
Chalmers Publication Library

A Novel Speculative Pseudo-Parallel \Delta\Sigma Modulator

This document has been downloaded from Chalmers Publication Library (CPL). It is the author´s

version of a work that was accepted for publication in:

32rd NORCHIP 2014

Citation for the published paper:
Johansson, J. ; Svensson, L. (2014) "A Novel Speculative Pseudo-Parallel \Delta\Sigma
Modulator". 32rd NORCHIP 2014 pp. Article number 7004712.

http://dx.doi.org/10.1109/NORCHIP.2014.7004712

Downloaded from: http://publications.lib.chalmers.se/publication/204262

Notice: Changes introduced as a result of publishing processes such as copy-editing and

formatting may not be reflected in this document. For a definitive version of this work, please refer

to the published source. Please note that access to the published version might require a

subscription.

Chalmers Publication Library (CPL) offers the possibility of retrieving research publications produced at Chalmers
University of Technology. It covers all types of publications: articles, dissertations, licentiate theses, masters theses,
conference papers, reports etc. Since 2006 it is the official tool for Chalmers official publication statistics. To ensure that
Chalmers research results are disseminated as widely as possible, an Open Access Policy has been adopted.
The CPL service is administrated and maintained by Chalmers Library.

(article starts on next page)

http://dx.doi.org/10.1109/NORCHIP.2014.7004712
http://publications.lib.chalmers.se/publication/204262


A Novel Speculative Pseudo-Parallel ∆Σ Modulator
Jesper Johansson and Lars Svensson

Dept. of Computer Science and Engineering, Chalmers University of Technology, Sweden
jjesper@student.chalmers.se, larssv@chalmers.se

Abstract—We present a novel speculative pseudo-parallel
∆Σ modulator structure, which almost halves the logic depth
of the critical path in the pseudo-parallel Hatami structure.
Following Hatami, our modulator calculates a block of n con-
secutive output bits in parallel, and then employs a parallel-
serial interface to output the bits at n times the modulator clock
frequency. We circumvent the block-to-block dependence, which
limits the clock speed of the Hatami structure, by speculatively
calculating the outputs based on all possible output values of the
previous block, and then selecting the correct one. We present
cost and performance estimates for an initial implementation
of the modulator, synthesized towards an FPGA and an ASIC
technology.

I. INTRODUCTION

Delta-sigma (∆Σ) modulators are highly useful for improv-
ing the SNDR of an N -bit quantization operation beyond
the standard level of (6.02 · N + 1.76) dB for a full-range
sinewave input. In a ∆Σ modulator, a feedback-loop filter
creates separate transfer functions for the converted signal and
the quantization noise added by the core quantizer, reducing
the relative noise level in the band of interest. The noise-
shaping feedback loop allows the designer to keep the core
quantizer resolution low at the cost of a higher sample rate
and processing speed. In particular, a core quantizer resolution
of only one bit eliminates many linearity concerns [1].

As illustrated in Figure 1, a ∆Σ modulator works in
conjunction with a frequency-selective noise-suppression filter.
For example, a baseband, or lowpass, ∆Σ modulator pushes
quantization noise to high frequencies, where it may be
removed with a lowpass filter chosen to only marginally affect
the signal of interest.

The noise-shaping principle thus relies on faster-than-
Nyquist sampling. The ratio of the sample rate to the Nyquist
sample rate (the oversample ratio, or OSR), is a major design
parameter for ∆Σ modulators. A high OSR value facilitates a
high SNDR value; but a high OSR value with a large signal
bandwidth requires higher sampling and processing rates,

���
+ F1 Q F2

- - - - -

6
–

X Y

Figure 1: A schematic view of a ∆Σ modulator system,
showing the input signal X , the loop filter F1, the core
quantizer Q, the noise-suppression filter F2, and the output
signal Y .

which are expensive or in extreme cases even unreachable. The
OSR requirements may be somewhat reduced through careful
design of a higher-order ∆Σ modulator loop filter, but such
higher-order modulators have stability issues [2].

The ∆Σ principles are useful in ADC design as well as in
all-digital sample-stream generation. The work presented here
mainly concerns the generation of high-speed, low-resolution
digital signals where the noise suppression is carried out in
the analog domain.

II. PARALLEL MODULATOR APPROACHES

As the OSR requirements may make a certain performance
level unreachable for a given core quantizer resolution and
signal bandwidth, considerable effort has been spent on ap-
proaches to reduce these requirements, and thereby the clock
frequency requirements, through different variations of parallel
processing.

A summary and overview of several methods for parallel
∆Σ AD conversion is given by Eshraghi [3]. A conceptually
simple example is frequency-band decomposition [4]. Here, N
bandpass ∆Σ modulators with abutting frequency bands each
handle 1/N of the entire band of interest; ideally, the OSR
requirement will then apply to the sub-band width rather than
to the entire band, for a gain of a factor of N . The outputs
of the sub-band modulators must then be combined digitally
after noise-suppression filtering.

Other criteria than pure frequency may also be used to split
the signal information across several paths [5]. For example,
in time interleaving [3], several ∆Σ modulator channels pro-
duce alternate output samples. Such methods require carefully
selected and matched noise-suppression filters for the separate
paths and are not immediately applicable to an analog-filtering
case.

Recent work by Hatami [6] proposes to unroll the ∆Σ feed-
back loop in time, in order to compute several output samples
during each loop iteration. In contrast to the methods men-
tioned above, the Hatami method does not truly parallelize
the problem, but rather exposes the sequential operations
to rearrangement and optimization across computations of
several samples. As there is still only one modulator and one
sample stream, the complications of combining signal paths
and matching noise-suppression filters do not arise.

Figure 2 shows a block diagram of a Hatami “pseudo-
parallel” modulator (henceforth: P∆ΣM) unrolled by a factor
of four. Each processing element (PEi) in Figure 2 carries
out one iteration of the operations of a loop filter, given the
input value x[n] and the filter state variables. The filter state

978-1-4799-6890-9/14/$31.00 c©2014 IEEE



PE0 PE1 PE2 PE3 PEupdate

y[4n] y[4n+1] y[4n+2] y[4n+3]

x[n]

fs

P/S f’s

ŷ[4n] ŷ[4n+1] ŷ[4n+2] ŷ[4n+3]

Figure 2: Block diagram of a four-way-unrolled ∆Σ modulator
(P∆ΣM) as proposed by Hatami [6].

variables are updated by the final processing element and fed
back to all the PEis to prepare for the next cycle.

As multiple output samples are produced in a single cycle,
the effective OSR of the P∆ΣM is extended by the unrolling
factor UF (four, in the case shown in the figure). However,
Figure 2 also indicates that the critical path of the structure
passes from the x[n] input through all PEis and quantizers in
turn, before ending at the parallel/serial converter at the output.

The critical path determines the maximum reachable clock
frequency; therefore, for a given signal bandwidth and un-
rolling factor, the achievable OSR; and therefore, for a
given core quantizer resolution, the achievable SNDR. Thus,
a critical-path reduction may extend the bandwidth and/or
SNDR for the P∆ΣM approach.

III. SPECULATIVE MODULATOR ARCHITECTURE

In the work presented here, we use speculation to alleviate
the connection between the modulator critical path and the
clock frequency. We thus eliminate waiting for the result of
the previous iteration, at the expense of having to duplicate
the modulator for each possible set of output bits calculated in

A0

B

A1

B B

A0

A1

Tclk Tclk Tclk

Figure 3: Graphical representation of the different blocks in
the speculative modulator array and their interaction in time.
The A0 and A1 block arrays calculate the output bitstream;
the B block array updates the internal states. There is only
one physical instantiation each of A0, A1, and B.

1
z-1

1
z-1

X(z) 1
z-1

Y(z)d1 d2

d3

0.8

0.29

0.04

-2.2e-05

Figure 4: A third-order LP ∆Σ modulator used as a design
example.

the previous iteration of the modulator. Thus, our speculative
modulator architecture allows increased clock speed and OSR
at a cost of a significant increase in hardware.

In the following description, we assume an unrolling factor
of four, as illustrated in Figure 2; other factors are clearly
possible.

The speculative version of the P∆ΣM (henceforth:
SP∆ΣM) comprises two different block types. Block type A is
tasked with calculating four new output bits using the internal
states of the modulator d1[n], d2[n], d3[n] (see Figure 4), an
input value x[n], and a set of speculative previous output bits
ys[n] (see Figures 2 and 3). Sixteen such blocks (2UF ) are
needed to account for all possible values of ys[n]; these are
shown as a block array in Figure 3.

Block type B is responsible for updating the internal states
of the modulator from one iteration to the next, using only
the previous internal states d1[n − 1], d2[n − 1], d3[n − 1]
and the previous input value x[n − 1]. Again, sixteen blocks
are needed to cover all combinations of previous output
bits; in the P∆ΣM case shown in Figure 2, the output bits
enter into the calculations for the updated states, whereas in
the SP∆ΣM case, the bit values are known at design time
(although different for each block in the array).

The full modulator structure thus consists of three block
arrays: two arrays, each consisting of sixteen type A blocks,
operating in leapfrog fashion; and one array of sixteen type B
blocks.

The modulator operates as follows. As one modulator array
calculates the valid output bit y[n] of an input value x[n], the
other modulator array begins calculation of the next output bit
y[n + 1] based on the next input value x[n + 1]. Since each
array consists of 16 modulators, all possible results of y[n]
can be assumed in the array that calculates y[n + 1]. When
the first array finishes its calculation of y[n], the modulator
which will produce the correct y[n + 1] becomes known as
well. This modulator will in turn select the correct modulator
in the first array when it has finished its calculation of y[n+1],
etc.

The block-B array operates at fclk. Importantly, its critical
path determines the possible speed of the entire SP∆ΣM, since
speculation allows each of the block-A arrays to operate during
two clock cycles, and thus effectively at fclk/2 (see Figure 3).

IV. EXPERIMENTAL IMPLEMENTATION

Our initial validation of the SP∆ΣM principle is based on
a third-order modulator also used by Hatami, with UF = 4.



Figure 4 shows this modulator before unrolling. The three
integrators provide a third-order high-pass noise transfer func-
tion and thus a high SNR at low frequencies. In our case, the
driving system example is a purely digital RF signal generator
for wireless communications. In order to generate a high-pass
signal, the output of the original LP modulator was mirrored in
the frequency domain by inverting every other bit of the output
signal. The resulting signal corresponds to the baseband signal
fed into the modulator, transposed and mirrored at the Nyquist
frequency. Figure 5 shows MATLAB simulation results for a
single-frequency test signal, before and after a time-continuous
reconstruction filter.

Several minor implementation optimizations were applied
to both modulators. First, the constant multiplications shown
in Figure 4 were implemented as single-addition shift-and-
add operations, at a small pole/zero-placement accuracy cost.
Second, for each PE, the possible outputs were pre-calculated,
and the correct output result was selected on the arrival of the
result bit of the previous PE.

Careful inspection of Figure 4 reveals that computation of
the integrator input signals (implemented in blocks of type B
in SP∆ΣM) involve fewer operations than computation of the
input for the quantizer (implemented in blocks of type A), and
that the quantizer input computation has a higher adder depth.
(The actual blocks aggregate computations for UF iterations
of the original loop.) This observation provides an intuitive
explanation to the difference in size and delay of the block
types, and indicates what kind of ∆Σ loop structures would
tend to benefit from the SP∆ΣM treatment.

V. RESULTS

A. FPGA implementation

We synthesized our SP∆ΣM design as well as a Hatami-
style P∆ΣM design for a Xilinx Virtex 6 LX550-T with a
speed grade of –2 [7], for which a development board was
available. This FPGA includes high-speed parallel-in-serial-
out (PISO) transceivers which make it possible to generate
bitstreams at speeds significantly higher than the fabric speed.

0.7 0.75 0.8 0.85 0.9 0.95 1

−140

−120

−100

−80

−60

−40

−20

0

Frequency [GHz]

P
ow

er
 [d

B
]

 

 

Modulator output
Filtered and HP−trans signal
Passband
Reconstruction filter response
Desired Signal

Figure 5: Simulated spectra of the chosen third-order LP
∆Σ modulator, working at four times the Nyquist rate and
with UF = 4, for an effective OSR of 16. The sampling
frequency is 2 GHz. The output signal is mirrored in the
frequency domain by inverting every other bit.

delay delay 1/delay LUTs LUTs
(ns) (rel) (MHz) (rel)

P∆ΣM 6.6 1.00 152 476 1.00
SP∆ΣM 6.9 1.05 145 6746 14.2
– Block A 6.0 0.91 167 – –
– Block B 3.6 0.55 278 – –

Table I: Synthesis results for a Xilinx Virtex-6 FPGA for the
P∆ΣM and SP∆ΣM designs, respectively. Delay values for
the constituent blocks of the SP∆ΣM design are added for
comparison.

delay delay 1/delay area area power power
(ps) (rel) (GHz) (µm2) (rel) (µW) (rel)

P∆ΣM 1171 1.00 0.854 8160 1.00 10980 1.00
SP∆ΣM 893 0.76 1.12 90461 11.1 87546 7.97
– Block A 771 0.66 1.30 – – – –
– Block B 614 0.52 1.63 – – – –

Table II: Synthesis results for a 65-nm ASIC flow for the
P∆ΣM and SP∆ΣM designs, respectively. Delay values for
the constituent blocks of the SP∆ΣM design are added for
comparison.

The PISO principle also fits well with the Hatami principle
of generating the output bitstream several bits at a time. The
arithmetic operations in our implementation used a wordlength
of 8 + 3 bits.

We used Xilinx ISE v14.3 [8] to perform the synthesis,
optimizing for speed. All delays were evaluated using Xilinx
PlanAhead v14.3 [8]. Placement and routing were carried out
twice, optimizing for area and for speed, and the fastest of
the two results was chosen. The synthesis results are shown
in Table I.

The performance of blocks A and B in isolation correspond
to the expectations, in that block B was almost a factor of
2 faster than block A, indicating that the half-rate processing
illustrated in Figure 3 is a promising approach. Block B was
also roughly a factor of 2 faster than the P∆ΣM design,
indicating that overall performance gains may be possible.
In the full design, however, the extra routing delay across
the much larger area was enough to nullify the gains; in
fact, the SP∆ΣM was somewhat slower than the P∆ΣM.
An FPGA with a faster switching fabric might be a better
choice for these designs. Here, 68% of the overall delay for
the SP∆ΣM critical path was due to routing.

The number of LUTs used for the SP∆ΣM design is, as
expected, much higher than for the P∆ΣM counterpart; but it
is still less than 1.9% of the number of LUTs available in the
targeted FPGA.

B. ASIC implementation

As a second implementation experiment, we synthesized the
P∆ΣM and SP∆ΣM designs for a commercially available
65-nm bulk-CMOS process, using Cadence Encounter RTL
Compiler [9] with commercial libraries, and optimizing for
speed. No PISO transceiver was included in either design.



The synthesis results are shown in Table II. No floorplan-
ning, placement, or routing was performed; delays are as
estimated by RTL Compiler based on its own area estimates.
Power estimates are also as reported by RTL Compiler and
are based on an average input switching probability of 50%.

In the ASIC case, the best critical-path value reached for the
full SP∆ΣM offered an improvement over the P∆ΣM, at 76%
of the best P∆ΣM value. Again, the critical path of the B-
block array is much shorter, at only 55% of the P∆ΣM value.
As much of the delay still depends on interconnect, we
surmise that some floorplanning effort might further improve
SP∆ΣM performance.

The area and power overheads of the speculation design
are once again large—the factors are 11 and 8, respectively—
though not as large as the speculation factor 2UF = 16. Further
investigation may show ways to reduce the cost of the P∆ΣM.
We are more comfortable with the speed numbers, as they
broadly correspond to architectural expectations.

VI. CONCLUSION

Our work indicates that the block-wise critical path in
the Hatami modulator can be reduced further by making the
modulator speculate on the results of the previous iteration.
We have validated our speculative architecture with a syn-
thesizable implementation, which we used to evaluate the
reachable performance and the hardware cost for two different
implementation technologies. In both technologies, the signal
delays across the larger size of the SP∆ΣM design eat into
the gains—in the FPGA, enough so that the overall gains were
negative. We did register a net performance improvement in
the ASIC case. More implementation effort should refine the
estimates significantly, especially for the ASIC case.

The hardware cost of speculation is significant in relative
terms, as the amount of hardware grows exponentially with the
Hatami unrolling factor UF. In absolute terms, the cost may
still be acceptable in some applications, as even the speculative
modulator occupies only a small fraction of a current FPGA
or of a DSP ASIC.

The P∆ΣM unrolling and the SP∆ΣM speculation both
seek to address the same problem: the high clock frequencies
needed for large OSR values in ∆Σ modulators for large signal
bandwidths. Future work should include a further investigation
of the parameter spaces for unrolling factor, speculation, and
possibly other approaches to parallel processing, in order to
map out their implications for performance and cost.

REFERENCES

[1] R. Schreier and G. Temes, Understanding Delta-Sigma Data Converters.
Wiley-IEEE Press, 2005.

[2] S. Norsworthy, R. Schreier, and G. Temes, Delta-Sigma data converters:
Theory, Design, and Simulation. Wiley-IEEE Press, 1997.

[3] A. Eshraghi and T. Fiez, “A comparative analysis of parallel delta-
sigma ADC architectures,” Circuits and Systems I: Regular Papers, IEEE
Transactions on, vol. 51, no. 3, pp. 450–458, 2004.

[4] J. Cormier, R.F., T. Sculley, and R. Bamberger, “Combining subband
decomposition and sigma delta modulation for wideband A/D conver-
sion,” in Circuits and Systems, 1994. ISCAS ’94., 1994 IEEE International
Symposium on, vol. 5, May 1994, pp. 357–360 vol.5.

[5] E. King, A. Eshraghi, I. Galton, and T. Fiez, “A Nyquist-rate delta-sigma
A/D converter,” Solid-State Circuits, IEEE Journal of, vol. 33, no. 1, pp.
45–52, 1998.

[6] S. Hatami, M. Helaoui, F. Ghannouchi, and M. Pedram, “Single-bit
pseudoparallel processing low-oversampling delta-sigma modulator suit-
able for SDR wireless transmitters,” Very Large Scale Integration (VLSI)
Systems, IEEE Transactions on, vol. 22, no. 4, pp. 922–931, April 2014.

[7] Virtex 6 Family Overview, Xilinx Inc., accessed on Aug 13 2014.
[Online]. Available: www.xilinx.com

[8] ISE Design Suite 14: release notes, installation, and licensing, Xilinx
Inc., accessed on Aug 13 2014. [Online]. Available: www.xilinx.com

[9] Encounter RTL Compiler, Cadence Design Systems, accessed on Aug
13 2014. [Online]. Available: www.cadence.com


