options, cloud computing has
started to replace high-resource local compute equipment, so
much so that by now, it weaves through our everyday lives.
It backs some of the most mundane applications that we use,
most often accompanied by artificial intelligence (AI) solu-
tions. While for some time, the direction of moving compute
tasks was clearly targeting the cloud, in recent years—due to
latency or data location considerations—this trend has taken
a slightly modified trajectory with the appearance of edge
and fog computing. Software leveraging these concepts and
respective devices can run closer to end-users and provide
lower response times for an enhanced user experience. The
process is further fueled by the newer generations of mobile
networks that provide edge computing resources that are
already being leveraged by public cloud providers [1]–[3].

This work was supported by: a) the Ministry of Innovation and Technol-
ogy of Hungary from the National Research, Development and Innovation
Fund through projects i) no. 135074 under the FK 20 funding scheme,
ii) 2019-2.1.13-TÉT IN-2020-00021 under the 2019-2.1.13-TÉT-IN funding
scheme, iii) 2019-2.1.11-TÉT-2020-00183 under the 2019-2.1.11-TÉT fund-
ing scheme, b) the ÚNKP-22-5-BME-317 New National Excellence Program
of the Ministry for Culture and Innovation from the source of the National Re-
search, Development and Innovation Fund, and c) the Department of Science
and Technology (International Cooperation Division), Government of India
through the project “Autonomous driving enabling fog computing platform
with edge cloud orchestration and edge analytics”. L. Toka was supported by
the János Bolyai Research Scholarship of the Hungarian Academy of Sciences.

Although at a much slower pace, a similar direction is
observable in the case of vehicular control tasks, albeit in-
corporating the edge concept right from the beginning. While
initially vehicles relied solely on onboard electronics for
providing driving assistance, coupling them with roadside
units (RSU) via vehicle-to-infrastructure (V2I) communication
enabled them to extend their sensing and computing powers.
As the increase in vehicular traffic infers more issues from
traffic control, road safety, and environmental aspects, these
extensions are more than welcome. Besides the increase in
onboard [4] and RSU [5] compute resources, closer interac-
tions between vehicles and the cloud [4] are also expected
in the not-so-distant future. These paired with low-latency,
high-throughput network connections can enable sophisticated
driving assist or autonomous driving functionalities.

This progress marks out applications and platforms that will
provide features for efficiently handling the innate hierarchy
of the infrastructure resources that range from onboard devices
through edge or RSU equipment up to centralized cloud data
centers as a continuum. To leverage such environments for
providing advanced vehicular support functions, we identify
the following goals to accomplish. First, our solution has to
be prepared for high-mobility vehicular environments with
moving vehicular and stationary roadside units. Each unit
in this hierarchy can pose different characteristics in energy
consumption, computation power, and latency, among which
we need to find the best balance. Although (beyond) 5G
networks aim to support high throughput with low latency, the
amount of data transmitted via the wireless link is still crucial
and needs to be minimized. Thus, our second goal is to take
into account latency and resource footprint aspects as well. Our
solution needs to perform data acquisition, aggregation, and
processing on the most adequate hierarchy level and provide
options for sharing and exchanging source and derived data
quickly and efficiently, considering data locality. The frequent
updates on road conditions and traffic participants’ behavior
can be exploited using AI applications that support human
drivers in the form of assisted driving or be part of the control
loop in autonomous driving. Thus, our final goal is to support
such scenarios in anticipation of AI applications.

In our view, these goals can be fulfilled by leveraging
federated learning (FL) [6], content caching, and component



orchestration mechanisms. FL is a machine learning setting
where agents collaboratively train a model. Low-level entities
use their data for local model training and merge them under
the supervision of a high-level entity that determines the initial
model, learning period, exchange and merge operations as
well as redistribution of the merged models. In our opinion,
this concept can be translated to a multi-tiered infrastructure
where vehicle nodes can supply data, edge/RSUs can learn
localized data while merges can happen at higher levels. As in
FL only model weights are exchanged, we can take advantage
of FL’s privacy-preserving and data traffic reduction features,
enhancing the latter with caching mechanisms that help to
distribute the acquired knowledge efficiently.

Consequently, our contributions are threefold. First, for the
upstream direction, we showcase an FL-based subsystem for
gathering and aggregating data coming from vehicles. Second,
for the downstream direction, we specify an ephemeral content
caching framework. Third, we evaluate our solution highlight-
ing its prowess in low-latency information distribution.

In order to discuss these aspects, we give a more detailed
use case description in §II. We review related work in §III dis-
cussing edge/cloud execution, machine and federated learning
platforms in general, and from a vehicular-centered perspective
too. Later, we describe our system model in §IV, detailing
the FL-based upstream in §IV-A and our downstream caching
framework in §IV-B. We highlight important aspects of our
testbed, the used software stack in §V while emphasizing the
details of our test scenarios and their evaluation. Finally, in
§VI, we summarize our work and draw conclusions.

II. USE CASE DESCRIPTION

While a plethora of sensors is mounted on Autonomous
Vehicles (AV) constantly monitoring the surrounding environ-
ment, the limited sensor range and always-present inaccuracies
pose many challenges for fully realized real-time autonomous
navigation, especially in dense urban settings. Digital High
Definition (HD) maps providing high-fidelity, centimeter-level
environmental data can be crucial enablers for self-driving
vehicles, helping them perceive the precise localization [7] and
surrounding environment beyond their sensing capabilities,
apply context awareness of their environment, and process
local road rules to make safer decisions and plan proactively.

HD maps, mainly built for self-driving purposes, have a
high level of accuracy as vehicles need precise localization
and environment data to maneuver in real-time. Initially, HD
maps are created using special vehicles outfitted with high-
precision sensor equipment, like Differential GPS, a multitude
of cameras, and highly accurate laser scanners to collect the
present obstacles and the traffic rules which apply to the
surrounding environment. As depicted in Fig. 1, HD maps
can contain multiple layers registering data that changes on
different time scales. The static layer can contain infrequently
changed information—e.g., a road map—and the transient
static layer can show conditions that remain unchanged for
an extended period of time—i.e., road work. The transient dy-
namic layer can provide information that changes frequently,

Highly
dynamic

layer

Transient
dynamic

layer

Transient
static
layer

Static
layer

Obstacle
Unexpected heavy rain

Road work
Accident

Fog

Fig. 1: HD map serving static and dynamic information.

and highly dynamic layers can feed the real-time data of the
surrounding environment to the vehicle—such as vulnerable
road users. Since traffic is in constant flux, e.g, due to traffic
jams, construction works, accidents, or the current status of
adaptive traffic signs, the map has to be updated continuously
to provide the vehicles with up-to-date information. It is
quintessential to receive an HD map update in real-time to
facilitate autonomous driving. Edge computing presents a
solution to significantly reduce network latency in this regard.

HD maps are specific to location and vehicles in the
same geographic area request identical HD map data for
autonomous driving. The repetitive transfer of large-volume
HD map data through the core network stresses the capacity-
constrained backhaul connections. Caching the HD maps on
Multi-access Edge Computing (MEC) servers in the vehicular
network’s edge (e.g., RSUs) can alleviate the backhaul load
and substantially reduce the latency, one of the key factors in
autonomous driving. Thereby, vehicles can obtain the required
HD maps from their RSUs via vehicle-to-infrastructure (V2I)
communication without going through the core network. How-
ever, the HD map caching problem differs from normal content
caching due to frequent changes in data that must be sent to all
caching locations which generate periodic traffic on links to
RSUs. Existing works target only content caching in vehicular
networks or consider only static content and fail to address
the dynamic information change specific to HD maps which
necessitates new solutions for the HD map caching problem.

III. RELATED WORK

A. Edge-focused Kubernetes platforms

Targeting the edge cloud calls for a suitable platform.
K3s and MicroK8s are streamlined, edge-centered Kuber-
netes (container orchestration) distributions providing better
performance in such scenarios than the full-fledged Kuber-
netes [8]. They ease the deployment process and reduce
resource footprint to as low as ∼0.5GB of memory and 1 CPU
core. According to our own observations, K3s is easier to
configure and comes with slightly lower resource demands.
Microbenchmarks with real-world workloads applicable to
edge computing scenarios testing CPU and memory utilization,
I/O, and networking performance show a minimal difference
between the two edge distributions [8]. In cases where cold



startup latency, disk throughput, CPU-bound tasks (e.g., matrix
multiplication or solving linear equations) are tested, they
clearly outperform the traditional Kubernetes. However, the
full Kubernetes system still has the edge in cases where a
heavy load is managed by only a single replica and no scaling
is allowed. If scaling is also permitted, then MicroK8s per-
forms the best, although K3s is still close in every metric [8].

B. Federated learning in vehicular networks

At the time of writing this paper, the most used open-source
FL frameworks are FATE [9], Flower [10], and Tensorflow
Federated [11]. After experimenting with these solutions, we
found that none of them are flexible enough architecturally
to serve as a basis for our more general, multi-layered V2X
solution as they mostly focus on creating machine learning
algorithms for FL. The novel Federated Vehicular Network
architecture [12] assigns a manager to a certain group of
vehicles that acts as a proxy between a worker vehicle and
a cloud server. The manager aggregates the worker models
and distributes the model updates via the Federated Vehicular
Cloud. This work, however, considers only stationary vehicles
and hence cannot be applied to our high-mobility scenario.

C. Distributed caching in vehicular networks

Map sharing can imply serious energy consumption needs
which are minimized in a study [13] where an RSU serves a
vehicle only if the energy required to receive data from the
RSU and for basic movement is less than the remaining energy
of the vehicle. For such vehicles, the data is divided among
all the RSUs in proportion to the received power to provide
the service. A different work [14] shows a joint spectrum
assignment and power control policy that maximizes the total
data rate in the V2X-enabled network used for disseminat-
ing the HD map. The authors study the interference effect
on data transmission and formulate a model that describes
the interference control problem during dissemination. They
suggest a cooperative delivery of HD maps through V2I and
V2V communications where—on the basis of data volume and
infrastructural environment—they divide the HD map into data
blocks. Other authors discuss HD map caching in vehicular
networks that support autonomous driving when vehicular
trajectories and requests are unknown [15]. They use a reward
function based on tile request history. A new architecture
is also proposed that combines MEC and Software Defined
Networking (SDN) to enable HD map-aided autonomous driv-
ing [16]. A two-tier server structure is presented with MEC and
cloud servers to achieve low resource utilization and network
scalability. The applications and services are deployed on the
MEC server using Network Function Virtualization (NFV) at
the edge. Other authors propose a MEC system framework for
HD map applications discussing application mode, functional
modules, HD map data distribution workflow, and communi-
cation of the autonomous vehicle client and its server [17].

IV. SYSTEM MODELING

A. Federated learning-based data aggregation and sharing

We minimize the end-to-end latency of the hierarchical
federated network illustrated in Fig. 2 by choosing an optimal
number of intermediate layers and nodes per intermediate
aggregation node. Every edge device sends its parameters to
the corresponding Im,k intermediate node after a given number
of iterations as if it were a Poisson process assuming that the
intermediate node’s processing time follows an exponential
distribution. These are typical selections in settings where only
latency (and other specific uncertain factors) can be accounted
for when describing service time in a model which holds true
in our case. In our model, every EIM,k,i edge node has to
wait for every EIM,k,j under the same intermediate node and
every node has the ability to send its parameters only after
a set number of iterations. Consequently, the distribution of
necessary arrivals before the first parameter aggregation start
can be modeled with a product of Erlang distributions:

fIm,k
(x;n, λ) =

1

(n− 1)!

L∏
i=1

λni x
n−1e−λix (1)

where L is the number of edge devices under the Im,k inter-
mediate node, λi is the device-specific rate for calculations,
and n is the number of iterations completed before sending
parameters upstream. After finishing the n iterations, an edge
node has to wait to receive the aggregated data which can lead
to significant idle times. The mean waiting time at the edge
nodes can be calculated as follows:

EIm,k
(fIm,k

) = n

L∑
i=1

1

λi
(2)

Increasing the number of iterations not only saves both up-
and downlink bandwidth but significantly decreases the idle
time of the edge devices. Since uplink traffic only occurs
from the edge devices to the aggregation nodes at every n

iterations, the waiting time is cut down from
(

1
µIm,k

+ 2T
)
n

to 1
µIm,k

+ 2T , where µ is the processing rate, and T is the

EIM,1,1 . . . EIM,1,j

IM,1

I1,1 . . .

...

I1,N

. . . IM,k

. . . EIM,k,l

E
dg

e
la

ye
r

In
te

rm
ed

ia
te

la
ye

r
C

lo
ud

la
ye

r

Fig. 2: Multilayered federated learning architecture.



transfer latency. Thus, branches under an aggregation node are
idle n times less in n iterations.

A global iteration aggregates nMKL locally trained mod-
els. Thus, the total end-to-end latency for one global iteration
in the whole network can be calculated as:

M

(
1

µ
+ 2T

)
+ n

M∑
m=1

K∑
k=1

L∑
l=1

1

λIm,k,l
(3)

The end-to-end latency can be further decreased by op-
timizing the physical layout and coordinating up/downlink
parameter transfers. In large-scale networks, the intermediate
aggregation nodes should be positioned strategically to max-
imize the benefit gained from having multiple layers. This
optimal positioning should take into account variables such
as predicted edge device density and distance from the parent
node in the previous layer. The highest optimization gain for
such a network can be attained from coordinating the downlink
parameter flow by using a caching mechanism akin to the
one presented in §IV-B. Since most V2X machine learning
applications only require a fraction of the global data, clients
can operate on localized parameter sets. This approach results
in a significantly reduced waiting time because clients do not
have to wait for the whole network, only for their localized
intermediate aggregation node. With this improvement, the
total waiting time of each client decreases to:

1

µ
+ 2T + n

L∑
l=1

1

λIm,k,l
(4)

Although connection loss could thwart such timely aggrega-
tions, for our model to hold true, we only need to assure that
data from a previous iteration cannot be merged in the current
FL model. Adding timestamps to each iteration (at a lower
level) and verifying them during merges can achieve this.

B. Information distribution and caching for moving clients

Let an HD map divide a geographical area in
G={g1, . . . , gj} tiles which clients stitch together to
form a seamless view. Each cache-enabled RSU provides
coverage to multiple tiles, updates, and transmits the HD
map. As per §II, the HD map has l1,...,4 layers in each tile:
l1 contains static information (e.g., roads) which changes
over a long period of time, and l4 contains highly dynamic
information (e.g., LIDAR environment information) changing
frequently. Let A1> . . .>A4 be the respective refresh times
of these layers and Sg,l be the size of the HD map of tile g
layer l. The MEC server on each RSU has a caching capacity
of C with variable cjg,l representing when a layer l of tile g
is cached at RSU j (see Table I for notations). The path of
vehicle i is represented by P ig, ∀g ∈ G, where a value of 1
represents if tile g is present on the path of vehicle i. The
Jg travel time to cross tile g and the Bg bandwidth of each
vehicle in tile g depends on the vehicle density in the RSU.
Thus, Dj

g,l = Sg,l/Bg gives the time required to download
layer l of tile g from RSU j and variable di,jg,l is set to 1 when
vehicle i downloads layer l of tile g from RSU j. We assume

TABLE I: Notation used in the caching problem formulation.

Symbol Description

cjg,l 1, if layer l of tile g is cached at RSU j, else 0.
P i
g 1, if tile g is on the path of vehicle i, else 0.

di,jg,l
1, if vehicle i downloads layer l of tile g from RSU j,
0, otherwise.

Dj
g,l Time spent on downloading layer l of tile g from RSU j.

Si
g,l Size of HD map layer l of tile g.

Cg Cache size of RSU g.
Jg Time taken by a vehicle to cross tile g.
Al Update interval of layer l of the HD map tiles.
Bg Bandwidth provided by the RSU to each vehicle in tile g.

vehicles know their destinations before starting a journey and
that paths are also known and shared with RSUs as vehicles
travel. An RSU has the updated HD map of a fraction of
the tiles cached in its coverage area and possibly some tiles
from neighboring RSUs all the time. If a requested tile is not
cached on an RSU, it can fetch it from the cloud or the RSU
covering the tile. Thus, we formulate the HD map content
caching and tile downloading problem as the following
integer linear program with the objective of minimizing the
download time under the discussed constraints:

min
∑
i∈V

∑
j∈G

∑
l∈L
∑
g∈G c

j
g,lP

i
gd
i,j
g,lD

j
g,l

Subject to:
(C1) :

∑
l∈L

∑
g∈G

cjg,lS
i
g,l ≤ Cg

(C2) : d
i,j
g,l ≤ P ig

(C3) : d
i,j
g,lJg ≤ Al

(C4) : c
j
g,lJg ≤ Al

(C5) : d
i,j
g,l ≤ c

j
g,l

∀ i ∈ V, ∀ j ∈ G, ∀ g ∈ G, ∀ l ∈ L
c, d, P ∈ {0, 1}

(5)

Constraint (C1) ensures that the sum of HD maps stored in
cache at RSU j cannot exceed its cache capacity C. (C2)
enforces that the vehicle downloads only the tiles that are
present on its path. (C3) makes sure that the download time
does not exceed the update interval of the tile’s layer, and
(C4) ensures that if a tile is cached on an RSU then the
travel time from this RSU to the cached tile does not exceed
the update interval of the tile. Finally, according to (C5), the
vehicle downloads only the cached tiles from an RSU.

V. EVALUATION

To verify our theoretical results, we utilized an on-premises
cluster of OpenStack-managed virtual machines, each having
8 vCPUs and 16GB of memory with 950Mb/s links providing
∼1ms latency. We used K3s as the orchestration layer on our
edge nodes due to its ease of deployment, low base resource
footprint, and seamless container orchestration capabilities
on the edge, as discussed in §III. Our custom-written FL
framework sits on top of these layers aiding us to flexibly
fine-tune specific parameters. As FL’s transparent but crucial



RSUk

RSUi . . .

...

RSUj

. . . RSUl0:
Se

nd
m

od

e l

1: Train on local data

2:
Send
local
weights

3A: Aggregate

4A:
Send
aggregated
weights

4B: Aggregate

3 B: Send loca
l w

ei
gh

ts

5B: Send aggregated global weights

Fig. 3: Flow of one upstream iteration with initialization.

communication layer, we used the open-source, low-footprint,
high-speed, asynchronous ZeroMQ (ZMQ) [18] messaging
library that operates without a central broker entity making
it ideal for edge scenarios with scarce resources.

A. Upstream: aggregation with federated learning

Our proof-of-concept upstream follows a fully synchro-
nized communication pattern and a centralized FL architec-
ture, uniquely having multiple intermediate layers (contrary
to [19]). We define three distinct peer groups: i) clients
(autonomous vehicles) that are connected to ii) a server
(or multiple if high availability is essential) via iii) RSUs
forming a distribution tree with an arbitrarily high number
of hierarchy levels, each deployed as containers on our edge
infrastructure. As shown in Fig. 3, during initialization, the
server distributes the model to be trained down this tree to the
clients (step 0). After training the model on locally available
data at each client (step 1), model weights are pushed upstream
to the closest directly connected RSU (step 2). Based on the
configuration and current iteration number, RSUs can i) run
aggregation locally and return weights following the blue path
(steps 3A–4A), within their local training epoch (LTE) or
ii) forward the weights in the next iteration further up the tree
to delegate aggregation following the red path (steps 3B–5B).
Each RSU in the tree operates in this fashion, ensuring that
end-to-end latency stays low. Consider a tree with an upper
RSU1 having an LTE of 2 and a lower RSU2 having an
LTE of 3. Here, RSU2 sends weights to RSU1 on every third,
while the server performs global aggregation on every sixth
iteration. Iterations last until a preset loss is reached or if some
other constraint is met. Note that this aggregation scheme can
be generalized to fit other application domains as well.

B. Downstream: HD map caching

In the downstream HD map caching, vehicular clients have
predefined random travel paths that lead over various tiles in
the coverage of different RSUs. A fraction of the tiles within
the RSU coverage is cached locally, and we assume that the

RSUk

Vehicle

RSUi . . .

...

RSUj

. . . RSUl

1.
1:

Se
nd

re
qu

es
t

1.2: Send
response

2.3:
Se

nd
re

sp
on

se

2.
1:

Se
nd

re
qu

es
t t

o
up

per-
level RSU

if
no

t p
re

se
nt

in
cu

rre
nt laye

r

2.2
: Se

nd
re

sp
on

se

3.3: Sen
d

re
sp

on
se

3.
1:

Se
nd

req
uest to cloud

if
no

t p
res

ent in top layer

3.2: Sen
d

re
sp

on
se

3.3: Send response

Fig. 4: System flow of the HD map caching.

latest versions of these tile layers are available at the respective
RSU. Upon connection, a client requests the tile corresponding
to its position from the RSU that covers the geographic area,
as depicted in step 1.1 in Fig. 4. If the requested tile is
cached at the RSU, it directly replies with the cached tile
layers (step 1.2). Otherwise, it requests the RSU above it in
the hierarchy (step 2.1). This happens recursively until either
the tile is found or the cloud server is reached (step 3.1). The
delay for each layer is added accordingly. We consider each
lowest level RSU to handle 8 tiles and i=4 layers for each
tile, l1 being the most static and l4 the most dynamic. Layer
li has a size of 10iMB and a cache validity of 10(5 − i)ms
to emulate this dynamicity.

C. Evaluation of the federated learning aggregation delay

In our emulated scenarios, we investigate the effects of
various parameters of our mathematical model, discussed in
§IV, but leave the detailed discussion of the caching aspect
for future work. We examine client training (arrival) time of
exponential (our model’s assumption), normal, and uniform
distributions. In our experiments, we consider 2–4 layers. With
2 layers, no intermediate RSUs are deployed, and all the clients
connect directly to the server. In the 3-layer scenario, 2 RSUs
are present in the single intermediate layer, and clients are
equally split between them. In the last scenario, 2 upper-
layer RSUs connect to 4 lower-level RSUs in the intermediate
layer, and clients are spread equally among them. To speed up
execution, we emulate the learning process, which does not
affect the applicability of our concept. We also take snapshots
modeling maximal load that makes our results applicable for
cases with mobility models.

Fig. 5a–c depict the minimum, mean, and maximum delay
observed by the clients for different arrival time distributions
broken down according to the number of intermediate layers.
Results show that the distribution of the arrival time does
not have a significant impact on the mean delay observed by
the clients; however, the variance is higher in the exponential



(a) 2 layers

20 21 22 23 24 25 26 27 28 29 210 211
0

50

100

150

Number of clients

D
el

ay
[s

]

2 layers, uniform distribution (baseline)
2 layers, exponential distribution
2 layers, normal distribution

(b) 3 layers

20 21 22 23 24 25 26 27 28 29 210 211
0

50

100

150

Number of clients

D
el

ay
[s

]

2 layers, uniform distribution (baseline)
3 layers, uniform distribution, epoch: 2
3 layers, exponential distribution, epoch: 2
3 layers, normal distribution, epoch: 2

(c) 4 layers

20 21 22 23 24 25 26 27 28 29 210 211
0

50

100

150

Number of clients

D
el

ay
[s

]

2 layers, uniform distribution (baseline)
4 layers, uniform distribution, epoch: 2
4 layers, exponential distribution, epoch: 2
4 layers, normal distribution, epoch: 2

(d) Summary

20 21 22 23 24 25 26 27 28 29 210 211
0

20

40

60

80

Number of clients

D
el

ay
[s

] 2 layers, exponential distribution
3 layers, exponential distribution
4 layers, exponential distribution

Fig. 5: Measured delay using different number of layers.

distribution’s case. Fig. 5d compares the mean delay of every
layer configuration in this distribution’s case. According to
the results, the first significant increase in delay happens at
28 clients per RSU, thus adding hierarchy levels can increase
the number of clients that the system can serve. Indeed, this
delay increase appears at 29 clients in the 3-layer scenario
(2 RSUs handling 28 clients each) and at 210 clients in the
4-layer scenario (22 RSUs handling 28 clients each). This
corroborates our model’s theory that we can optimize the delay
by adjusting the number of intermediate layers.

Fig. 6 shows the delay when varying the value of the epoch
for 32 and 64 clients in the 3-layer scenario, which is the
simplest incorporating a cloud layer (and a single intermediate
layer). We see a slight reduction in delay in both cases when
the epoch is 8, which does not indicate a concrete relationship
between the epoch value and the observed delay.

VI. CONCLUSION

In this work, we showcased a collaborative construction of
dynamic HD maps for vehicular use cases. To decrease end-
to-end latency and communication footprint, we investigated

1 2 4 8 16 32
3
5
7

EpochD
el

ay
[s

] 3 layers, 32 clients 3 layers, 64 clients

Fig. 6: Delay comparison for different epoch values.

the performance gains of a hierarchical federated learning
approach stacking intermediate layers for fast aggregations
of local models. We also studied the advantages of content
caching for delivering HD maps to clients that do not take
part in the learning process or are in need of information that
is not local to them. We provided theoretical and experimental
analysis and concluded that our proposed techniques can sig-
nificantly reduce the delay of delivering relevant information to
end-users. Indeed, our FL scheme managed to proportionally
increase the number of served users by increasing the number
of layers while keeping the serving delay steady.

REFERENCES

[1] Amazon Web Services, Inc, “5G Edge Computing Infrastructure - AWS
Wavelength.” https://aws.amazon.com/wavelength/, 2023. Accessed:
2023-01-06.

[2] Y. Khalidi, “Microsoft partners with the industry to unlock new 5G
scenarios with Azure Edge Zones.” https://azure.microsoft.com/hu-
hu/blog/microsoft-partners-with-the-industry-to-unlock-new-5g-
scenarios-with-azure-edge-zones/, 3 2020. Accessed: 2023-01-06.

[3] A. Phadke, “Bringing partner applications to the edge with
Google Cloud.” https://cloud.google.com/blog/topics/anthos/
anthos-for-telecom-puts-google-cloud-partners-apps-at-the-edge,
12 2020. Accessed: 2023-01-06.

[4] Continental AG, “Continental Continues to Drive Forward the Develop-
ment of Server-based Vehicle Architectures.” https://www.continental.
com/en/press/press-releases/20210728-cross-domain-hpc/, 2021. Ac-
cessed: 2023-01-06.

[5] Marquez-Barja et al., “Smart Highway: ITS-G5 and C2VX based
testbed for vehicular communications in real environments enhanced
by edge/cloud technologies,” in EuCNC, p. 2, IEEE, 2019.

[6] B. McMahan et al., “Communication-Efficient Learning of Deep Net-
works from Decentralized Data,” in AISTATS, PMLR, 2017.

[7] R. Liu et al., “High definition map for automated driving: Overview and
analysis,” J. Navig., vol. 73, no. 2, pp. 324–341, 2020.

[8] V. Kjorveziroski et al., “Kubernetes distributions for the edge: Serverless
performance evaluation,” J. Supercomput., vol. 78, no. 11, 2022.

[9] Y. Liu et al., “FATE: An industrial grade platform for collaborative
learning with data protection,” J. Mach. Learn. Res., vol. 22, jan 2021.

[10] D. J. Beutel et al., “Flower: A friendly federated learning research
framework,” arXiv preprint, 2020.

[11] M. Abadi et al., “TensorFlow: Large-scale machine learning on hetero-
geneous systems,” 2015. Software available from tensorflow.org.

[12] J. Posner et al., “Federated learning in vehicular networks: Opportunities
and solutions,” IEEE Network, vol. PP, pp. 1–8, 02 2021.

[13] J. Xie et al., “An energy-efficient high definition map data distribution
mechanism for autonomous driving,” arXiv preprint, 2020.

[14] X. Wu et al., “A Cooperated Approach Between V2I and V2V for High
Definition Map Dissemination in Automated Driving,” in GASS of the
International URSI, IEEE, 2020.

[15] X. Xu et al., “Distributed online caching for high-definition maps in
autonomous driving systems,” IEEE WCL, vol. 10, no. 7, 2021.

[16] H. Peng et al., “SDN-based resource management for autonomous
vehicular networks: A multi-access edge computing approach,” IEEE
Wirel, vol. 26, no. 4, 2019.

[17] R. Zhang et al., “The application of edge computing in high-definition
maps distribution,” in ACM WSSE, 2020.

[18] P. Hintjens, “ZeroMQ Guide.” https://zguide.zeromq.org/docs/preface/,
2023. Accessed: 2023-01-06.

[19] L. Liu et al., “Client-edge-cloud hierarchical federated learning,” in
IEEE ICC, 2020.

https://aws.amazon.com/wavelength/
https://cloud.google.com/blog/topics/anthos/anthos-for-telecom-puts-google-cloud-partners-apps-at-the-edge
https://cloud.google.com/blog/topics/anthos/anthos-for-telecom-puts-google-cloud-partners-apps-at-the-edge
https://www.continental.com/en/press/press-releases/20210728-cross-domain-hpc/
https://www.continental.com/en/press/press-releases/20210728-cross-domain-hpc/
https://zguide.zeromq.org/docs/preface/

	Introduction
	Use case description
	Related work
	Edge-focused Kubernetes platforms
	Federated learning in vehicular networks
	Distributed caching in vehicular networks

	System modeling
	Federated learning-based data aggregation and sharing
	Information distribution and caching for moving clients

	Evaluation
	Upstream: aggregation with federated learning
	Downstream: HD map caching
	Evaluation of the federated learning aggregation delay

	Conclusion
	References

