
A Sweet Recipe for Consolidated Vulnerabilities:
Attacking a Live Website by Harnessing a Killer
Combination of Vulnerabilities for Greater Harm

Mazharul Islam1, MD. Nazmuddoha Ansary2, Novia Nurain3, Salauddin Parvez Shams4, A. B. M. Alim Al Islam5

1, 3, 5Department of Computer Science and Engineering
2, 4Department of Electrical and Electronic Engineering
1, 3United International University, Dhaka, Bangladesh

2, 4, 5Bangladesh University of Engineering and Technology, Dhaka, Bangladesh
Email: 1 mazharul@cse.uiu.ac.bd, 2 nazmuddoha.ansary .28@gmail.com,

3 novia@cse.uiu.ac.bd, 4 parvezshams38@gmail.com, 5alim razi@cse.buet.ac.bd

Abstract—Recent emergence of new vulnerabilities is an
epoch- making problem in the complex world of website security.
Most of the websites are failing to keep updating to tackle their
websites from these new vulnerabilities leaving without realizing
the weakness of the websites. As a result, when cyber-criminals
scour such vulnerable old version websites, the scanner will
represent a set of vulnerabilities. Once found, these
vulnerabilities are then exploited to steal data, distribute
malicious content, or inject defacement and spam content into
the vulnerable websites. Furthermore, a combination of different
vulnerabilities is able to cause more damages than anticipation.
Therefore, in this paper, we endeavor to find connections among
various vulnerabilities such as cross-site scripting, local file
inclusion, remote file inclusion, buffer overflow CSRF, etc. To do
so, we develop a Finite State Machine (FSM) attacking model,
which analyzes a set of vulnerabilities towards the road to
finding connections. We demonstrate the efficacy of our model by
applying it to the set of vulnerabilities found on two live
websites.

Index Terms—Cyberspace security, Vulnerabilities, Hacking,
Exploits, Finite state machine (FSM).

I. INTRODUCTION

According to Common Vulnerability Explorers (CVE) [2],
in the last two years, i.e., 2018 and 2017, the number of
vulnerabilities found on websites are more than 11, 000.
These massive number of vulnerabilities leave a insidious
attacking surface for malicious hackers. Since vulnerabilities
are the attacking surface for the hackers, more websites are
becoming vulnerable to hacking. Consequently, most website
developers give little efforts to maintain the security of
website updated. They are not vigilant enough to keep
updating the website security regularly.

Furthermore, most of these vulnerable websites have com-
pelling ubiquitous effect in personal, social, and economic life
as these websites contain sensitive information from credit
card pin number to passwords. If any one of these sensitive
information falls into the hand of malicious hacker results can
be devastating.

Hence, exploration of vulnerabilities of a website has
always been a study of interest to the research community.
There are many scanners available such as Acunetix [1],
Arachni [3], Netspark [4], etc., to scan live websites for
exposing vulnerabilities. Such vulnerabilities includes SQL
Injection, Cross Site Scripting, Cross-Site Request Forgery,
Local File Inclusion, and Remote File Inclusion. However,
Cross Site Scripting and SQL injection have been the main
focus of interest owing to more malicious effects.

From the attackers point of view, attackers envision to relay
on these vulnerabilities in order to construct malicious attacks
so that he can penetrate the security of live websites. However,
we explore a potential gap here.When we are only considering
an isolated vulnerability one at a time, we may end up doing
not so great harm to the security of the website. However, the
impacts of conducting a series of attacks combining
diversified vulnerabilities exposed on websites is yet to be
explore in the literature. Therefore, in this paper, we
endeavor to exhibit that we can achieve more malicious
results by combining vulnerabilities which would have been
impossible to do just by considering one isolated vulnerability.
Here, to justify our endeavor, we can draw a real-life analogy
of a chess game. In an international level chess game, a grand
master may combine a series of brilliant moves according to a
genius game plan. When analysts look at these series of
brilliant moves they say that each isolate move may not do
much harm to the opponent but a series of these moves cause
irreparable damage to the chances of the opponent winning
the game. Similarly, we can combine vulnerabilities and
execute a series of attacks combining these vulnerabilities to
cause great harm.

In this paper, we develop a Finite State Machine (FSM)
attacking model which will connect and combine the found
vulnerabilities. Each vulnerability is associated with some
preconditions and postconditions. The attacker can take ad-
vantage of any particular vulnerability if and only if the
precondition statements are true. The successful exploitation

978-1-7281-1325-8/18/31.00
§c

2018 IEEE of the vulnerability will leave the postconditions to be true.

mailto:1mazharul@cse.uiu.ac.bd
mailto:razi@cse.buet.ac.bd
mailto:4parvezshams38@gmail.com
mailto:3novia@cse.uiu.ac.bd
mailto:.28@gmail.com
mailto:2nazmuddoha.ansary.28@gmail.com

Now, the new true conditions will enable the attacker to
exploit advantages of other vulnerability, which has these new
conditions as its preconditions.

Our proposed FSM model has a starting state as the place
where the attacker begin to initiate attack. The starting state
has no precondition statements. Then, using various attacks
and vulnerabilities the attacker try to reach the goal state.
The goal states are successful exploitation of the victim
website which is impossible to reach using only one isolated
vulnerability.

In this paper, we make the following contributions:

• Our proposed FSM attacking model exhibits that com-
bining different vulnerabilities using preconditions and
postconditions enable us to reach great harmful goal
states which are not possible to reach using only one
isolated vulnerability.

• We deploy our propose FSM attacking model
against two different real-life live websites. One is
http://testphp.vulnweb.com, which is open for
penetration testing. The other one is
http://teacher.xxx.xx.xx, which is an official government
website.

• Our evaluation reveals that our proposed FSM attacking
model provides a sequence of attacks combining different
exposed vulnerabilities causing devastating effects on the
two compromised websites.

The rest of this paper is structured as follows: Section II
will highlight related works, Section III will delineate the
construction of Finite State Machine (FSM) and our recursive
algorithm to reach accepting/goal states. Section IV will give
comprehensive analysis of the test results that we have found
on two live website using our FSM model. Section V will
conclude the paper giving a brief remark on future work.

II. RELATED WORK

Detection of various vulnerabilities specially SQL injec-
tion and cross site scripting is popular in the literature of
cyberspace security. Sonewar et. al. propose an approach for
detection of SQL injection and cross site scripting attack [5].
The study in [6] investigate on finding SQL injection and
cross site scripting using static analysis tool. Besides, existing
studies such as [7]–[10] explore cross site scripting and SQL
injection separately in the literature pertinent to penetration of
website.

The holistic approach of considering all vulnerabilities has
inspired other researches such as [11]. However, their research
suffers from one major assumption that we will be able to scan
the internal network of the victim website which is not
practical. Since hackers wont have the required permission
to go inside the firewall of the victim websites network and
perform scanning.

In this paper, we have taken a holistic approach. Instead
of considering each of the attacks separately, we envision to
look at the whole picture of available vulnerabilities and to
combine them all for causing greater harm.

III. DESIGN ARCHITECTURE OF ATTACKING
MODEL

We design a Finite State Machine (FSM) to connect the
existing vulnerabilities on the victim website. We call this
stage preprocessing. We choose Finite State Machine (FSM)
since the modeling of the problem is quite complex. Accord-
ing to our thinking, Finite State Machine (FSM) can easily
consume these type of complexities while modeling this kind
of problems.

We model our Finite State Machine (FSM) in such a
way so that accepting states (goal states) represent causing
severe harm to the victim website and starting state represents
the initiation stage before attacking. Our target is to reach
accepting states (goal states) from starting state. To
summarize, we divide our model into two stages as shown
in Fig. 1

• The first stage is for building the Finite State Machine
(FSM). This is a preprocessing stage.

• In the second stage, we run our recursive algorithm to
attain our goal of directing towards more harm for the
victim website.

Fig. 1. Two stages of our FSM based attacking model

A. Preprocessing Stage: Building FSM

Fig. 2. Three sequential phases of preprocessing stage: building Finite State
Machine

We develop our Finite State Machine (FSM) in three se-
quential phases as shown in figure 2. This preprocessing stage

will take as input the victim website address and outputs a
Finite State Machine (FSM).

• Phase 1: Discovering URI tree: In the first phase, we
find every possible accessible resource (URI) to build a

knowledge base for the victim website. The knowledge base
contains the victim website information such as Apache
version, PHP version, open ports, the list of all URI of the
victim website, etc.

http://teacher.xxx.xx.xx/
http://testphp.vulnweb.com/

• Phase 2: Finding vulnerabilities and possible attacks
for each URI: In the second phase, we use the
knowledge base of the first phase to discover
vulnerabilities and possible attacks on the victim website.
We give the URI list discovered in the first phase to
available scanners such as Acunetix [1], Arachni [3],
Netspark [4], Nikto [14] etc. The scanners give us a list
of possible vulnerabilities and attacks that can be
executed on the URI.

Fig. 3. Four properties of a state: vulnerability name, affected URI,
precondition, postcondition

• Phase 3: Building FSM by dependencies Analysis: In
the third phase, we connect the isolated vulnerabilities
using the preconditions and postconditions. We can suc-
cessfully take advantage of a vulnerability of if all of
its preconditions are true. Successful exploitation of the
vulnerability will render the postcondition to be true.

We have defined the four properties of our Finite State
Machine as follows:

• State: To differentiate each state of our Finite State
Machine, we have considered each state as a unique
combination of a vulnerability and the URI that which
is affected by the vulnerability. Each state is associated
with some preconditions and postconditions. We define
preconditions and postconditions as following:

–Preconditions: The attacks which must be executed
successfully to take advantage of the vulnerability of
the affected URI.

–Preconditions: The attacks which can be executed on
the victim website leveraging the vulnerability of the
affected URI.

Thus, each state has four properties as illustrated in the
Fig. 3 and in Table I

• Edges:Edges in our FSM connects the states. The in-
coming edges to a state represent preconditions and the
outgoing edges from a state represent postconditions.

• Starting state: We use the NULL situation before initiate
attacking as the starting state. The initial state requires
no precondition to be true (starting state has no precon-
ditions). We draw outgoing edges from the starting state

TABLE I
THE FOUR PROPERTIES OF A STATE

Vulnerability name
Affected URI
Preconditions
Postconditions

Fig. 4. Simplified state diagram

to those states which do not need any precondition to be
true.

• Accepting state: Accepting (goal) states represent a
harmful state of the victim website after combining more
than one states.

After the preprocessing step, we build a Finite State Ma-
chine (FSM) for the target victim website. We summarize the
algorithmic details in Algorithm 1.

B. Goal Reaching Stage: Modeled Recursive Algorithm

We first mark all states as not visited. Then, we mark
starting state as visited and try to visit all other states in using
a DF S(starting state) function call in a recursive fashion.
We can reach a state if all the preconditions along the path
to that state are true. After the successful exploitation, the
new true postcondition statement will become true. This may
enable us to reach those states which were not possible for us
to reach because of its precondition being false previously.

After this recursive algorithm, the visited marked goal
states signify the harmful damage we can do to the security
of the website. We present the process of goal reaching sate in
Algorithm 2.

A simplified version of our FSM is shown in Fig. 4. The
preconditions and postconditions of the corresponding FSM
along with the state are shown in Table II.
We can observe that vulnerability A affects two URI
namely a1 and a2. Vulnerability B and C affect URI b1 and
c1 respectively. So we need 2 + 1 + 1 = 4 states to
identify

Algorithm 1 Algorithm for Building FSM: Preprocessing
Stage

Input: victim website address

Output: A FSM
Initialization :

1: TrueConditionList
2: URITree←

∅

←
∅

3: URIVulnerabilityMap
4: for each new resource found in Phase 1 do
5: add the new resource to URITree
6: URIVulnerabilityMap [new resource]
7: end for
8: for each leafURI in URITree do
9: for each vulnerability found in leafURI do

10: URIVulnerabilityMap [leafURI].add(vulnerability)
11: end for
12: end for
13: for each new true condition found in Phase 1 do
14: TrueConditionList.add(new true condition)
15: end for
16: F SM
17: for each URI in URITree do
18: for each vulnerability in URIVulnerabilityMap[leaf] do
19: preconditions
20: postconditions
21: for each condition in TrueConditionList do
22: if condition is a prerequisite for vulnerabiltlity

then
23: preconditions preconditions + condition
24: end if
25: if condition is a consequence of vulnerabiltlity

then
26: postconditions postconditions + condition
27: end if
28: end for
29: State = new State(leafURI, vulnerability, precondi-

tion, postcondition)
30: F SM .add(State)
31: end for
32: end for

initialPostConditions
33: for each condition not prerequisite for any vulnerabiltlity
do

34: initialPostConditions initialPostConditions + condi-
tion

35: end for
36: Start = new State (rootURI, NULL, NULL,)
37: F SM .add(Start)

each vulnerability and URI pair uniquely. The starting state
S0 has no precondition. We connect the starting state with
those states which do not need any preconditions to be true
which in this case from Table II are S1 and S2.

We can conclude from Fig.4 that to reach S3 we need
the preconditions conditions x1 and x3 to be true. x1 is the

Algorithm 2 Algorithm for Goal Reaching: Recursive Stage
Input: The F SM built in the preprocessing stage
Output: A set of goal states reachable from starting stage

Initialization:
1: all states Not visited
2: starting state visited
3: DF S(starting state)
4: goal set
5: for each state in FSM do
6: if state == Visited then 7:

goal set. add(state)
8: end if
9: end for

10: return goal set
DF S(State)

11: Mark all postconditions of state True
12: for each state in FSM do
13: if state == Not visited then
14: if All of its precondition are true then
15: state visited
16: for each condition in post-condition of state do
17: condition True
18: DF S(state)
19: end for
20: end if
21: end if
 22: end for

TABLE II
VULNERABILITY PRECONDITIONS AND POSTCONDITIONS

Sate Vulnerability URI Preconditions postconditions
S1 A a1 - x1

x2
S2 A a2 - x3
S3 B b1 x1

x3
z1

S4 C c1 x2 z2

postcondition of S1 and x3 is the postcondition of S2. So to
reach S3 we need to take advantage of vulnerability A on URI
a1 and a2. If we can make the postcondition of S1 and S3 true
by successfully executing attacks on URI a1 and a2 by
leveraging vulnerability A, only then we can reach S3.

We should make a remark at this point. The possible
vulnerabilities and attack list to make postconditions true by
leveraging some vulnerability on a URI are given to us by the
scanners. Since scanners are not 100% accurate, there may
exist false positive attacks. Such as we can see in figure 4 that
in spite of reaching A, we still can not make postcondition x2
true because the possible attacks to make this postcondition
x2 true are false positive attack reported by the scanners. The
dotted red arrow x2 represents false positive attacks in Fig. 4

IV. EXPERIMENTAL RESULTS

We choose two different real-life live websites
http://testphp.vulnweb.com.com (open for penetration testing)

←

←

←

←
∅

←
∅

←
∅

←
∅

←
←

←

←

←

←
∅

←
∅

←
∅

http://testphp.vulnweb.com/

Fig. 5. Outcomes of executing phase 1 on http://testphp.vulnweb.com in terms
of server information

and http://teacher.xxx.xx.xx (public government website
hence we are being anonymous about the website address)
for testing our FSM attacking model. In both cases, our
attacking machine is Kali linux (2018 July release version).
We download the virtual machine images of Kali linux and run
these image files using Oracle Virtual Box.

A. Results on http://testphp.vulnweb.com

Acunetix developed http://testphp.vulnweb.com for testing
purposes. It is a vulnerable and dummy website authorized
for penetration testing only. The website is fairly simple
functionality wise. It contains a list of dummy artists’ name
and there are some dummy artworks with the artist’s name.
After logging in the user can buy and add these artworks to
his cart.

In order to compromise the security of the website
http://testphp.vulnweb.com our FSM attacking model
leverages the vulnerabilities found on the website and relates
these vulnerabilities in two stages as shown in figure 1.

We will first discuss the three sequential phases of the
preprocessing stage to build the FSM.

Outcomes of phase-1: In this phase, we gain as much
information as we can about the website. We are able to
crawl the entire website resources in this case. For crawling
and fetching HTML, PHP and XML data of the website,
we utilize the Python framework BeautifulSoup [12]. We use
Nmap [15] for scanning open ports. Figure[5] shows the
server information and figure[6] shows the resource tree of
our target victim website http://testphp.vulnweb.com.

Fig. 6. Outcomes of phase-1 on http://testphp.vulnweb.com in terms of URI
resources. The leaf nodes represents resources. The non-leaf nodes represents
directory/folder

Outcomes of phase-2: Outcomes of phase-2: After having,
the knowledge base of the website at our disposal, we then
find the vulnerabilities of each URI as shown in figure[6] in
the second phase.

We give resources of the website as an input to scanners.
The scanners find their vulnerabilities along with the
necessary preconditions and postconditions. The results are of
the scan is summarized in figure III.

Outcomes of phase-3: This phase is the most crucial part
of our model. In this phase, we build the Finite State Machine
(FSM). We build the FSM by defining the four properties of
an FSM:

• Sates: As shown in Table IV we denoted 10 states each
being a unique combination a vulnerability and a URI.

• Edges: We have associated each state with some precon-
dition and post-condition. The preconditions and post-
conditions are shown in Table III are used to connect
the 10 states. The number of incoming edges to a state
and outgoing edges from a state is respectively equal
to the number of preconditions and postconditions the
corresponding state has. Such as, in Fig.7, S6 has 3
preconditions and 1 postcondition. Hence, we associate
3 incoming edges and 1 outgoing edge with S6.

• Starting state: S0 represents the starting state where we
begin to initiate series of attacks. We connect S0 with
those states which have no preconditions. Such as Fig. 7
shows that S0 is connected to S1, S2, S3, S5, S9 as these
states have no preconditions in them.

• Accepting state: The RED colored states represents a
goal/accepting state of the FSM. Such as Fig. 7 shows
S4, S7, S10 are the goal states here. S4, S7, S10 are
the goal states not reachable from S0, if we had not
considered other states and connected these states using
preconditions and postconditions.

Fig. 7. The simplified Finite State Machine (FSM) for
http://testphp.vulnweb.com The states are connected using the preconditions
and postconditions from Table IV

For the demonstrative purpose, we are going to delineate
how we can reach S4 from S0.

http://testphp.vulnweb.com/
http://testphp.vulnweb.com/
http://testphp.vulnweb.com/
http://testphp.vulnweb.com/
http://testphp.vulnweb.com/
http://testphp.vulnweb.com/
https://www.virtualbox.org/wiki/Downloads
https://www.kali.org/
https://www.kali.org/
http://teacher.xxx.xx.xx/
http://testphp.vulnweb.com/

TABLE III
OUTCOMES OF PHASE-3 ON HTTP :// TESTPHP . VULNWEB . COM IN TERMS OF BUILDING A FSM

State Vulnerability URI Precondition Postcondition
S1 Weak password /login.php None Narrow search space of password.
S2 Email addresses discloser /index.php None Email of a registered is found.
S3 HTTP basic authentica-

tion
/auth.php None Not blocking multiple failed log-in attempts.

Not blocking the same GET request again and
again.

S4 Brute force dictionary
attacks possible

/auth.php Narrow search space of password.
Email address of a registered user
Not blocking multiple failed login attempts

Successfully logging in as registered
user.

S5 iFrame header is missing /login.php None Embedding the logging form into a third party
web-page.

S6 Social engineering
attacks

/login.php Embedding the logging form into a third party web-page

User clicking the address of third party web-page sent in
email

Defining emails of registered users

User redirected to a third party web-page

S7 Cross-site Request
Forgery in Login Form

/login.php Redirection to a third party web-page
User filling up the logging form

Reading the user name password
entered by the user from the third party

S8 Session-cookie without
HttpOnly

ALL URI Redirection to a third party web-page
Session cookie already save in client browser for the
logged in user

Stealing session cookie PHPSESSID
of logged in user from thrid part web-page

S9 Slow response time /Flash/add.fla None Running time and memory expensive process
for the server

S10 DDoS /Flash/add.fla Running time and memory expensive process for server
Not blocking any request to load the same resource again
and again

END

From S4 to S0: To reach S4 from So, as we can from Fig.
7 we need 3 preconditions to be true. From Table III we can
see that these three conditions are.

• Weak Password: The scanner reports that password
set by the registered users have weak passwords. This
is a good news for us since it increases our chances
of cracking the password by trying all passwords from
dictionary password lists. The outgoing edges of S1 make
this precondition true for S4.

• Email address discloser: The scanner found a registered
users email address from 17 pages in total. This email
address is useful since now we don’t need the usernames
of the registered users. This website allows the registered
users to log into the website using emails.

• Not blocking multiple login attempts: This website
uses HTTP basic authentication which is vulnerable since
it does not block users for multiple failed login attempts.
Our brute force Python script tries logging in one attempt
per second. Still, the server did not block us, after multi-
ple failed login attempts because one of the postcondition
of S3 is not to block.

Since all these preconditions are true, now we can conclude
that the victim website is vulnerable to brute force dictionary
attacks affecting /auth.php URI meaning we can reach state
S4.

In the same way, we can say the same things about other
states. Fig. 7 is drawn using the Table III. Interesting to note as
shown in Fig. 7, S6, S7, and S8 have a dotted incoming edge.
These edges mean that the value of these preconditions

to be true, we have to rely on victim user fault or carelessness.
Such as the dotted incoming edge to S6 represents if the user
has clicked the malicious link we have sent to him. If the user
clicks, then this precondition becomes true. A careful user
would not click the link in the email making this precondition
false.

B. Results on http://teacher.xxx.xx.xx

The reason for choosing http://teacher.xxx.xx.xx to test
our FSM attacking model is that it is an outdated website.
However, being a government website, it is used for such
important official work. Executing active attacks against this
official website requires higher order permission which was
not possible for us to get before the paper submission
deadline. Hence we have only executed passive attacks.

Therefore we have used our Finite State Machine (FSM)
attacking model in passive mode only. We only executed those
attacks which would not cause any direct harm to the website.
In the preprocessing stage, we build an FSM in three
sequential steps as shown in figure 2. In the goal reaching
stage, we reach those states which were not possible to reach
considering only isolated states. We are going to describe the
outcomes of the three stages of prepossessing, then present the
goal reaching stage.

Outcomes of phase-1: For gaining as much information
and resources as we can about the website. we crawl the entire
victim website. For crawling and fetching the resources of the
website, we utilize Python framework BeautifulSoup [12]. We
use Nmap [15] for scanning open ports. Fig. 8 shows server

information and Fig. 9 shows the resource tree of the victim
live website http://teacher.xxx.xx.xx.

Fig. 8. Outcomes of phase-1 on http://teacher.xxx.xx.xx in terms of server
information.

http://teacher.xxx.xx.xx/
http://teacher.xxx.xx.xx/
http://teacher.xxx.xx.xx/
http://teacher.xxx.xx.xx/
http://testphp.vulnweb.com/

Fig. 9. Outcomes of phase-1 on http://teacher.xxx.xx.xx in terms of URI
resources. The leaf nodes represents resources. The non leaf nodes represents
directory/folder

Outcomes of phase-2: After gaining the knowledge base of
the website, we then find the existing vulnerabilities for URI
resources on the outdated live website http://teacher.xxx.xx.xx
in this second phase.

In this phase, we utilize Acunetix [1], Netspark [4], Nikto
[14], and Dirbuster [13]. We use four scanners for double
checking of the existing vulnerabilities. Found vulnerabilities
after double checking are summarized in Table IV.

Outcomes of phase-3: This the phase where we connect
vulnerabilities and build the FSM. As we can observe from
Table IV, We denote 7 states. Each state is a unique combina-
tion of a vulnerability and URI resource. The build FSM from
the resulted table IV of phase-3 is shown in Fig 9.

Now the preprocessing is complete and we have an FSM
on our hand, we are going to explain how can we reach goal
state S7 using our recursive algorithm as shown in Algorithm
1.
From Start to S3: S3 represents the state of /phpMyAd-
min/index.php page being vulnerable to insufficient sanitation
of user-supplied input. We can see it has two incoming edges
representing two preconditions namely MySQL being the user
database and PHP version 2.x.x. Both of the preconditions
are true. Post-condition of S1 ensures MySQL is the user
database. Postcondition of S2 reveals that PHP version is
2.0.49 (2.0.49 ≤ 2.x.x). Hence we can reach S3 from Start

Fig. 10. Outcomes of phase-3: build FSM on http://teacher.xxx.xx.xx

since S1 and S2 has no preconditions.
From S3 to S5: When we reach S3, we mark its
postconditions as true. Marking the only post-condition of S3
means we can use the set variable such as what equal to the
file we want to see. However to view the file we need to log
in as a user. We can only see those files which have read
permission for the logged in user. To log in as non-privilege
user we can advantage of the post-condition of S4. We can
mark S4 as visited since we have already visited S1 before
while exploring S3. As a proof of concept, we are attaching
the screen shot of the contents of /etc/passwd file which is
the post-condition of S5.
From S5 to S7: S7 represents a state where we can log in as
a registered user. We can visit S7 is the two preconditions are
true. Looking at the precondition of S7 we see one of them
getting usernames of registered users which is true since we
can visit S5. Also, We can execute a python script to brute
the password since the HTTP basic authentication is used and
it doesn’t prevent us from trying to log in to an account with
the same, again and again, meaning a successful brute force
dictionary attack. Now, this brute force is an active attack and
if we want to execute a brute force attack we need permission
which we do not have. Hence we could not simulate in real
life if we can actually reach S7.

We are presenting the proof of concept of the two precon-
ditions of S7.

• The first precondition possible brute force attack is a
postcondition of the S5 stage which is possible brute
force attack. Since HTTP basic authentication is used we
suspect a possible attacking surface for brute force
attack. Indeed when we are run our brute force Python
script is was true as shown in Fig. 11. We execute a brute
force attack against http://teacher.xxx.xx.xx in less
aggressive mode since we were not allowed to harm the
website in any way. We only need the proof of concept of
a possible brute force attack.

≤

http://teacher.xxx.xx.xx/
http://teacher.xxx.xx.xx/
http://teacher.xxx.xx.xx/
http://teacher.xxx.xx.xx/

TABLE IV
OUTCOMES OF PHASE-3 ON HTTP :// TEACHER . XXX . XX . XX IN TERMS OF BUILDING A FSM

State Vulnerability name URI Precondition Post-condition
S1 PHPinfo() page found /test.php None Administrative URI of DB is /php-

MyAdmin/index.php
Deafult user account and password has
no value

S2 Out-of-date Version
(Apache)

NULL None PHP version 2.0.49

S3 Insufficient sanitation
of user-supplied input

/phpMyAdmin/index.php/ MySQL must be used as DB
PHP version ≤ 2.x.x

revealing the contents of directories .
to remote attackers

S4 Unauthorized logging /phpMyAdmin/index.php Deafult user account and password has
no value

Successful logging in as non privi-
leged user.

S5 Local file inclusion /phpMyAdmin/export.php?what=../../../../..

/../../../../../../../etc/passwd%00

revealing the contents of directories to
remote attackers
Successful login as non privileged user

Getting user names of registered users
by accessing file /etc/passwd/
which have permission 777.

S6 HTTP basic authenti-
cation

login/auth.php Possible brute force attack

S7 Unauthorized logging /login/auth.php Getting usernames of registered users
HTTP basic authentication

Successfully log in as registered users.

Fig. 11. Proof of concept: possible brute force attack (in less aggressive
mode) on http://teacher.xxx.xx.xx

• The other precondition is to get the usernames of reg-
istered users. Fig.12 show the contents of /etc/passwd
which is a post-condition of the state S5. The picture
is blurred since it contains sensitive information such as
registered usernames and their home directory location.

V. FUTURE WORK

In the future, we have ambitions to automate the entire
process of connecting the vulnerabilities and finding out ways
to cause more harms to victim websites. Consequently, we
want to make our FSM model dynamic so that it can adapt
itself with the introduction of new types of vulnerabilities

Fig. 12. Proof of concept: getting user names of registered user by accessing
file /etc/passwd on http://teacher.xxx.xx.xx .The picture is blurred since it
contains sensitive information such as registered usernames and their home
directory location.

leveraging techniques of deep learning. Moreover, we will add
new metrics such as time, amount of sensitive information
obtained, etc., to measure how much damage our FSM model
can do to a website.

VI. CONCLUSIONS

In this paper, we endeavor to find the holistic approach to
connect all possible vulnerabilities in order to cause more
harm to the security of the websites in comparison to harm
caused by one or two vulnerability. Therefore, in this paper,
we propose an FSM attacking model combine different
vulnerabilities

together. Deployment of our FSM attacking model on two live
websites illustrates the effectiveness of our proposed model by
discovering more harmful states. Consequently, our proposed

FSM attacking model acts as a security assessment tool for any
websites. Moreover, our FSM attacking model is one of the steps

http://teacher.xxx.xx.xx/
http://teacher.xxx.xx.xx/
http://TEACHER.XXX.XX.XX/

towards the direction of automating the website security
assessment tools.

REFERENCES

[1]Acunetix Web Scanner, https://www.acunetix.com/,Last Accessed 23 12
2011.

[2]common vulnerability explorers, http://cve.mitre.org/, Last Accessed 8
9 2018.

[3]Arachni Web Application Security Scanner Framework http://www.
arachni-scanner.com/, Last Accessed 8 9 2018.

[4]NetSpark — Technology for a Safer Internet http://netspark.com/, Last
Accessed 8 9 2018.

[5]Sonewar, Piyush A., and Nalini A. Mhetre. ”A novel approach for
detection of SQL injection and cross site scripting attacks.” In Pervasive
Computing (ICPC), 2015 International Conference on, pp. 1-4. IEEE,
2015.

[6]Algaith, A., P. Nunes, J. Fonseca, I. Gashi, and M. Viera. ”Finding SQL
Injection and Cross Site Scripting Vulnerabilities with Diverse Static
Analysis Tools.” (2018).

[7]Ismail, O., Etoh, M., Kadobayashi, Y., & Yamaguchi, S. (2004). A pro-
posal and implementation of automatic detection/collection system for
cross-site scripting vulnerability. In Advanced Information Networking
and Applications, 2004. AINA 2004. 18th International Conference on
(Vol. 1, pp. 145-151). IEEE.

[8]Gupta, S. and Gupta, B.B., 2017. Cross-Site Scripting (XSS) attacks
and defense mechanisms: classification and state-of-the-art. Interna-
tional Journal of System Assurance Engineering and Management, 8(1),
pp.512-530.

[9]Som, S., Sinha, S. and Kataria, R., 2016. Study on sql injection attacks:
Mode detection and prevention. International Journal of Engineering
Applied Sciences and Technology, Indexed in Google Scholar, ISI etc
pp.23-29.

[10] Nagpal, Bharti, Nanhay Singh, Naresh Chauhan, and Angel Panesar.
”Tool based implementation of SQL injection for penetration testing.”
In Computing, Communication and Automation (ICCCA), 2015 Inter-
national Conference on, pp. 746-749. IEEE, 2015.

[11]Jajodia, Sushil, Steven Noel, and Brian OBerry. Topological analysis of
network attack vulnerability. In Managing Cyber Threats, pp. 247266.
Springer, Boston, MA, 2005.

[12] Beautiful Soup Documentation
https://www.crummy.com/software/ BeautifulSoup/bs4/doc/, Last
Accessed ,Last Accessed 8 9 2018. [13]Dirbuster(URLfuzzer:OWASP)

https://www.owasp.org/index.php/ Category:OWASP DirBuster Project,
Last Accessed 8 9 2018.
[14]Nikto web scanner https://cirt.net/Nikto2, Last Accessed 8 9 2018.
[15]Nmap: the Network Mapper- Free Security Scanner, https://www.nmap.

org/, Last Accessed 8 9 2018.

https://www.nmap.org/
https://www.nmap.org/
https://cirt.net/Nikto2
http://www.owasp.org/index.php/
http://www.owasp.org/index.php/
https://www.crummy.com/software/BeautifulSoup/bs4/doc/
https://www.crummy.com/software/BeautifulSoup/bs4/doc/
http://netspark.com/
http://www.arachni-scanner.com/
http://www.arachni-scanner.com/
http://www.arachni-scanner.com/
http://cve.mitre.org/
https://www.acunetix.com/

	then
	then
	do

