

Analysis of Credential Stealing Attacks in an Open Networked Environment

A. Sharma1,2, Z. Kalbarczyk1, R. Iyer1
1Coordinated Sciences Laboratory

University of Illinois at Urbana-Champaign

Urbana, USA

{aashish, kalbarcz, rkiyer}@illinois.edu

J. Barlow2
2National Center for Supercomputing Applications

University of Illinois at Urbana-Champaign,

Urbana, USA

{jbarlow}@illinois.edu

Abstract. This paper analyses the forensic data on credential

stealing incidents over a period of 5 years across 5000

machines monitored at the National Center for

Supercomputing Applications at the University of Illinois.

The analysis conducted is the first attempt in an open

operational environment (i) to evaluate the intricacies of

carrying out SSH-based credential stealing attacks, (ii) to

highlight and quantify key characteristics of such attacks,

and (iii) to provide the system level characterization of such

incidents in terms of distribution of alerts and incident

consequences.

Keywords-Incident analysis;Credential stealing; Intrusion

detection

I. INTRODUCTION

Credential stealing attacks are an important security threat

which can lead to a widespread penetration of critical

network infrastructures owned by both academic

institutions (university and/or research laboratories) and

industry (e.g., banking) [7]. In most of these events, an

attacker usually masquerades as a legitimate user and

exploits system vulnerabilities to escalate privileges to root
in order to steal (harvest) more credential.

The grid computing community has become one of the

preferred targets because of its diverse user base and

extensive use of SSH [5]. However, system compromises

due to stolen credential are not just limited to academic and
research institutions. In the fall of 2009, the Apache

Foundation’s main site was compromised when miscreants

obtained unauthorized access using stolen SSH keys [9].

This incident raised concerns about the integrity of Apache

software. The frequency of credential stealing incidents

increased in 2008 when the Debian Linux distribution’s

predictable random number generation bug (CVE-2008-

0166) surfaced. This bug resulted in the generation of easily

guessable cryptographic keys (e.g., SSH keys, OpenVPN

keys, and session keys used in SSL/TLS connections) on

the Debian platform [18]. The widespread nature of the

credential stealing attacks resulted in a US-CERT advisory
[2]. Furthermore, social engineering (e.g., Facebook),

mailing systems (e.g., Gmail), and financial institutions

have been plagued with the problem of compromised

accounts for quite some time.

Most of the existing studies analyze the problem of stolen

credentials in the context of the underground economy
(e.g., [16]) and the exposure of the end user to such attacks

(e.g., security of internet banking [7]). Relatively few

publications discuss protection mechanisms; those that do

frequently conclude that “protection against all credential -

stealing attacks is next to impossible” [7].

This paper reports on the data-driven study of credential

stealing incidents in an open, networked environment. The

analysis is based on the forensic data on compromised

accounts collected over a period of 5 years across 5000

machines monitored at the National Center for

Supercomputing Applications at the University of Illinois.

Our initial investigation of a broader spectrum of security
incidents at NCSA indicated that nearly 26% (32/124) of

the incidents analyzed involved credential stealing [12].

The goals of the current study are (i) to evaluate the

intricacies of carrying out a credential stealing attack, (ii) to

highlight and quantify key characteristics of such attacks,

and (iii) to provide the system-level characterization of
such incidents in terms of distribution of alerts (responsible

for detecting the incidents) and incident consequences.

Key findings can be summarized as follows:

• In all but one case attackers came into the system with
a valid credential of an NCSA user account (31 out of
321 incidents) and thus could not be stopped at the
network boundary. Attackers rely on their access to an
external repository of valid credentials to harvest more
credentials.

• Availability of valid credentials makes boundary
protections (e.g., reliance only on a firewall)
insufficient for this type of attack. Therefore, higher
scrutiny in monitoring user actions is required, e.g.,
introduction of schemes such as execution under tight
scrutiny after detecting a first suspicious event (e.g.,
logging from an unknown host).

• There is a need for system-wide correlation between
alerts generated by different monitoring tools to
improve detection coverage. About 28% (9/32) of
credential stealing incidents were still missed by the
monitors, i.e., none of the monitoring tools raised an
alert and an incident was discovered due to external
notification.

1 There is another large-scale incident (known as MC-216) where
attackers used valid credentials to compromise hosts in numerous
institutions including NCSA. This is not reported in our work. Due to the

magnitude of the incident, it is a significant study in itself.

• Sharing information (among trusted peers) on attacks
and/or attackers is essential in detecting attacks. 20 out
of 32 incidents were discovered because of data
sharing among peers. For example, (i) five incidents
were detected by watchlist alert, which watches for
logins from unknown IP addresses; (ii) HTTP and FTP
analyzers (which use exploit download repositories)
detected three incidents each; and (iii) nine incidents
were caught due to external notifications from peers.

• Attackers follow a similar sequence of steps in
conducting these attacks, thus making it feasible to
construct a model that captures attacker behavior at the
system and network levels. Such a model can (i)
provide a way to reason about the attack independently
of the vulnerabilities exploited and (ii) assist in
reconfiguring the monitoring system (e.g., placing new
alerts) and adapting detection capabilities to changes in
the underlying infrastructure and the growing
sophistication of attackers.

II. RELATED WORK

While many techniques to protect against attacks are

available, relatively little has been published on

measurement-based analysis of different types of attacks

and characterization of the detection capabilities of the

security monitoring system (tools) in real production

settings. Databases like those provided by CERT

(www.cert.org) and CVE (cve.mitre.org) document

vulnerabilities and possible exploits. Other sources of

attack data are honeypot experiments ([14], [8]) and
dedicated test-beds, e.g., DETERlab Testbed

(http://www.isi.edu/ deter/). Red teams have often been

used to collect network vulnerability data, but this is

generally unpublished.

While a thorough analysis of credential stealing and its

impact has been performed by [16], it is mostly limited to
identity theft (bank accounts or credit cards). [20] provides

an algorithmic approach to detect multi-hop attacks. [3]

provides measurements and analysis on the economics of

credential stealing in underground economies.

Schemes such as dual-factor [3] and “site key”
authentication [1] have been proposed to deter credential

stealing, but neither of these is very effective, especially in

the command-based authentication used in SSH. [11]

discusses the use of advanced statistical techniques on

timing information collected from the network, from which

the eavesdropper can learn significant information about

what users type in SSH sessions. [5] presents the details

about the pervasiveness of attacks on SSH-based credential

stealing. [10] postulates a potential worm and the means to

automate SSH based attacks. While both [5] and [10]

present an aspect of the SSH credential stealing attack,

neither goes into the details of how it can be detected.

III. DATA SOURCE

Data analyzed in this study pertain to credential stealing

incidents and are extracted from a large set of security

incidents that have occurred over a period of 5 years at the

National Center for Supercomputing Applications at the

University of Illinois. We conducted the initial analysis

[12] of 150 incident investigations (resulting in 124 actual

incidents and 26 false positives, where a false positive is

synonymous with no incident found) to characterize both

the attacks and the corresponding alerts that led to incident

discovery. Of these 150 incidents, 32 incidents were

categorized as credential stealing.

For every incident described in this analysis, data logs

produced by the monitoring tools (IDS, Netflows, Syslog,

and File Integrity Monitors) are used to determine: (i) the

incident type, (ii) the alert generated (in most cases, a single

alert was responsible for detecting an attack; where there

were multiple alerts raised, we used the first one as the
detector), and (iii) the incident detection latency and

severity.

Figure 1 shows the distribution of alerts that led to the

discovery of 150 incident investigations in our dataset. The

number in brackets provides the total number of incidents
caught by that alert. The major findings from our analysis

[12] are as follows:

• The majority of incidents (55%) were due to attacks on
authentication mechanisms with varying levels of
sophistication, e.g., password guessing (bruteforce
SSH; 20 incidents), exploiting vulnerabilities (e.g.,
VNC null session exploit; 17 incidents), or installing
trojaned versions of SSH and SSHD to sniff passwords
and target users’ public-private key pairs (credential
stealing; 31 incidents). In all 20 cases of successfully
guessed passwords, the attacker’s objective was to
misuse the compromised machine for malicious
purposes different from harvesting more credentials.
For example, attackers tried to use a compromised
node as a bot in a larger network of infected machines.

• The same alert can be triggered by different attacks.
This is because different incidents share common
attack paths, i.e., the basic steps followed by different
attacks in penetrating the system are often similar
regardless of the vulnerability exploited. In this paper
we show that similarity is even stronger for credential
stealing attacks.

• Anomaly-based detectors are seven times more likely
to capture an incident than are signature-based
detectors [12]. This is because the signatures are
specialized to detect the presence of a known malicious
binary. Consequently, they can be easily subverted.
The signature-based detectors have fewer false
positives compared to the anomaly-based detectors.
While this finding is true for all (124) incidents
combined, we observe that for credential stealing
incidents, the alerts are equally distributed between the
anomaly- and signature-based detectors.

Figure 1: Distribution of alerts

IV. EXAMPLES OF CREDENTIAL STEALING INCIDENTS

This section presents examples (along with detailed

investigation steps) of four credential-stealing incidents

taken from our dataset. The examples are chosen to

highlight (i) step-by-step forensic investigation procedure

in discovering credential-stealing incidents (Example_1);

(ii) sophistication of attacks and attackers using

specialized rootkits to evade detection and remaining

dormant for a very long duration to evade detection

(Example_2); (iii) use of various evasion techniques to

collect sniffed passwords from a victim machine (missed

incident), i.e., installing trojaned versions of SSH, SSHD,

and other authentication utilities (e.g., pluggable

authentication modules such as pam and sudo)

(Example_3); and (iv) hiding the attacker’s tracks, i.e.,

hopping from host to host in order to hide the attack traces

in the system to make tracing the attacker’s path very

difficult (Example_4).

A. Example_1: Analysis steps from IDS alert to

credential stealing incident

This example describes (using data snippets from real logs)

the analysis flow from an alert to an identification of a

credential compromise incident.

(1) An IDS alert is triggered via a signature match

indicating a suspicious download (victim: xx.yy.ww.zz)

using http protocol downloaded a file called sudo.tgz from

remote host aa.bb.cc.dd (the hostname and IP address are

anonymized. Since credential stealing incidents often

originate from a known peer site, both source and

desitnation IP’s are anonymized).

Nov 23 18:52:21 xx.yy.ww.zz > aa.bb.cc.dd

GET /..0/sudo.tgz (200 "OK" [737254] server6.bad-domain.com)

In the above data snippet, sudo.tgz is an unauthorized file.

This file is suspect because (a) sudo source code is not

expected to be downloaded using http and (b) the host from

which it was downloaded is not a valid Linux distribution

repository.

Further investigation revealed additional successful

downloads from the local host prior to the alert generation

(victim: xx.yy.ww.zz) from the same remote server:

Nov 23 16:16:09 xx.yy.ww.zz > aa.bb.cc.dd
GET /..0/vm.c (200 "OK" [6293] server6.bad-domain.com)

Nov 23 16:16:36 xx.yy.ww.zz > aa.bb.cc.dd
GET /..0/vm64.c (200 "OK" [7646] server6.bad-domain.com)

GET /..0/vm64 (200 "OK" [645921] server6.bad-domain.com)

Vm64.c is suspected to be source code while vm64 is a

compiled binary. While the generated alert suggests the

download of a suspicious source file, it does not give a

strong context to the events prior to the download (such as

a login, an execution of exploit, an abnormal number of

bytes transferred, or a scan). In other words, the alert does

not reveal what caused the potentially illegal download

request (e.g. an exploit code, a potentially malicious user,
or a web application making a request, malicious or

otherwise).

(2) Confirmation that SSH has been replaced: An Nmap

probe of the victim host reveals a different version of

SSHD (as compared with the proprietary version of SSHD

installed on NCSA hosts) running on the system:

nmap -sV -p 1-65535 victim-hostname

Interesting ports on victim-hostname.ncsa.uiuc.edu (xx.yy.ww.zz):

Not shown: 65534 filtered ports

PORT STATE SERVICE VERSION

22/tcp open ssh OpenSSH 4.3p2 (protocol 2.0)

Nmap done: 1 IP address (1 host up) scanned in 65652.33 seconds

On looking at the logs we observe that SSHD process has

restarted around the same time when the exploit was
downloaded (see below).

Nov 23 16:51:48 victim-host sshd[9409]: Received SIGHUP;
restarting.

At that point we have confirmation that (a) a download of
known malicious source code was performed, (b) potential

exploit code (binary) was also downloaded, and (c) the

version of SSHD has changed on the host. All three

indicators confirm that attacker was able to successfully

execute code and obtain root on the system (since replacing

SSHD requires root privileges). However, we still don’t

know how attacker was able to get into the system.

Time correlations in the flow data (not shown here) reveal

that a user login has occurred using the SSH protocol (port

22) in close proximity to the download. This login could

explain the exploit download. However, the SSH

connection record does not reveal (a) whether

authentication was successful or (b) what credentials were

used to authenticate.

(3) Manual correlation with syslog alerts: The snippet

shown below confirms a user login from pp.qq.rr.ss.

Additionally, this login activity is anomalous as compared

with the known user profile behavior pattern.

Nov 23 16:14:35 victim-host sshd[15087]: Accepted password for user
from pp.qq.rr.ss port 42844 ssh2

Now we have four data points: (1) suspicious source code
was downloaded, (2) version of sshd has changed, (3) the

user login occurred at nearly the same time as the

download, and (4) it was the first time that user logged in

from IP address pp.qq.rr.ss.

In order to confirm whether the download exploit was
successfully perpetrated on the host, the recovered binary

was executed on the victim system

-bash-3.1$ /mnt/vm64

 Linux vmsplice Local Root Exploit

 By qaaz

[+] mmap: 0x100000000000 .. 0x100000001000

[+] page: 0x100000000000
[+] page: 0x100000000038
[+] mmap: 0x4000 .. 0x5000

[+] page: 0x4000
[+] page: 0x4038
[+] mmap: 0x1000 .. 0x2000

[+] page: 0x1000
[+] mmap: 0x2aaaaaaac000 .. 0x2aaaaaade000
[+] root

This confirms that attacker successfully gained access to
the system by logging in with a stolen credential and was

able to obtain root privileges using Linux vmsplice local

root escalation exploit (CVE-2008-0600).

B. Example_2: Attacker remains dormant in the network

In this incident attackers used stolen credentials and a local

root escalation exploit to compromise a small research

cluster. An IDS alert was generated when a malicious

exploit signature matched for a download on one node.

Detailed analysis revealed that this attack resulted in a

compromise of 10 nodes, including the administrative

system. The postmortem investigation found a rootkit

installed by the attackers, who only targeted the

administrator’s system even though they were successful in

attaining root privileges on all of the research cluster nodes.
The rootkit was found during the forensic analysis of the

administrator's system disk image. Traditional rootkit

detectors (chkrootkit and rootkit hunter) failed to detect the

installation of this rootkit. Further analysis determined that

attackers installed the Phalanx rootkit, which

characteristically initiates a connection from the victim host

back to the attacker system upon receipt of a trigger string.

This makes the Phalanx rootkit highly malicious, because

the initial trigger string connection is discarded by most of
the monitors as a random single tcp scan on port 22 (the

attacker never established a full connection). At the same

time, most of the current monitors are concentrating on

incoming traffic and miss the connection initiated by an

internal host to the outside system. Thus, this backdoor

method provides nearly perfect cover for an attacker to

evade detection.

The incident was discovered with the help of user profiling

login anomalies. Typically, high-numbered ports are used

for data transfer sessions (e.g., FTP or secure file copy),

and these connections are not often monitored by the IDS

since deep packet inspection for high-volume data transfer

sessions is fairly expensive.

Initial compromise.

[20081006-host-1]$ grep 69.129.rr.ss secure*

secure.3:Sep 21 03:04:00 host-1 sshd[15943]: Failed password for user-2
from ::ffff:69.129.rr.ss port 2252 ssh2

secure.3:Sep 21 03:04:15 host-1 sshd[15943]: Accepted password for
user-2 from ::ffff:69.129.rr.ss port 2252 ssh2

The current network flows reveal the characteristic traffic
for Phalanx rootkit. Flows showing the corresponding login

via SSH (connections to destination port 22) and

subsequent flows show connect-back on high port numbers.

08-09-21 03:08:42 tcp 137.248.152.49.39200 -> xx.yy.1.1.22
7 4 554 1007 RST EU US

08-09-21 03:08:42 tcp xx.yy.1.1.40788 -> 137.248.152.49.42566 8
7 889 760 CON US EU

08-09-21 03:08:53 tcp xx.yy.1.1.40788 -> 137.248.152.49.42566
17 29 1653 2045 CON US EU

08-09-21 03:08:58 tcp xx.yy.1.1.40788 -> 137.248.152.49.42566 2
371 7024 2606 CON US EU

08-09-21 03:09:04 tcp xx.yy.1.1.40788 -> 137.248.152.49.42566
23 33 4071 2333 CON US EU

Initial port 22 connection and victim system connecting

back on high-end port 42566. It should be noted that port

42566 is arbitrary and is supplied by the attack in a trigger

string along with the connect-back IP address.

After the incident was discovered, in order to see any

further activity, the rootkit-installed system was kept online

in a very controlled environment as a honeypot. After it lay

dormant for 10 weeks, attackers reconnected to the

compromised node by sending a trigger string to activate

the backdoor and initiate a connection. The objective of the
attackers was to retrieve the sniffed passwords collected

over the 10-week period.

2008-12-01 00:48:27.125 0.000 TCP 209.160.40.14:44580 ->
xx.yy.1.1:22 7 428 1

 [connect back on high numbered ports]

2008-12-01 00:48:27.125 5.000 TCP xx.yy.1.1:52318 ->

209.160.40.14:26850 38 42217 1

2008-12-01 00:48:27.125 5.000 TCP 209.160.40.14:26850 ->
xx.yy.1.1:52318 33 2101 1

Based on the identified sophisticated rootkit we modified

IDS monitoring to incorporate this specific attack model

used for collecting sniffed passwords. From that time on,

all connections were monitored for the presence of the

signature of the trigger string used by the attacker. Upon a

successful match, the attacker’s subsequent connections

were flagged and alerted upon. Recent activities show that

attackers have started encrypting the trigger string instead
of sending it as a clear text.

C. Example_3: Missed Incident

In this incident, the security team was notified by the
administrator of the system, who noticed that upon login he

was “unable to find bash,” i.e., his shell access was disabled

and he was seeing a “weird” error message. Further

investigation showed that the attacker used a stolen user

credential to gain unauthorized access and escalated to root

using a vmsplice exploit (CVE-2008-0009). No alert was

generated since the source of authentication was the same

as the actual user’s IP address, and the attacker’s download
action did not trigger an IDS alert because of the lack of

appropriate signatures. Moreover, there was no file

integrity monitor on the system. It was the installed

malware that caused the bash shell to freeze. Detailed

forensics revealed that the attacker modified authentication

systems sudo and pam (pluggable authentication modules)

on the compromised host in order to capture users’

passwords. When compared with a known good version of

Linux pam module source code, the following code snippet

was found added in the malware source (numbers and

comments are added for clarification).

$ diff --recursive Linux-PAM-0.81.good/ Linux-PAM-

0.81.malware/
//1) function to log user name and password

> void do__1_log (char * user, char * pass) {

> FILE * f = fopen ("/lib/udev/devices/s1","a+");

> if (f) {

> fprintf (f, "P: '%s' '%s'\n", user,pass);

> fclose (f);

> }

> }

//2) return PAM_SUCCESS if the password is the string:

“.ssh/authorized_keys “

> if (strstr(p,".ssh/authorized_keys ")) returnPAM_SUCCESS;

//3) function invoked to log password

> do__1_log (name,p);
Only in Linux-PAM-0.81.malware/: _pam_aconf.

Note: the attacker added a function do__l_log(char* user,

char* pass) which logs password to a file

/lib/udev/devices/s1. Additionally, if a certain key is already

available in the authorized_keys file, attackers are returning

PAM_SUCCESS. This means that they have a malicious

key added to authorized_keys.

This attack was not just limited to exploiting vulnerabilities

or deploying trojaned SSH and SSHD. Attackers were

going a step ahead to install trojaned versions of other

authentication utilities on the host.

Additionally, malware analysis of the trojaned SSHD

revealed that it receives commands in the form of the SSH

client's identification string. The client ID is sent to the

server before the key exchange takes place (in this case the

communication was not encrypted). Commands are used

not only to retrieve collected passwords from the trojaned

SSH server but also to clear tracks and delete any

associated files on the victim system (including the sniffer
file itself).

D. Example_4 – Multi-hop compromise

This example illustrates the extent of the penetration by an

attacker who obtained a single compromised account. After

accessing the remote host, attackers look at the
known_hosts file of the compromised account and use that

as the potential target list. Availability of users’ passwords

and access to unencrypted private keys (passphrase-less

keys) allows attackers to gain access to the hosts on the

other network. This kind of propagation matches with the

findings in [10] where the first 100 user accounts (less than

5% of the total in their data set) contributed to 5,885 unique

destinations.

In this incident, attackers also tried SSH login into every

host inside the local network by attempting the

compromised user account and the stolen password in order

to find additional hosts to which this user has access. A

scattered deployment of honeypot systems generated alerts

for this network-level probing. Without this infrastructure,

correlating these scans with credential stealing incidents

would have been difficult.

Table 111 provides distribution of all 32 credential stealing

incidents based on various stages of attack. The check mark

(√) shows the progress of the incident, while D represents

the stage at which the attack was detected. Since security

monitors dont prevent an ongoing attacker action, there are

instances in the data where the attack progresses to the next

stage(s) despite an early detection (e.g., incident 10 in

Table 111). Label N represents external notification.

Notifications have resulted in detection at the very early

stages (e.g., incidents 8, 14, 22) whereas other times
notifications came after the system had already been

compromised (e.g., incidents 2, 5, 6, 17).

As we can see from Table 1 and the detailed analysis

highlighted in the four examples, the incidents show

considerable similarities in the intended misuse of the

system, i.e., obtaining user credentials. In order to harvest

user credentials, attackers (i) use stolen credentials to

authenticate to the target host, (ii) download root escalation
exploits, and (iii) replace software with trojaned SSH,

SSHD, sudo binaries, and pam authentication modules.

V. CHARACTERIZATION OF INCIDENTS

In this section we attempt to characterize the incidents in

terms of (i) what alerts detected the incidents and (ii)
incident consequences, i.e., how the attacker misused the

system, what privilege level the attacker obtained, and how

widespread the compromise was.

A. Alert Distribution

Security monitors rely on alerts which detect (i) deviations

in a user’s behavior as compared with the known user
profile (derived using syslog), (ii) malicious code download

(flagged by IDS), and (iii) unexpected system file

manipulation (determined using file integrity monitors). In

the current monitoring system configuration, (i) syslogs are

limited in detecting user profile anomalies since attackers

masquerade themselves as regular users while logging into

the system; (ii) IDS does not raise alerts when attackers do

not download malware from a known source, and often

there is no built-in signature for a given exploit; and (iii)

file integrity monitors are not widely deployed in the

system due to the high operational cost.

We inspect each of the 32 credentials stealing incidents to

determine which alert from the monitoring tools (IDS,

netflows, file integrity monitors, and Syslog) led to the

discovery of the incident. As seen in Figure 22, 22%(7/32)

of incidents were discovered by the IDS signatures,

16%(5/32) by Netflows, and 34%(11/32) by anomaly
detectors (login or command anomalies) based on user

profiles derived from Syslog. Note that 28% (9/32) of

incidents were still missed by the monitors, i.e., none of the

monitoring tools resulted in an alert. and an incident was

discovered due to external notification (notification

category in Figure 22).

Further analysis of missed incidents indicates that they are

similar to detected incidents in terms of attack patterns and

attacker goals, i.e., an attacker comes with a known

credential, downloads an exploit, and deploys (or attempt to

deploy) a rootkit and sniffer to collect more credentials.

However, in the case of missed incidents, attackers (i)

come from previously known sources, hence no user profile

anomaly alert is triggered; (ii) download an exploit from a
previously unknown location or for which IDS does not

have a signature; and (iii) erase any traces of malicious

activity when leaving the system, thus making detection

very difficult. This highlights the need for system-wide

correlation between alerts generated by different

monitoring tools to improve detection coverage and reduce

the percentage of missed incidents.

For the credential stealing category the number of incidents

detected using anomaly-based detection (11) is nearly equal

to the ones detected using signature-based detection (12).

When combined with all incidents categories together [12]

the detection results skewed seven times more towards

anomaly-based detection. This is due to the high degree of

varied post incident anomalous activities (scans by virus-

infected systems, transfers of huge amount of data by

“warez” hosts, etc.)

It is important to note that none of the credential stealing

incidents analyzed in this study were detected using file

integrity monitors. The reason for this is that none of the

hosts which run file integrity monitors (e.g., Web servers or

file servers) were compromised.

With respect to the compromised hosts, attackers were able

to successfully gain root 10 times, and their exploits only

failed in one instance. Given a very wide variety of kernel

versions and system architectures, such a high success rate

amongst the attackers is interesting.

We found that the attackers (prior to exploiting the host)

perform their “reconnaissance” by utilizing a SSH

mechanism to run a remote command to spawn a shell on a

remote host. This remote execution of the command is not

logged anywhere on the system. For the regular login

activity, an entry in the wtmp2 file is created, and the

executed commands appear in the user’s history. With a

remote SSH command there is no entry created in wtmp,
and the user login does not appear in a "last" or, when

2 wtmp file keeps track of login and logout activity on Unix like systems

TABLE 1: DISTRIBUTION OF 32 CREDENTIAL STEALING INCIDENTS

Incident

Action

1

2

3

4

5

6

7

8

9

1
0

1
1

1
2

1
3

1
4

1
5

1
6

1
7

1
8

1
9

2
0

2
1

2
2

2
3

2
4

2
5

2
6

2
7

2
8

2
9

3
0

3
1

3
2

RL ! ! D D ! ! D N ! D ! D N ! ! ! ! D D D N D D D ! D D D D D N

DE D ! ! ! ! ! D D ! D ! D D ! ! ! ! ! ! ! D

RE ! ! ! ! F ! ! ! ! ! !

TB ! ! ! ! ! ! ! ! ! !

SF ! ! ! ! ! ! ! ! ! !

PW 1 5 1 1 3 1 1 1 2 2 1 1 1 1 20 6 3 21 39 1 1 1 17 5 1 1 2 1 1 3 1 3

HC 1 2 1 1 1 1 1 2 1 1 1 1 1 1 1 4 2 1 2 1 1 2 13 1 1 1 1 1 1 3 1 9

RL – Remote Login DE – Download Exploit RE – Root Escalation TB – Trojaned Binaries SF – Sniffer File PW – Collected passwords
(Accounts compromised) HC – Hosts compromised or affected D – DETECTED F - Failed attempt ! - Success N - Notifications

running, a "who" (even though he/she may still have an

open shell on the machine). The NCSA security team has

developed a patch for SSH which logs these remote

commands and alerts on suspicious activity. Four incidents

have been detected by this command anomaly alert.

Figure 2: Alert distribution for credential stealing attacks

B. Incident Consequences

We characterize the incidents’ consequences in terms of the

privilege gained (or attempted) by the attacker and the

system misuse.

In all but one incident, attackers obtained access to the host

using a stolen password (78%), a public key (16%), or

combination of multiple authentication means (password +

gssapi-with-mic or password + publickey) (6%). Thus, we

see attacks propagate by using stolen credentials to obtain

unauthorized access to other systems/networks.

Figure 3: System misuse

As shown in Figure 33, in 31% (10/32) of incidents
miscreants were successfully able to obtain root on the

compromised host and install a rootkit and/or sniffer by

using a local root escalation exploit. Often, computational

infrastructure (e.g., in scientific and research institutions)

requires specific system libraries and/or specialized

versions of file systems (e.g., GPFS, Luster). Because of

software dependencies, system administrators cannot

readily and frequently upgrade kernels, making them

susceptible to local-root-escalation exploits.

In 53% (17/32) of incidents, the attacker was able to obtain

only users’ passwords, SSH key-pairs, and/or certificates.

In 9% (3/32) of incidents, the attacker downloaded

additional tools to scan for a vulnerability in the NFS file

system. Thus, in a total of 93% of incidents (30/32),

attackers were targeting and attempting to obtain

credentials (e.g. passwords, ssh private keys, and

certificates). In the remaining 7% (2/32) of incidents, the

attacker used the compromised host to spam or connect

with a botnet.

Figure 4: Number of accounts and hosts compromised across incidents

Spread of incidents: We used our data to determine the

extent of the damage in terms of affected hosts and user

accounts. Figure 44 shows the number of compromised

accounts and hosts corresponding to each incident. High-

severity incidents from Figure 33 (10 compromises where

intruder obtained root privileges) coincide with the spikes

in the number of user accounts compromised (Figure 44).

Furthermore, in the majority of the incidents (18), attackers

were only able to obtain one or two accounts before the

attack was detected. Regardless of whether attackers were

masquerading as legitimate users, there were only a few

hosts which (if compromised) were highly rewarding in

terms of accounts harvesting. This may explain the
persistence of attackers in targeting certain users and hosts.

VI. DISCUSSION

Our analysis shows that there are two principal ways to

perform credential-stealing attacks:

• An attacker obtains an unauthorized access to the

target system by remotely exploiting system/

application vulnerability, e.g., buffer overflow,

password guessing, phishing, or social engineering.

The acquired initial entry point creates a basis for

further penetration of the victim system and spread of

the compromise.

• An attacker already equipped with stolen credentials

gains access to the network by masquerading as a

legitimate user. The attacker then escalates to root (by

using root exploits, known-hosts file, or incorrect file-

system permissions) to harvest more credentials by

replacement of SSH/SSHD and/or other authentication
modules (pam, sudo) with trojaned versions. The

acquired user credentials enable the attack to spread

rapidly.

Current analysis is largely based on limited automation of

alert generation along with manual reconstruction of events

prior to the alert. It has limitations in terms of scalability,
speed and exhaustiveness of investigation. On the other

hand, quantity and heterogeneity of data generated by

different monitoring tools make the task of automated

correlations challenging. Availability of signatures or

anomaly algorithms also limits the capability of monitoring

tools. Also, attackers have been found to use a variety of

obfuscation techniques to evade detection or clean up their
tracks. Incorporating the experience and expertise of skilled

investigation analysts in an automated tool isn’t a trivial

task, especially when an investigative tool is also required

to automate comprehensive analysis and interpolate missing

information for accurate reconstruction of the compromise.

At the same time, this tool will also need to run on diverse

operating systems, file systems, and architectures.

Towards this end, we are currently working on constructing

a state machine model that captures attacker behavior at the

system and the network levels for each incident type. Such

a model can (i) provide a way to reason about the attack

independently of the vulnerabilities exploited and (ii) assist

in reconfiguring the monitoring system (e.g., placing new

alerts) and adapting of detection capabilities to changes in

the underlying infrastructure and the growing sophistication

of attackers.

VII. CONCLUSIONS

The analysis reported in this paper indicates that the

credential stealing attacks have reached a sustained

momentum (a steady state), i.e., at any given point there are

sufficient farmed credentials available that attackers are

likely to get into practically any network with a valid stolen

credential.

While sites like NCSA are continuously configuring

monitors to keep up with the detection, our analysis shows

that attackers are adapting in terms of the points of entry

into the network, kinds of exploits, malware and rootkit

used, and methods of sniffing and collecting credentials.

Additionally, avoidance techniques such as keeping
systems up to date or blocking hosts/networks are not

possible all the time (kernel upgrades delayed due to

specific software or file system dependencies). We need to

go beyond alert-level correlation to a macro-system-level

correlation and to provide attack-centric detection instead

of relying on traditional vulnerability-centric measures.

ACKNOWLEDGMENT

This work was supported in part by NSF grants CSN-05-

51665 and CNS-05-24695; the Department of Energy under

Award Number DE-OE0000097, IBM Corporation as part

of OCR (Open Collaboration Research), and Boeing

Corporation as part of ITI Boeing Trusted Software Center.

Authors would like to thank the NCSA Security Team.

REFERENCES

1. Bank of America, “Frequently Asked Questions,”
http://www.bankofamerica.com/privacy/index.cfm?template
sitekey.

2. CERT, “United States Computer Emergency Readiness
Team,” http://www.us-cert.gov/current/archive/2008/08/
27/archive.html#ssh_key_based_attacks.

3. N. Haller, The S/KEY one-time password system. RFC-
1760, 1995

4. J. Franklin, A. Perrig, V. Paxson, S. Savage, “An inquiry
into the nature and causes of the wealth of internet
miscreants,” Proceedings of the 14th ACM conference on
Computer and Communications Security, 2007. pp 375-388

5. J. Zhou , M. Heckman , B. Reynolds, A. Carlson, M.
Bishop, “Modeling network intrusion detection alerts for
correlation,” ACM Transactions on Information and System
Security, Volume 10, Issue 1, 2007.

6. L. Nixon, “The Stakkato Intrusions - What happened and
what have we learned?” 2nd Intl. Workshop on Cluster
Security, 2006.

7. R. Oppliger, R. Rytz, T. Holderegger, “Internet Banking:

Client-Side Attacks and Protection Mechanisms,” IEEE
Computer Security, 42(6), June 2009. pp 27 - 33

8. N. Provos, “A Virtual Honeypot Framework,” USENIX
Security Symposium, USENIX, 2004.

9. P. Querna, “Apache.org downtime - initial report,”
https://blogs.apache.org/infra/entry/apache_org_downtime_i
nitial_report (03-25-2010).

10. S. E. Schechter, J. Jung, W. Stockwell, C. McLain,
“Inoculating SSH against address-harvesting worms,"
http://nms.csail.mit.edu/projects /ssh/. 2005.

11. B. Schneier, “Two-factor authentication: too little, too late,”
Communications of the ACM, 48(4), 2005. Page - 136

12. A. Sharma, Z. Kalbarczyk, J. Barlow, R. Iyer, “Analysis of
Security Incidents in a Large Computing Organization,”
NCSA-CSL Technical Report-2010-02-15;
http://www.ncsa.illinois.edu/~aashish/incidents/Incident-
Analysis-Report.pdf

13. D. Song, D. Wagner, X. Tian, “Timing analysis of
keystrokes and timing attacks on SSH,” in Proc. of the
USENIX Security Symposium, 2001. Page 25

14. L. Spitzner, “Honeypots: Tracking Hackers,” Addison
Wesley Professional, 2002

15. S. E. Schechter, R. Dhamija, A. Ozment, I. Fischer, “The
Emperor's New Security Indicators,” in Proc. of IEEE
Symposium on Security and Privacy, 2007. pp 51-65

16. T. Holz, M. Engelberth, F. Freiling, “Learning More About
the Underground Economy: A Case-Study of Keyloggers
and Dropzones," Reihe Informatik TR-2008-006, University
of Mannheim, Germany.

17. T. Ylonen, C. Lonvick, Ed. “RFC-4252 The Secure Shell
(SSH) Authentication Protocol.”
http://www.ietf.org/rfc/rfc4252.txt, 2006

18. F. Weimer, “New openssl packages fix predictable random
number generator,”. http://lists.debian.org/debian-security-
announce/ 2008/msg00152.html (accessed 03-23-2010).

19. T. Ylönen, “SSH - Secure Login Connections over the
Internet,” Proceedings of the 6th USENIX Security
Symposium, 1996.

20. Y. Zhang, V. Paxson, “Detecting stepping stones,”
Proceedings of the 9th USENIX Security Symposium, 2000.

