
LOCAL: LOW-COMPLEX MAPPING ALGORITHM FOR SPATIAL
DNN ACCELERATORS

A PREPRINT

Midia Reshadi∗
School of Computer Science and Statistics

Lero, Trinity College Dublin
Dublin 2, Ireland

Midia.Reshadi@tcd.ie

David.Gregg
School of Computer Science and Statistics

Lero, Trinity College Dublin
Dublin 2, Ireland

David.Gregg@tcd.ie

November 8, 2022

ABSTRACT

Deep neural networks are a promising solution for applications that solve problems based on learning
data sets. DNN accelerators solve the processing bottleneck as a domain-specific processor. Like
other hardware solutions, there must be exact compatibility between the accelerator and other software
components, especially the compiler. This paper presents a LOCAL (Low Complexity mapping
Algorithm) that is favorable to use at the compiler level to perform mapping operations in one pass
with low computation time and energy consumption. We first introduce a formal definition of the
design space in order to define the problem’s scope, and then we describe the concept of the LOCAL
algorithm. The simulation results show 2× to 38× improvements in execution time with lower energy
consumption compared to previous proposed dataflow mechanisms.

Keywords Deep neural network · spatial DNN accelerators · mapping · low-complex algorithm.

1 Introduction

The growing amount of data brought learning-based systems from dreams to reality [1]. Among machine learning
methods, deep neural networks achieved better results; therefore, they have attracted much attention from both research
and industry [2],[3],[4]. Deep neural networks are widely used today in many applications such as self driving cars [5],
recommender systems [6], and language translation [7]. Due to performance bottleneck and high energy consumption
of processing all parts of DNN at the software level, domain-specific hardware, also called DNN accelerators, has been
proposed in both resource constraints devices such as IoT edge [8] and high performance cloud servers [3].

The design space of deep neural network accelerators comprises hardware resource and data mapping strategy [2].
The hardware resources generally consist of multi-level storage hierarchy to exploit data reuse [9] and an array of
processing elements (PE) to perform parallel computations. Each processing element, as shown in Fig. 1, comprises
multiply and accumulate (MAC) logic connecting to local scratch pad memory, and all PEs are connected through the
network-on-chip (NoC) interconnection.

Most of the proposed reference architectures [2][10][11][12] are different in their NoC topology and PE to memory
connection. For instance, MAERI [13] is based on two binary fat trees, and Eyeriss [2] and Google TPU [3] use 2D
grid-style topology. In some accelerators, the PE array is connected to only one internal scratchpad memory and, in
others, to multiple memory banks.

Another point in the DNN accelerator’s design is the data mapping strategy that deals with two important tasks: ¶
Staging data on the HW resources and, · operation scheduling (Fig. 1). In other words, data mapping answers two

∗This paper is published in: 2021 IEEE Nordic Circuits and Systems Conference (NorCAS), with DOI: 10.1109/Nor-
CAS53631.2021.9599862.

ar
X

iv
:2

21
1.

03
67

2v
1 

 [
cs

.A
R

] 
 7

 N
ov

 2
02

2



LOCAL: Low-Complex Mapping Algorithm for Spatial DNN Accelerators A PREPRINT

Figure 1: The overall concept of convolution tensors, their loop representation, and the mapping results of assigned
tensors to memory elements including DRAM, GLB, and PE Spad of spatial DNN accelerator.

fundamental questions, where data be placed? And when are operations performed? Fig. 1 shows the concept of the
mapping on spatial DNN accelerator.

The basic mapping methods [2] called dataflow [14] are based on reusing one of the primary convolution tensors, such
as filter weights, input, or output activations. For instance, NVDLA [4] employs a weight stationary strategy to reuse
weights, Eyeriss [2] uses row stationary, and ShiDianNao [15] employs output stationary.

Mapping is a more advanced concept than dataflow. It is about reusing multiple input values with specific ranges based
on the shapes of DNN, dimensions of PE-arrays, levels and size of storage elements. Recently proposed mapping
methods [16], [17] have shown that, beyond the reuse of only one parameter and also correct placement of several
parameters, more energy efficiency will be gained compared with conventional dataflow methods.

However, the vital issue in mapping is the vast search space of the solutions and complexity as far as we face O(108)
cases only in the fifth layer of VGG02 on Eyeriss accelerator that needs about 48 hours to find an optimal mapping
based on an exhaustive brute-force search method. This number of mapping choices can rise to O(1072) for the 52-layer
MobileNet-V2 [18][19].

Typically, the mapping strategy is deployed in the design-phase [20][21] or compile-time [22]. Hence, finding the
optimal mapping in the design-time is essential but critical when it needs to be solved in compile-time. Several mapping
algorithms have been proposed using evolutionary or learning-based algorithms to solve a problem [18][19], although,
applying them at the compiler level extends the compile time due to many running iterations.
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To tackle the complexity and reducing mapping time, we propose a mapping algorithm called LOCAL. LOCAL’s
primary goal is finding a close-to optimal mapping in low computation time with admissible energy consumption.

We formally describe the problem to reach a clear and structured solution then we present the LOCAL mapping
algorithm. Finally, we contrast our approach against other dataflow mechanisms, including weight, output, and row
stationary in NVDLA, ShiDianNao, and Eyeriss accelerators, respectively.

Therefore, the main contributions of this paper are as follows:

• Problem formulation. We formulate the problem to achieve an accurate definition of the scope of the problem.
Problem formulation defines the scope and dimension of the problem, so that helps to find an optimal solution
between massive solution options.

• A low-complexity one-pass mapping algorithm. We propose a low complexity mapping algorithm called
LOCAL with 2× to 38× higher speed compared to other dataflow mechanisms.

• Usability at the compiler level. LOCAL can perform a fast mapping at runtime in a single pass, making it a
favorable option for compiler-level implementation.

• Low energy consumption. The second goal of LOCAL is reducing energy consumption. Simulation results
show LOCAL is more energy-efficient than conventional dataflow techniques.

The paper is organized as follows: Section II provides preliminaries on convolution and spatial DNN accelerator;
Section III presents the paper’s motivation; Section IV presents problem formulation; Section V describes LOCAL
mapping algorithm in detail; Section VI presents comprehensive evaluations; Section VII presents related work and
Section VIII concludes the idea.

2 Preliminaries

The main assumptions of this paper are DNN and accelerator, and the final goal is the mapping algorithm that accepts
those assumptions as inputs. This section introduces the basic definitions of convolution in modern DNNs and the
structure of spatial DNN accelerators.

2.1 Convolutions

Definition 2.1: A convolution tensor (CT) comprises three tensors: filter weights, input and output feature maps. Hence,
we define CT as:

CT = {Weight, Input,Output} (1)
which

CT ∈ Rdimension (2)
and, dimensions are:

dimension = {N,M,C,R, S,W,H, P,Q} (3)
which, W ∈ RMCRS , I ∈ RNCHW , and O ∈ RNMPQ, are filter weights, input and output feature maps, respectively.

cti ∈ CT (4)

CT = {ct1, ct2, ct3} (5)

CT = {RMCRS ,RNCHW ,RNMPQ} (6)
We specify a shape of tensor as rx ∈ tci that is:

rx ∈ Ry x, y ∈ dimension (7)

For example:
rc ∈Weight→ rc ∈ RMCRS (8)

We may summarize that, various CNNs have different tensor dimensions. In the software layer each tensor is defined as
a loop-nests; for example, the related loop of rc is:

rc → for c in range(C) (9)

For better illustration, Fig. 1 depicts the loop representation and matrix shape of convolution tensors. The mapping
result is also shown in Fig. 1 which are mapped tensors to the storage elements of an accelerator.
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Figure 2: (a) NVDLA-style: 1D memory array and a 2D array of processing elements (PE) in (m,n) dimensions. (b)
Eyeriss-style: 1D memory in each level, multiple memory elements in level 1 (1, n) , and 2D arrays of PEs in (m,n).

2.2 Spatial DNN accelerator

Definition 2.2: A spatial DNN accelerator (SPA) comprises an array of multi-level storage elements with hierarchy and
array of processing elements:

SPA = {Storage[i, j, k], PE[m,n]} (10)
Storage elements are:

sij,k , S ∈ Ri,j,k (11)

That i means the hierarchy level, and j and k are the indices of memory elements in a 2D space. Fig. 2(b), depicts an
example of representing a memory element as si=1j=0,k=n−1

, that means the position of the memory element mn−1 in
the 1st level of hierarchy in j = 0 and k = n− 1 dimension. For better readability, we present s[i, j, k] as sij,k .

The size of each storage element s ∈ S at the ith level is equal to:
|s| = Depth×Width (12)

Meanwhile, the array of processing elements is defined as:
PEm,n ∈ Rx,y (13)

which, all (m× n) PEs are connected by a Network-on-Chip (NoC).

Based on the connection between global memory and a array of processing elements, we consider two different
accelerator types.

The first architecture, called NVLDA-style, comprises two internal memory elements (L0 registers at PE and global
buffer as L1). The second architecture, called Eyeriss-style, includes three internal memory levels, including L0 at
PE, 1D array of multiple elements as L1, and global buffer as L2. The purpose of using L1 memory elements is to
connect each mk elements with the range of k = 0→ n− 1 to the column of PEi,j in the range of i = 0→ m− 1
and j = 0→ n− 1. Therefore, we can summarize the memory to PE connections as follows:
NVDLA-style (Fig. 2(a)):

Level 1 (L1): si=1j=0,k=0

si=1j=o,k=0
connects to PEi=0→m−1,j=0→n−1 (14)

Eyeriss-style (Fig. 2(b)):

Level 1 (L1): si=1j=0,k=0→(m−1)

si=1j=0,k=0
connects to PEm=0→(m−1),n=0 (15)

si=1j=0,k=n−1
connects to PEm=0→(m−1),n=(n−1) (16)

Fig. 2 shows the summarized and abstract structure of the spatial DNN accelerator. We represent the structural features
of Eyeriss and NVDLA-style accelerators to achieve a clear problem definition.
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2.3 Mapping Algorithm

The mapping of the convolution tensors (CT) onto the spatial DNN accelerator (SPA) is defined by the mapping function,
including the following operations:

1. Assignment. Tensor assignment means assigning tensors to storage elements:

cti ∈ CT assign to sij,k ∈ S (17)

2. Bounding. Bounding is the process of limiting tensor dimensions so that they are smaller than the size of
storage elements:

|CT | ≤ |S| (18)

Hence, the tensor assignment is bounded by a specific range:

cti[0, range] ∈ CT assign to sij,k ∈ S (19)

For example rQ tensor with the following for-loop representation is assigned to si=1j=0,k=0
memory element

at the 1st level of memory hierarchy:

for Q in [0, 5) assigned to si=1j=0,k=0

3. Scheduling. Tensor order scheduling is the permutation of every allocated tensor. To be more precise, it
involves defining the tensor order.

cti, ctj , ctk ∈ CT assign to Li (20)
such that:

cti[0, rangi)

ctj [0, rangj)

ctk[0, rangk)

Thus, the permutation is in the order of cti,ctj ,ctk, respectively. For example, at the ith level of memory, we
may have the following order:

for M in [0, 5)

for Q in [0, 4)

for P in [0, 6)

4. Parallelization. Spatial partitioning of assigned tensors is known as parallelization. More specifically, it refers
to assigning a tensor to a subset of PEs in order to carry out parallel computation.

Spatial computing → cti[0, rang) (21)

which, cti[0, rang) is:
cti[0, rang) ∈ CT on PE[i to j] (x|y) ∈ PEs (22)

For example:
Parallel_for S in [0,7) on PE[0-7) Spatial X dimension
Fig. 1 shows the example of final mapping results includes assigned, bounded, scheduled, and parallelized
tenors to storage elements (DRAM, GLB, and PE Spad).

3 Motivation

To show the importance of the mapping strategy on energy consumption, we conducted an experiment generating
3,000 random mapping cases without any heuristics. We randomly map the fifth layer of VGG02 on the Eyeriss-style
accelerator according to the configuration shown in Table 1. The results are classified into three categories, including
random_max, random_med, and random_min, as the cases with maximum, median, and minimum energy consumption,
respectively. Fig. 3 shows, there is 77% difference between the random_max and the random_med and 90% between the
random_med and random_min cases. As we can see, the random mapping does not necessarily find the optimal solution,
but it still manages to save almost 90% when compared to the median and minimum solutions. The energy-saving rises
when the number of randomly generated mapping increases.
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Table 1: The features of Eyeriss spatial DNN accelerator (SPA) and the shapes of the fifth layer of VGG02 convolution
tensors (CT).

SPA architecture CT shapes

SPA Eyeriss CT Layer 5
VGG_02

On-chip
storage levels 2 C 128

DRAM(width) 64 M 256
L1 (depth,width) (16384, 64) N 1
L0 (depth,width) (16,16) P 56

PE array (12,14) Q 56
R 3
S 3

Figure 3: Energy consumption of random mapping.

Based on CT shapes and levels of the memory hierarchy in Eyeriss, the map-space is (n!)m, while n is the number
of loop-nests that can be swapped randomly, and m is the number of storage levels. Since the mapping space of
the fifth layer of VGG02 with six nested loop on Eyeriss with three storage levels is equal to O(108) = (6!)3. As a
result, calculating the energy and latency of all mapping cases with searching by exhaustive brute-force methods will
take a long time. In this example, the structure of an accelerator is already specified, but if we need to decide on the
number of processing elements, we will have O(109) = 642 × 2242 × 32 design cases for the second layer of VGG16
(K = 64, C = 64, Y = 224, X = 224, R = 3, S = 3).

Thus, the entire design space, including the accelerator configuration and mapping-space, is equal to O(1017) =
642 × 2242 × 32 × 6!3.

As we can see, this design space is hard to enumerate, so a low-complex mapping algorithm is needed. The following
section introduces the LOCAL algorithm that finds the nearly optimal energy-efficient solution 2×−38× faster than
other dataflow mechanisms.

4 Problem formulation

Given the convolution tensor characteristics and the structure of the spatial DNN accelerator, our objective is to map the
convolution tensors (CT) to the spatial DNN accelerator (SPA) such that the energy consumption is minimized under a
minimum complex mapping algorithm. Of note, maximizing the number of inferences per second causes maximizing
the PE utilization and minimizing energy consumption [23]. More formally:

Given: A convolution tensors (CT), and a spatial DNN accelerator (SPA).

Find: a mapping function that maps convolution tensors to a spatial DNN accelerator to minimize:
min {energy} (23)

and maximizing:
max {PE utilization} (24)

such that:
utilization of PEs =

number of active PEs

number of PEs
(25)
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Figure 4: The pseudo code of LOCAL algorithm.

Accordingly, high PE utilization is achieved by keeping the maximum number of PEs active, and this is achieved by
proper data assignment and operation scheduling.

5 LOCAL mapping algorithm

The main feature of the LOCAL mapping algorithm is low complexity, which provides an appropriate mapping in
one pass and a short amount of time. The mapping algorithms that were previously proposed [18][19] were iterative
and had long execution times. The main idea behind the LOCAL algorithm is to achieve maximum parallelism by
performing spatial mapping of effective tensors, because high parallelism leads to increased PE utilization, as presented
in Eq.(25). As Fig. 4 shows, the LOCAL algorithm takes convolution tensors (cti ∈ CT ), storage elements (sij,k ∈ S),
and dimensions of PEs as input and gives the final mapping as assigned tensors to storage elements with specified
ranges, schedules, and parallelized features.

According to Fig. 4, the LOCAL mapping algorithm consists of three main steps, parallelization, assignment, and
scheduling.

Parallelization is the first step due to its importance. In this step, the parallelized tensors are considered based on the
type of accelerator. According to Fig. 2, Eq. (14-16), the main difference between Eyeriss and NVDLA style is the
number of storage blocks at the level i = 1, and also their connection to an array of PEs. While the type of accelerator
is NVDLA-style, C and M as effective shapes are mapped spatially on the x and y dimensions of PE-array, respectively
(lines 3-5), which causes increasing PE utilization as well as energy efficiency (Fig. 5). Likewise, the two most effective
shapes in the Eyeriss-style, Q and S, are mapped in parallel to the x and y dimensions of PE-array, respectively (lines 7
and 8) (Fig. 5).

The next step, called an assignment, assigns the rest of the unassigned tensors to memory elements with priority from
the lowest to the highest level (lines 11-16).

The final phase is scheduling, which permutes assigned tensors to give lower-level memory elements larger range due to
the lower energy cost at lower levels of memory than at higher levels (Lines 18-22). After running the LOCAL algorithm,
the assigned tensors with their range, parallelization, and loop-scheduling are determined to be the algorithm’s output.
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Figure 5: Tensor spatial mapping (parallel_for) in Eyeriss and NVDLA-like accelerators.

Figure 6: Simulation framework.

6 Evaluation

6.1 Method

To simulate the LOCAL algorithm and compare it with other dataflow mechanisms, we added the LOCAL mapping to
the source code of the Timeloop-Accelergy framework [24][25][26]. Fig. 6 shows the simulation framework.

6.2 Simulation Workloads

To achieve a fair simulation, we categorized the workloads based on the magnitude of four main parameters of the
convolution layers, including C, M , P , and Q. This category, with more details about the number of MAC operations,
is shown in Table 2. We applied our proposed mapping to the Eyeriss, NVDLA, and ShiDiaNao accelerators and
compared it with the row, weight, and output stationary, respectively. Comparisons are made based on two main
parameters: energy consumption and mapping time. Mapping time is based on seconds and is equal to the duration of
time it takes to find the proper map. Table 3 shows the mapping times for Eyeriss, NVDLA, and ShiDianNao with
LOCAL mapping and their dataflows. The calculation time of row, weight, and output stationary are extracted from
the Timeloop-Accelery framework by defining data-reuse constraints. Furthermore, the mapping time of the LOCAL
algorithm is evaluated based on employing the LOCAL mapping function inside the Timeloop. It should be noted that
the different mapping times of the LOCAL algorithm in Table 3 are due to the variation of DNN layer shapes.

As can be seen from Tables 3, LOCAL reaches 34×, 38×, and 49×, faster calculation time than row, output, and
weight stationaries. Since in those dataflows, we still need many comparisons to select the appropriate case despite the
definition of numerous constraints. It is noteworthy that we have several cases in each stationary method that differ due
to parallel for-loops. For this reason, we need many comparisons in choosing the proper case.
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Table 2: Workload categories

Category Workload Number of MAC
operations

High C value
22nd conv layer of Resnet50 51380224
23rd conv layer of SqueezNet 5537792
9th conv layer of VGG16 1849688064

High M value
25th conv layer of SqueezNet 24920064
24th conv layer of ResNet50 51380224
8th conv layer of VGG16 924844032

High P and Q
values

1st conv layer of SqueezNet 708083712
1st conv layer of ResNet50 472055808
1st conv layer of VGG16 86704128

Table 3: The mapping time of Eyeriss, NVDLA, and ShiDianNao with LOCAL mapping and their dataflows.

Workload Convolution
Mapping
mecha-
nism

Mapping
time (sec)

Mapping
mecha-
nism

Mapping
time (sec)

Mapping
mecha-
nism

Mapping
time (sec)

High C
value

Resnet50: Conv 22 RS 87 OS 576 WS 127
LOCAL 16.2 LOCAL 15 LOCAL 6

VGG16: Conv 9 RS 170 OS 137 WS 68
LOCAL 10 LOCAL 15 LOCAL 9

SqueezNet: Conv 23 RS 17 OS 125 WS 21
LOCAL 16 LOCAL 67 LOCAL 18

High M
value

SqueezNet: Conv 25 RS 230 OS 126 WS 996
LOCAL 6.6 LOCAL 16 LOCAL 31

Resnet50: Conv 24 RS 74 OS 116 WS 42
LOCAL 22 LOCAL 28 LOCAL 12

VGG16: Conv 8 RS 351 OS 98 WS 411
LOCAL 12 LOCAL 32 LOCAL 24

High P
and Q
values

SqueezNet: Conv1 RS 60 OS 20 WS 2238
LOCAL 5.1 LOCAL 7 LOCAL 45

Resnet50: Conv 1 RS 90 OS 60 WS 140
LOCAL 6 LOCAL 13 LOCAL 23

VGG16: Conv 1 RS 81 OS 24 WS 113
LOCAL 6.6 LOCAL 6 LOCAL 17

Fig. 7 shows the energy consumption of previously proposed dataflows including, row, output, and weight stationary
for Eyeriss, ShiDianNao, and NVDLA accelerators. As expected, a large portion of the energy consumption is related
to DRAM, and we can also conclude that if the amount of data movement between memory elements and the array of
processing elements is reduced, we can achieve higher energy efficiency. Another conclusion that can be drawn from
the results is that the LOCAL algorithm has achieved acceptable results in terms of energy consumption in a short
processing time compared to other dataflows.

7 Related Works

DNN accelerators, like any other processing hardware, have two essential design points: components and data.
Components are primary hardware resources, and data is the input of an accelerator. The focus of this paper is on the
data side, more precisely, the data mapping design point. A basic concept of dataflow and mapping method is reusing
data to reduce data movement between memory to PE-array, and PE to PE. Based on the category of [14] the primary
dataflow are, input [11], output [15], [27], [28], weight [4], [29], [30], [31], [32], row stationary [2] and no local reuse
[33].

Mapping strategy extended the idea of dataflow by reusing multiple parameters with specified ranges based on the
shape of DNN and hardware resources of an accelerator. For instance, we can cite mRNA [16] for MAERI [13] and
general methods including Marvel [17], dMazeRunner [34] and interstellar [35] that improves energy consumption.
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Figure 7: The energy consumption of LOCAL mapping algorithm comparing with row stationary dataflow in Eyeriss,
output stationary dataflow in Shi-diannao, and weight stationary in NVDLA. (a) Energy consumption of row stationary
and LOCAL mapping in Eyeriss with High C value workload. (b) Energy consumption of row stationary and LOCAL
mapping in Eyeriss with High M value workload. (c) Energy consumption of row stationary and LOCAL mapping
in Eyeriss with High P and Q values workload. (d) Energy consumption of output stationary and LOCAL mapping
in Shi-diannao with High C value workload. (e) Energy consumption of output stationary and LOCAL mapping in
Shi-diannao with High M value workload. (f) Energy consumption of output stationary and LOCAL mapping in
Shi-diannao with High P and Q values workload. (g) Energy consumption of weight stationary and LOCAL mapping
in NVDLA with High C values workload. (h) Energy consumption of weight stationary and LOCAL mapping in
NVDLA with High M values workload. (i) Energy consumption of weight stationary and LOCAL mapping in NVDLA
with High P and Q values workload.

Heuristic algorithms based on evolutionary [19] or learning-based [18] methods have been proposed to improve energy
consumption.

Several simulation frameworks have been developed to estimate primary parameters like latency and energy consumption.
Timeloop [25] employs Accelergy [24] to estimate energy consumption, mRNA [16] used the MAERI [13] energy
model, and MAESTRO [36] employs an analytical model.

8 Conclusion

One of the primary aspects in the design of spatial DNN accelerators is data mapping. Evaluation results indicate how
mapping affects energy efficiency. But another critical issue that directly impacts compile time is mapping-time. This
paper presents a low-complexity mapping algorithm called LOCAL, which finds an energy-efficient map rapidly. To
reach a clear definition of the mapping strategy and the problem’s scope, we formally represent the problem and goals.
Simulation results indicate an immense reduction in the execution time of mapping, with a considerable improvement
in energy consumption compared with other known dataflow mechanisms.
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