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Abstract—Massive multiple-input multiple-output (MIMO) is
a key technology for fifth generation (5G) communication system.
MIMO symbol detection is one of the most computationally
intensive tasks for a massive MIMO baseband receiver. In
this paper, we analyze matrix decomposition algorithms for
massive MIMO systems, which were traditionally used for small-
scale MIMO detection due to their numerical stability and
modular design. We present the computational complexity of
linear detection mechanisms based on QR, Cholesky and LDL-
decomposition algorithms for different massive MIMO config-
urations. We compare them with the state-of-art approximate
inversion-based massive MIMO detection methods. The results
provide important insights for system and very large-scale
integration (VLSI) designers to select appropriate massive MIMO
detection algorithms according to their requirement.

Index Terms—Massive-MIMO, approximate matrix inversion,
matrix decomposition, QR, LDL, Cholesky.

I. INTRODUCTION

Massive MIMO is a key technology for fifth generation (5G)
communication systems to achieve very high performance
within the available radio spectrum. It is an extension of
conventional small-scale MIMO, where a large number of
antennas are used at the base station (BS) which serves a large
number of users to achieve high data throughput and spectral
efficiency [1], [2]. Massive MIMO can provide uniform good
service to the user terminals with a high mobility environment.
However, the benefit of massive MIMO systems come with
the disadvantage of computational complexity. The complexity
of symbol detection algorithms grows exponentially as the
number of antennas increase in a massive MIMO system [3].
Due to the high number of antennas, conventional linear
detectors also require large matrix inversion. Hence, in the
past decade, a new class of detectors based on approximate
inversion has become a popular choice in very large-scale
integration (VLSI) implementation.

Approximate inversion-based detectors (AID) utilize chan-
nel hardening properties of massive MIMO systems to calcu-
late the Gramian matrix inversion. This class of detectors work
well for certain configurations of massive MIMO systems, for
example, when the ratio between numbers of BS antennas and
users is large [4]. However, their performance starts to become
unstable when this ratio gets smaller. Therefore, the focus
has been again shifting towards exact inversion-based linear

detectors for their guaranteed performance and robustness [5]–
[8]. As the semiconductor technology has also matured greatly
over the past decade, the focus has been shifting towards
applying better system design than saving every possible logic
gate. Telecommunication industries are not always interested
in saving logic area by adopting an unstable and risky solutions
for their products. Therefore, we envision that exact inversion-
based solutions will be more popular in the future for massive
MIMO VLSI community.

Matrix decomposition algorithms have been extensively
utilized for the matrix inversion procedure of small-scale
MIMO detection. They provide better numerical stability over
straightforward inversion methods. In addition, they help to
achieve a modular design, where the whole procedure can
be divided and distributed between different developers. A
few popular matrix decomposition algorithms for linear de-
tection are QR, Cholesky and LDL decomposition. Despite
the importance of the matrix decomposition algorithms, their
complexity analysis for massive MIMO and comparison with
existing AID is lacking in the literature. An analysis of matrix
decomposition algorithms for small-scale MIMO detection
can be found in [9]. A comparison of explicit vs. implicit
approximate inversion has been provided in [10]. However,
[9] does not address the complexity from massive MIMO
perspective and [10] does not focus on the complexity of
matrix decomposition algorithms.

In this paper, we address this timely topic and analyze the
computation complexity of matrix decomposition algorithms
for massive MIMO. We also compare them with the state-of-
art AID for the massive MIMO. Several hard output simu-
lations to support our premise regarding different detection
mechanisms are also presented in this paper. We believe
these results will provide an important guideline to the VLSI
designers to select the appropriate algorithms that is suitable
to the product requirements.

The rest of the paper is organized in the following way: In
Section II, we discuss the system model of a massive MIMO
system. We also discuss linear detection, non-linear detection
in this section. In Section III, we introduce AID and provide
simulation results to demonstrate their instability for different
antenna configurations. In Section IV, we present different
matrix decomposition algorithms, and their application in
different types of detection methods with simulation results.
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In Section V, we present the complexity analysis and compare
with state-of-the-art AID methods. The conclusion is drawn
in Section VI.

II. SYSTEM MODEL AND DETECTION METHODS

A massive multi-user MIMO base-station (BS) with N
antennas is considered. We assume U single antenna users are
transmitting towards the BS, where U ≤ N . Assuming that
the channel between the users and BS antennas is frequency
flat, the relationship between the transmit and receive vector
can be characterized as

y = Hx+ n, (1)

where y ∈ CB is a received signal vector, x ∈ CU is a transmit
symbol vector, H ∈ CB×U is a channel matrix, and n ∈ CB

is a circularly symmetric complex white Gaussian noise vector
with zero mean and σ2 noise variance. The system is presented
in Fig. 7.
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Fig. 1: Massive MIMO system model.

A. Linear Detection

A MIMO symbol detector determines the transmitted sym-
bol vector x from the received signal vector y. The two
most popular linear detection are zero-forcing (ZF) and linear
minimum mean-square error (MMSE) equalization. The ZF
algorithm does not consider the effect of noise vector n, inverts
the channel matrix H to determine the transmitted vector.
Therefore, the ZF detection can be expressed as

x̃ZF = H†y = (HHH)−1HHy, (2)

where H† is a pseudo-inverse of H. The ZF detector requires
an inversion of the Gramian matrix, G, where GZF = HHH.

The MMSE detector is an improvement over the ZF, which
takes the noise into account. MMSE detection can be ex-
pressed as

x̃MMSE = (HHH+ σ2IU )
−1HHy, (3)

where IU is the U×U identity matrix. The Gramian matrix is
modified with a regularization by noise variance for MMSE,
i.e., GMMSE = HHH+ σ2IU .

B. Non-linear Detection

The earliest massive MIMO detectors are iterative non-
linear detectors, which are initialized with a linear detector,
and in subsequent iterations tries to update the results. Exam-
ple of such detectors include likelihood ascent search (LAS),
reactive tabu search (RTS), CHEMP etc. We present a non-
linear detector called ADMM-based Infinity-Norm Detection
(ADMIN), proposed in [11], to show how these non-linear
detectors for massive MIMO works in general.

ADMIN solves a box-constrained detection problem with
a convex optimization method called alternating direction
method of multipliers (ADMM). The ADMM method can be
used to solve a convex problem by breaking it into smaller
problems in an iterative fashion. The first iteration of ADMIN
has been presented as,

x̃ADMIN = (HHH+ βI)−1(HHy + β(z− λλλ)), (4)

where β is an scaled form of σ2I. The values of z and λλλ
vectors are calculated with two other iterations of ADMIN.
When z and λλλ are initialized with zeros, (4) resembles the
MMSE equation. Thus, the ADMIN detection method is
also based on an inversion of a regularized Gramian matrix,
GADMIN = HHH+ βI.

III. INSTABILITY OF APPROXIMATE INVERSION-BASED
DETECTION

The exact inversion of the Gramian can be complex when
the number of users increases. For example, Gramian of a 16-
user system (U = 16) will be a 16× 16 matrix. Several AID
became popular in the VLSI community over the past decade
due to their less complexity. We present three such detectors
in this section and analyze their error-rate performance with
Matlab simulations.

A. Neumann Series Approximation

Gramian matrix G can be decomposed into a diagonal
matrix (X) and off-diagonal matrix (E) as G = X + E. The
Neuman series approximation (NSA) [12] of such a system
can be expressed as

G−1 =

∞∑
t=0

(
−X−1E

)t X−1. (5)

NSA only use inversions of the diagonal matrix, X , which can
be achieved with reciprocals of the diagonal elements. Both
precision and complexity of the inversion increases with more
iterations.

B. Gauss-Seidel Method

In Gauss-Seidel (GS) method, G can be decomposed as
G = D+L+R, where D, L and R are the diagonal component,
the strictly lower triangular component, and strictly upper
triangular component, respectively. The GS can be used to
estimate the transmitted signal vector x̂ as

x̂(t) = (D + L)−1
(

x̂MF − Rx̂(t−1)
)
, (6)

where x̂MF = HHy is a matched filter [13].
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C. Conjugate Gradient Method

Conjugate Gradient (CG) is another approximate method
used in the MIMO detection which can be formulated as

x̂(t+1) = x̂(t) + α(t)p(t), (7)

where p(n) is the conjugate direction with respect to the
Gramian matrix and α(n) is a scalar parameter which is
commonly known as the step size [14].

D. Error-rate Performance

We present error-rate simulation results for exact inversion-
based MMSE, and approximate inversion-based NSA, GS, and
CG detection methods. We have considered t = 3 iterations
of NSA, GS and CG detection methods. The bit error rate
(BER) of the detectors with respect to signal-to-noise (SNR)
ratios is shown in Figs 2-4. Here, we used 10,000 Monte-
Carlo trials for all simulations. The modulation scheme for
these simulations is 64QAM. We consider an i.i.d. Rayleigh
fading channel between the BS and users. In Fig. 2, the BER
for 256-antenna BS and 16 users is presented. Here, the NSA,
GS, and CG present very similar performance and perform as
well as the exact inversion-based MMSE. In Fig. 3, simulations
have been taken for 32 antenna BS and for 16 users. Here,
all AID performs poorly and can not detect received symbol
vectors properly. In Fig. 4, simulations have been taken for 64
BS antennas and 16 users. Here, NSA and CG detectors can
not detect received symbol. However, GS detection method
provides good performance in this scenario where the MMSE
provides only 2 dB gain over the GS in this scenario.
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Fig. 2: Detector performance for 256 BS antennas and 16 users
with 64-QAM.

It is evident from the simulations above that all AID works
very well and can provide a competitive solution compared to
MMSE when the ratio between the BS antennas and number
of users is high. Therefore, for such a system, it is possible
to select low complexity AID methods. However, RF chains
and front-end logic associated with the antennas are expensive.
Therefore, having large number of antennas for a very small
number of users are not always feasible from design and cost
perspective. When the ratio of numbers between BS antennas
and users becomes smaller, performance of AID starts to
deteriorate as seen in Figs. 3 and 4. In extreme cases, when
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Fig. 3: Detector performance for 32 BS antennas and 16 users
with 64-QAM.
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Fig. 4: Detector performance for 64 BS antennas and 16 users
with 64-QAM.

the ratio becomes close or equal to 1, these detectors do not
function at all and fail to detect incoming symbol vectors. In
a nutshell, the performance of these detectors is not stable
and as the industry has to support various configurations for
their product, such detectors might not be the ideal solution
for them. Therefore, exact inversion-based detectors are still
going to be an attractive solution for industries for years to
come.

IV. MATRIX DECOMPOSITION ALGORITHMS

Instead of doing a straightforward matrix inversion, several
matrix decomposition methods can be used which are more
numerically stable. They also bring a modular design, where
an inversion process can be split into parts. Here, we mainly
focus on inverting the regularized Gramian matrix, which is
used in the MMSE equalization. In this section, we analyze
how three popular matrix decomposition algorithms, i.e. QR,
Cholesky and LDLT can be applied to find the MMSE
solution.

A. MMSE with QR

QR decomposition algorithm decomposes a U × U matrix
A as A = QR. Here, Q is an U × U unitary matrix with
orthogonal columns and R is an U×U upper triangular matrix



4

with non-zero diagonal elements. QR decomposition can be
applied to obtain the MMSE solution as

x̃MMSE = (GMMSE)
−1HHy

= (QR)−1HHy = R−1QHHHy.

There are several algorithms to compute the QR decomposi-
tion, such as, Gram-Schmidt process, Householder transforma-
tions, Givens rotation etc. We focus on Gram-Schmidt process
in this paper.

B. MMSE with Cholesky

Cholesky is another popular decomposition algorithm which
utilizes a U × U lower triangular matrix L to decompose a
U ×U matrix A as A = LLH. The MMSE can be calculated
as

x̃MMSE = (GMMSE)
−1HHy = (LLH)−1HHy

=⇒ LLHx̃MMSE = HHy

=⇒ Lz̃ = HHy and LHx̃MMSE = z̃.

Here, z̃ can be calculated by forward substitution and x̃ can
be solved by backward substitution.

C. MMSE with LDL

LDL is another popular decomposition algorithm which
decomposes a U × U matrix A as A = LDLH, where D
is a diagonal matrix and L is a lower triangular matrix with
zeros as diagonal. The MMSE can be calculated with the LDL
as

x̃MMSE = (GMMSE)
−1HHy = (LDLH)−1HHy

=⇒ LDLHx̃MMSE = HHy

=⇒ Lz̃ = HHy and LHx̃MMSE = D−1z̃.

Similar to Cholesky, z̃ can be calculated by forward substitu-
tion and x̃ can be solved by backward substitution.

D. Error-rate Performance

We present error-rate performance of MMSE, ADMIN and
single-input multiple-output (SIMO) in Fig. 5 and 6. Similar
to earlier simulations, 10,000 Monte-Carlo trials are used. The
communication channel between BS and users is assumed to
be i.i.d. Rayleigh Fading channel. The MMSE utilizes QR
and ADMIN utilizes LDL decomposition in these simulations.
We take t = 5 iterations of ADMIN in this simulations.
In Fig. 5, the detectors are simulated for 32 BS antennas
supporting 32 users transmitting with 64-QAM. It can be
noticed that even the exact matrix inversion-based MMSE can
not provide a satisfactory performance with high power, i.e.,
can not bring the error-rate below 10−2 with approximately
35 dB of SNR. ADMIN provides about 5 dB gain over MMSE,
which is a significant margin for communication systems using
higher order modulation. Fig. 4 shows, when the ratio of
numbers between BS antennas and users is small, non-linear
detectors are required for necessary performance gain. Most
of these non-linear detectors are based on exact inversion

and matrix decomposition algorithms will be crucial for their
implementation. The non-linear detectors can also provide
very high gain compared to MMSE for other scenarios. In
Fig. 5, ADMIN with t = 5 iterations can provide around
10 dB gain over MMSE algorithm. In this case, the difference
between the SIMO bound and ADMIN is less than 10 dB.
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Fig. 5: Detector performance utilizing matrix decomposition
for 32 BS antennas and 32 users with 64-QAM.
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Fig. 6: Detector performance utilizing matrix decomposition
for 32 BS antennas and 32 users with QPSK.

V. COMPLEXITY ANALYSIS

We analyze the complexity of matrix decomposition algo-
rithms in this section. First, we explain in detail how we com-
puted the complexity of QR decomposition based on classical
Gram-Schmidt process. We calculate the complexity of Gram-
Schmidt applied on a U × U matrix because the Gramian is
always square in the MMSE. Real multiplications dictate the
overall complexity of an algorithm as they take significantly
more logic than additions or subtractions. Therefore, we focus
on real multiplications for comparing the algorithms. Classical
Gram-Schmidt algorithm is presented in Algorithm 1.

In line 3 of Algorithm 1, norm of a vector is computed
as ri,i = ‖qi‖2. For norm calculation, we need a total of
U2 number of complex multiplications. Here, U number of
multiplications are required for a single norm and we need a
total of U norms. For qi = qi/ri,i, a total of U reciprocals
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Algorithm 1 Classical Gram-Schmidt

input: A
outputs: Q, R
1: Q = A
2: for i = 1, . . . , U
3: ri,i = ‖qi‖2
4: qi = qi/ri,i
5: for j = i+ 1, . . . , U
6: ri,j = qH

i qj

7: qj = qj − ri,jqi

8: end
9: end

needed to compute 1
ri,i

and these real-valued reciprocals will
be multiplied U2 times to the complex valued qi. Thus, a
total 2U2 real multiplications are needed for line 4. Next,
ri,j = qH

i qj implies a vectorvector multiplication where each
vector has U complex elements. Therefore, we need U number
of complex multiplications for a single qj . Here, we have
U(U−1)

2 number of off-diagonal elements in a U × U matrix.
So, we have

(
U(U−1)

2

)
U number of complex multiplications

for ri,jqi. Similarly, we get a total of
(

U(U−1)
2

)
U multipli-

cation for ri,jqi. The operations are presented in Table I.

TABLE I: Operations of classical Gram-Schmidt

Line Equation Operations

3 ri,i = ‖qi‖2 U2 complex multiplication

4 qi = qi/ri,i 2U2 real multiplication

6 ri,j = qH
i qj

(
U(U−1)

2

)
U complex multiplication

7 qj = qj − ri,jqi

(
U(U−1)

2

)
U complex multiplication

Therefore, we get the total number of complex multiplica-
tion (CM) for Gram-Schmidt as

CM = U2 +
(U(U − 1))

2
U +

(U(U − 1))

2
U

= U2 + 2
U2(U − 1)

2
= U2 + U3 − U2 = U3

We assume, a complex-complex scalar multiplication hardware
unit utilizes four real multiplication units and a real-complex
scalar multiplication unit utilize two real multiplication units.
Therefore, we get 4U3 real multiplication from the U3

complex multiplication. We add this with number of real
multiplications (RM) for line 4, which leads to

RM = 4U3 + 2U2 = U2(4U + 2).

Similarly, we calculate the number of multiplications re-
quired for Cholesky decomposition from Algorithm 2. A total
of U(U−1)

2 complex multiplication is required to compute the
diagonal elements of L (line 3). The off-diagonal elements
require a total of U3−3U2+2U

6 complex multiplication (line 5).
Therefore, the total number of complex multiplication is

CM =
U(U − 1)

2
+
U3 − 3U2 + 2U

6
=
U3 − U

6

Algorithm 2 Cholesky Decomposition

input: A
outputs: L
1: for i = 1, . . . , U
2: j = 1, . . . , i− 1
3: Li,i =

√
Ai,i − Li,jL∗i,j

4: for k = i+ 1, . . . , U

5: Lk,i =
1

L∗i,i

(
Ak,i − Lk,jL

∗
i,j

)
6: end
7: end

Computation of Cholesky also requires a U number of recipro-

cals of
1

L∗i,i
, which are then multiplied in line 5. Therefore, we

require an additional U(U−1) real multiplications. Therefore,
the total number of real-multiplication is

RM = 4
U3 − U

6
+ U(U − 1) =

2U3 + 3U2 − 5U

3
.

The complexity of LDL decomposition is very similar to that
of Cholesky with an additional 4U(U−1) real multiplications.
We provide Table II with more detail of the operations required
for the matrix decomposition algorithms. The number of real
multiplication, addition and subtractions for QR is signifi-
cantly higher than Cholesky and LDL decomposition. The
complexity of Cholesky and LDL are almost similar except
the additional multiplication required for LDL and the square
root operations required for Cholesky.

A. Comparison against approximate inversion-based detectors

A comparison of the matrix decomposition algorithms and
the AID methods is presented in Table III. All the matrix
decomposition algorithms and NSA scale with U3 while
GS and CG methods scale with U2 in terms of operations.
The cubic complexity of NSA originates from the matrix
multiplications associated with every iteration t in (X−1E)t.
For example, for t = 3, we have to compute a P ∗ P ∗ P
where P = X−1E. In Fig. 7, matrix decomposition algorithms
and the AID methods are compared in terms of numbers
of real multiplication required for each algorithm. Here, the
AIDs applied t = 3 iterations each. From this figure, the QR
decomposition and the NSA are significantly more complex
than the other algorithms. Cholesky and LDL provide similar
complexity, which is also supported by the operation numbers
of Table II. GS and CG methods require the least number of
multiplications for their execution.

As Cholesky and LDL provide significantly less complexity
over the QR decomposition, they are ideal choice for im-
plementation platforms. These algorithms even provide lower
complexity than NSA. The error-rate performance of the CG
method is not satisfactory according to Figs. 3 and 4. On the
other hand, GS method is very promising as it outperforms
other AIDs in terms of error rate while using low number of
operations. From Fig. 7, the number of operations required
for GS is less than half of Cholesky and LDL. It should be
noted that the channel model utilized in this work is i.i.d.
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TABLE II: Operations in detail for matrix decomposition algorithms

No. of users Algorithm Square root Reciprocal Multiplication Addition Subtraction

8
Gram-Schmidt 8 8 2432 604 576

Cholesky 8 8 392 42 36
LDL - 8 560 42 36

16
Gram-Schmidt 16 16 17920 4532 4352

Cholesky 16 16 2960 210 136
LDL - 16 3680 210 136

32
Gram-Schmidt 32 32 137216 34660 33792

Cholesky 32 32 22816 930 528
LDL - 32 25792 930 528
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Fig. 7: Complexity comparison of matrix decomposition algo-
rithms and approximate inversion-based detectors.

TABLE III: Complexity comparison

Algorithm Computational complexity

QR U2(4U + 2)

Cholesky 1
3
(2U3 + 3U2 − 5U)

LDL 1
3
(2U3 + 12U2 − 14U)

NSA (t− 1)(2U3 + 2U2 − 2U)

GS 6tU2

CG (t+ 1)(4U2 + 20U )

and therefore, the performance of the GS method might suffer
in a more realistic channel model. We plan to compare GS,
Cholesky, LDL in a more realistic channel model for our future
works.

VI. CONCLUSION

We presented an analysis of matrix decomposition algo-
rithms from massive MIMO context and their suitability for
VLSI design of massive MIMO detectors. We compared
massive MIMO detection algorithms based on approximate
inversion and conventional matrix decomposition algorithms.
The results will provide a guideline to select the appropriate
algorithm for the research community. We concluded that
Cholesky and LDL are viable solutions for massive MIMO
detection. We also found that the GS can be an attractive
approximate inversion-based detector which might provide a
good balance between error-rate performance and complexity.
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