

General rights
Copyright and moral rights for the publications made accessible in the public portal are retained by the authors and/or other copyright
owners and it is a condition of accessing publications that users recognise and abide by the legal requirements associated with these rights.

 Users may download and print one copy of any publication from the public portal for the purpose of private study or research.

 You may not further distribute the material or use it for any profit-making activity or commercial gain

 You may freely distribute the URL identifying the publication in the public portal

If you believe that this document breaches copyright please contact us providing details, and we will remove access to the work immediately
and investigate your claim.

Downloaded from orbit.dtu.dk on: Mar 29, 2024

Design of Power Efficient FPGA based Hardware Accelerators for Financial
Applications

Hegner, Jonas Stenbæk; Sindholt, Joakim; Nannarelli, Alberto

Published in:
2012 NORCHIP

Link to article, DOI:
10.1109/NORCHP.2012.6403096

Publication date:
2012

Link back to DTU Orbit

Citation (APA):
Hegner, J. S., Sindholt, J., & Nannarelli, A. (2012). Design of Power Efficient FPGA based Hardware
Accelerators for Financial Applications. In 2012 NORCHIP IEEE.
https://doi.org/10.1109/NORCHP.2012.6403096

https://doi.org/10.1109/NORCHP.2012.6403096
https://orbit.dtu.dk/en/publications/44095c59-85d6-4b0d-b4b3-a56bc140525f
https://doi.org/10.1109/NORCHP.2012.6403096

Design of Power Efficient FPGA based Hardware
Accelerators for Financial Applications

Jonas Stenbæk Hegner, Joakim Sindholt and Alberto Nannarelli
Dept. Informatics and Mathematical Modelling

Technical University of Denmark
Kongens Lyngby, Denmark

Abstract—Using Field Programmable Gate Arrays (FPGAs) to
accelerate financial derivative calculations is becoming very
common. In this work, we implement an FPGA-based specific
processor for European option pricing using Monte Carlo simu-
lations, and we compare its performance and power dissipation
to the execution on a CPU. The experimental results show that
impressive results, in terms of speed-up and energy savings, can
be obtained by using FPGA-based accelerators at expenses ofa
longer development time.

I. I NTRODUCTION

In recent years financial applications have gained a significant
portion of the computer market as the number of financial
computations and transactions over the network is increasing
everyday. This large number of financial data is often to
be processed fast in data centers which consume a large
amount of electrical power. Both aspects, low latency and low
power dissipation, can take advantage of specially designed
processing systems based on hardware accelerators; where the
term accelerator is not only used in its physical denotation
(faster), but also to refer to more power efficient hardware.
Field Programmable Gate-Arrays (FPGAs) are good candi-
dates for hardware accelerators as they can exploit data paral-
lelism and can be fine tuned to match exactly the algorithm.
In this paper, we show how FPGA based Application Spe-
cific Processors, or ASPs, can accelerate option pricing al-
gorithms [1] with high energy efficiency. The case study is
a Monte Carlo approach for pricing of European options.
The ASP development time is shortened by resorting to
FloPoCo (Floating-Point Cores) a tool for generating arith-
metic cores optimized for FPGAs [2].
We compare the execution of the Monte Carlo algorithm on
a soft-core processor implemented on FPGA with that of
the ASP by measuring execution time and power dissipation.
Furthermore, we compare our design with the previous work
of [3] where the FPGA based accelerator is compared to a
dual-core processor. The experimental results confirm thatnot
only the ASP execution is much faster, but also that the energy
consumption is order of magnitudes lower.

II. BACKGROUND

An option is a financial instrument that gives the holder the
right, but not the obligation, to buy (call option) or to sell (put
option) an asset by a certain date for a certain price [1]. For
example, a European put option gives the owner the right to

sell an asset at astrike price K at a specific timeT . If at time
T the value of the underlying asset is lower than the strike
price K, the owner can make a profit. Otherwise, the option
is not exercised (the owner does not sell).European options
can be exercised only on the expiration date, whileAmerican
options can be exercised at any time before the expiration
date. For this reason,European options are generally easier to
analyze.
The asset, orsecurity, price changes can be modeled in a risk-
neutral model by the Brownian motion model

dS = µSdt + σSdz (1)

whereS is the security price,µ is thedrift rate (the expected
return),σ is the volatility (a measure of the uncertainty about
the return provided by the stock) andz(t) is a standard
Brownian motion process. Att = 0 the value of the security is
S0. By dividing the life of the option into intervals of lenght
∆t (1) becomes

S(t + ∆t) − S(t) = µS(t)∆t + σS(t)ǫ
√

∆t (2)

whereǫ is a random sample from a normal distribution with
mean zero and standard deviation 1.0 [1].
By evaluating the asset value by the Black-Scholes-Merton
formula (see [1] for the detail of the derivations) the valueof
the security at timeT is

S(T) = S(0) · e
h“

µ−σ
2

2

”

T+σǫ
√

T
i

(3)

The value of an European option can be computed by using a
Monte Carlo simulation by evaluating (3) for several samples
and then by computing the mean value. This approach is
shown in Algorithm 1 for arisk-neutral world [1].
In the algorithm, the inputs are:

- initial security priceS0

- strike priceK
- risk-free interest rater
- security volatilityσ
- time to expirationT (in years)
- number of simulationsn.

The parametersr andσ are constant, and, therefore variables
VsqrtT, drift andexpRT are constant as well and can be
precomputed.

F
P

−
ad

d

F
P

−
m

ul

F
P

−
ex

p

F
P

−
ac

c

F
P

−
R

N
D

ge
n

seed

F
P

−
m

ul

F
P

−
ad

d

0
1

zero

sign

VsqrtT drift k1 k2

S24

64

Fig. 1. ASP: single path implementation.

Algorithm 1 Monte Carlo European option pricing.

VsqrtT = σ
√

T

drift = (r −
σ
2

2
)T

expRT = erT

sum = 0

for i = 1 to n do
St = S0 · e

(drift + VsqrtT · Vrnd)

if (St− K > 0) then
sum = sum + (St −K) · expRT

end if
end for
S = sum/n

III. A RCHITECTURE OFACCELERATOR

Algorithm 1 can be mapped on the Application Specific
Processor (ASP) sketched in Fig. 1. Instead of performing
the multiplicationS0 · e(...) in each cycle of the loop, we
can divideK by S0 off-line (or precompute it) and compare
e(...) directly to k1=K/S0. Similarly, we can remove the
multiplication byexpRT out af the loop. The correct value of
S is restored in the last stage by performing the multiplication
by k2= S0·expRT· 1n .
The units shown in Fig. 1 arebinary321 floating-point (FP)
units pipelined to work at a frequency of 100 MHz. Most of
them were generated byFloPoCo by applying some modi-
fications. The internalFloPoCo format has been changed to
support±inf (infinity) and NaN (not-a-number). Moreover,
in all units subnormal numbers are flushed to zero.
Because of the special FP-accumulator, described in
Sec. III-D, the ASP can sustain a throughput of 1 result every
10 ns (100 Mops/s).
The latency, expressed as number of clock cycles, of the
binary32 units composing the ASP is reported in Table I.
In the following, we first explain in detail the FP-units gen-
erated, especially thenon-standard ones, and then, we show
how the throughput of the ASP can be improved.

A. FP-Add and FP-Multiply

Both the floating-point adder and multiplier are standard
binary32 units generated byFloPoCo with some modifications
to handle special values and subnormals.

1In the revision on the IEEE standard 754binary32 replaces the wording
single-precision.

Unit Function Latency
FP-mul x× y 2
FP-add x + y 3
FP-add3 x + y + z 3
FP-acc s = s + x 3
FP-exp ex 4
FP-RNDgen random 6

TABLE I
OVERVIEW OF CREATED FLOATING POINT UNITS

It is worth noting that adders, and to some extent multipliers,
are mapped into the DSP blocks in the FPGA. This allows for
significantly better area utilization and speed.
The number of stages (latency) are two for the FP-mul and
three for the FP-add.

B. Random Number Generator

The detail of the unit to generate the random numbers, FP-
RNDgen, is shown in Fig. 2 (left). To create a small area
floating-point pseudo random number generator, four Linear
Feedback Shift Registers (LFSRs) [4] are used. The period of
the random number generator is 2n-1 wheren is the word-
length of the LFSR output (n = 24 in our case). These
four LFSRs produce uniformly distributed numbers, which are
added together in an adder tree to get a Gaussian distribution.
The average is found by shifting the result accordingly (divide
by 4). This pseudo random bit pattern is then converted into
a floating-point binary32 number in the range(−1.0, 1.0)2 by
mapping the random bit pattern in a positive fractional number
and by subtracting an offset (using a FP-adder).
The latency of the first stages of the Random Number Gener-
ator is 3 plus another 3 cycles for the FP-add for a total of 6
cycles.

C. Exponential Function

The arbitrary functions computation is based on a second
degree polynomial interpolator [5], sketched in Fig. 2 (center),
implementing:f (x) = x(ax + b) + c.
For the exponential function,ex, the constants table, range
reduction and reconstruction is generated directly byFloPoCo.
The unit’s latency is 4 cycles.

D. FP-Accumulate

The floating-point accumulator is the critical unit of the ASP
of Fig. 1. Because the FP-add has latency 3, it is only
possible to accumulate a new value every 3 clock cycles by
degrading the ASP performance. For this reason, a special FP

2Subnormals are flushed to zero.

Fig. 2. Random Number Generator (left). Second degree polynomial evaluator (center). Floating-point Accumulator (right).

accumulator, derived from [6], is used to accumulatesum. The
unit, depicted in Fig. 2 (right), converts the new value to be
accumulated frombinary32 to 64-bit fixed-point by aligning
the significand to the partial result stored as a 64-bit fixed-
point. By taking advantage of the FPGA’s fast carry-chains,
this addition can be done in one clock cycle, and, consequently,
the throughput of one result per clock cycle be maintained. In
the last stage of the unit, the 64-bit fixed-point number is
converted back tobinary32.

E. Higher Throughput ASP

Once the main problem of the floating-point accumulation has
been solved, the loop of Algorithm 1 can be partially unrolled,
depending of the size of the FPGA, to increase the throughput.
A number of ASPs of Fig. 1, called ASP-1P in the following,
can be placed in parallel as shown in Fig. 3. We refer to
the latter implementation as ASP-nP. A ”funnel” FP-adder-
tree is necessary to compute the final result of the Monte Carlo
simulation.
To reduce the latency of this final FP-adder-tree, we developed
a 3-input FP-adder (FP-add3) which has the same latency of

Fig. 3. ASP: 8-path implementation.

the 2-input FP-add (3 cycles). FP-add3 is derived by FP-add
by modifying the significand alignment, exponent computation
and update, and by performing the sum of the three aligned
significands.

IV. EXPERIMENTS

The platform used to run the experiments is a Xilinx ML550
board equipped with a Virtex-5 FPGA (XC5VLX50T) [7]. The
board gives access to Kelvin resistors connected to the voltage
regulators to monitor the power dissipation of the different
parts of the FPGA chip.
We performed the experiments by running the Monte Carlo
simulation forn = 100, 000 on a desktop computer equipped
with an Intel Core2 Duo E6600 processor running at 2.4 GHz,
and on three different hardware configurations:

1) We mapped the MicroBlaze (µBlaze) Xilinx’s soft pro-
cessor core [8] on the FPGA (clock frequency of 100
MHz) and run the simulation on the processor. We added
a 64-bit clock cycle counter, used as a stop-watch, to
have a cycle-accurate measure of the execution time.

2) ASP-1P (Fig. 1).
3) ASP-4P (Fig. 3 with 4Pi ASPs).

The implementation and measurement results are shown in
Table II. The energy for the whole simulation is obtained by
integrating the average power dissipation (measured from the
board) over the execution time:

energy= Pave · (n. cycles) ·
1

fCLK

[J]

For the execution on the desktop computer, we ran the
simulation several times and averaged the execution time to
have the cleanest data possible in a multicore and multitasking

Timing Power
n. cycles exec. time speed-up Pave energy ratio

[ms] [mW] [µJ]

Desktop computer 26,000,000 10.800 6.25∗ N.A. N.A. -
µBlaze 163,065,258 1,603.653 - 387.5 631,878 -
ASP-1P 100,025 1.000 1,630 374.5 374 1,687
ASP-4P 25,031 0.250 6,515 684.8 171 3,686

∗ Ratio between cycle count of desktop computer andµBlaze.

TABLE II
RESULTS OF EXPERIMENTS FORMONTE CARLO SIMULATION WITH n = 100, 000.

Timing
device exec. time speed-up

[ms]

µBlaze LX50T 1,603.653 -
ASP-1P LX50T 1.000 1,630
ASP-4P LX50T 0.250 6,515
ASP-8P LX330T 0.125 13,009
ASP-16P LX330T 0.063 25,929

TABLE III
COMPARISONS OFµBlaze AND ASPS SIMULATIONS (n = 100, 000).

environment3. The number of cycles for the Core2 simulation
was computed (estimated) by multiplying the execution time
by the clock frequency.
The data in Table II show that theµBlaze simulation is much
less efficient than the Core2 simulation. However, even if the
cycle count for theµBlaze were like the one obtained for the
Core2, the execution on ASP-1P would have been about 260
times faster.
A significant part of the power dissipated in the FPGA is the
FPGA intrinsic and static part: about 220 mW (50-55%) for
µBlaze and ASP-1P. This constant amount of energy makes
the simulations with shorter latency more favorable.
Next, we implemented the ASP of Fig. 3 on a larger FPGA
(XC5VLX330T) to further exploit parallelism. Table III show
the execution time and speed-up over theµBlaze simulation
for ASPs with 8 and 16 parallel paths4.
Finally, we compared our experiments with those of [3]. In [3],
the same Monte Carlo simulation of Algorithm 1 was executed
on a dual-CPU system equipped with Intel Core2 processors
running at 3 GHz and on a Xilinx Virtex-5 FPGA platform part
of the LabView development suite. The ASP implemented on
the FPGA has a parallelism of 10 paths running at 80 MHz.
The speed-up of the FPGA based simulation over the CPU
one is 131 in [3].
By comparing the results of our experiments with those of [3],
summarized in Table IV, we can conclude that

• The simulation on the Core2 in the two cases have
similar latencies considering that many factors affect the
execution time of desktop computers.

3We shut-down all unnecessary services and set the clock to 2.4 GHz for
the test.

4The board mounting the XC5VLX330T device is not provided with the
power monitor.

freq. clock n. cycles exec. time speed-up(∗)

[MHz] [ms]

CPU 3000 49,182,000 16.394 100
FPGA 80 10,000 0.125 13,045

(∗) Speed-up (execution time) with respect toµBlaze.

TABLE IV
RESULTS OF[3] FORn = 100, 000.

• The FPGA implementation of [3] shows the same perfor-
mance of ASP-8P: 125µs to simulate 100,000 elements.

V. CONCLUSIONS ANDFUTURE WORK

The main purpose of this work was to study the energy effi-
ciency of hardware accelerators. As the energy consumptionis
the product of average power dissipation and execution time,
for speed-ups of 100 or more, unless the accelerator has a
huge power dissipation (100 times or more that of the CPU),
it will be more power efficient.
The measurements done on the case study confirmed the
impressive speed-up achieved by FPGA based acceleration and
demonstrated accelerators are order of magnitude more energy
efficient than CPU execution.
One drawback of FPGA based accelerators is the development
time. However, by using library of standard components and
tools like FloPoCo these development times can be signifi-
cantly shortened.

REFERENCES

[1] J. C. Hull, Options, Futures and other Derivatives, 8th ed. Prentice Hall,
2012.

[2] ”FloPoCo Project”. [Online]. Available: http://flopoco.gforge.inria.fr/
[3] T. Stratoudakis. ”Hardware Acceleration of Monte Carlo

Simulation for Option Pricing”. 2010. [Online]. Available:
http://www.wallstreetfpga.com/index.php?option=comcontent&view=
article&id=3&Itemid=2

[4] Xilinx Application Notes. ”Efficient Shift Registers, LFSR
Counters, and Long Pseudo-Random Sequence Generators”.
XAPP 052 July 7, 1996 (Version 1.1). [Online]. Available:
http://www.xilinx.com/support/documentation/application notes/xapp052.pdf

[5] M. Ercegovac and T. Lang,Digital Arithmetic. Morgan Kaufmann
Publishers, 2004.

[6] F. de Dinechin, B. Pasca, O. Cret, and R. Tudoran, “An FPGA-specific
Approach to Floating-Point Accumulation and Sum-of-Products,” in Proc.
of International Conference on Field-Programmable Technology (FPT
2008), Dec. 2008, pp. 33–40.

[7] Xilinx User Guides. ”ML550 Networking Interfaces Platform”.
UG202 (v1.4) April 18, 2008. [Online]. Available:
http://www.xilinx.com/support/documentation/boardsand kits/ug202.pdf

[8] Xilinx Inc. ”MicroBlaze Soft Processor Core”. [Online]. Available:
http://www.xilinx.com/tools/microblaze.htm

