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Abstract—A distributed data collection algorithm to accurately
store and forward information obtained by wireless sensor
networks is proposed. The proposed algorithm does not depend
on the sensor network topology, routing tables, or geographic
locations of sensor nodes, but rather makes use of uniformly
distributed storage nodes. Analytical and simulation results
for this algorithm show that, with high probability, the dat a
disseminated by the sensor nodes can be precisely collectedby
querying any small set of storage nodes.

I. I NTRODUCTION

Wireless sensor networks (WSNs) often consist of small
devices (nodes) with limited processing ability, bandwidth and
power. They can be deployed in isolated or dangerous areas to
monitor objects, temperatures, etc. or to detect fires, floods, or
other incidents. There has been extensive research on sensor
networks to improve their utility and efficiency [15].

In this paper we consider a wireless sensor networkN with
n nodes among whichk = n(1 − α) are sensing nodes and
n − k are storage nodes, for small fractionalα and k/n ≈
80%. The sensor and storage nodes are distributed randomly
in some regionR and cannot maintain routing tables or shared
knowledge of network topology. Some nodes might disappear
from the network due to failure or battery depletion. It is of
interest to design storage strategies to collect sensed data from
such sensors before they disappear suddenly from the network.
Previous work on this problem has focused on situations in
which either the network topology is known or the sensor
nodes are able to maintain routing tables [8], [9], [12].

The authors in [1], [2] studied distributed storage algorithms
for wireless sensor networks in different topology in which
k sensor nodes (sources) want to disseminate their data to
n storage nodes with low computational complexity, where
k/n ≈ 20%. They used fountain codes and random walks
on graphs to solve this problem. They also assumed that the
total numbers of sources and storage nodes are not known. In
other words, they demonstrated an algorithm in which every
node in a network can estimate the number of sources and
storage nodes. In this work we solve the storage problem in
WSNs by developing data collection algorithms with persistent
storage nodes and dividing the regionR into smaller regions.
We do not assume routing or topology propositions about the
network, as was done in [4], [12]. We consider situations in
which the sensor nodes are distributed uniformly inR, and,
again, they do not maintain any routing tables or network

topology.There have been several clustering algorithms to
aggregate nodes in wireless sensor networks. The most widely
known are clustering by location or clustering using counters;
see [3], [13]–[16] and references therein. The proposed data
collection algorithm is suitable to use in terrains where wecan
not choose positions of the sensor nodes or the cluster heads.
In this case, the system is self-stabilizing because if one node
fails, no computations are needed to establish the cluster head.

The rest of the paper is organized as follows. In SectionII
we present the network model and assumptions. The dis-
tributed data collection algorithm is proposed in SectionIII
and an analysis for this algorithm is presented in SectionIV. In
SectionV, we demonstrate performance and simulation results
for the proposed algorithm. In SectionVI, we describe other
work related to the proposed problem. Finally, the paper is
concluded in SectionVII .

II. N ETWORK MODEL AND ASSUMPTIONS

Assume a large scale wireless sensor network with a set of
sensing nodes and a set of storage nodes. Both are distributed
randomly and uniformly in a given regionR = L×L, where
L is the side length. The sensing nodes have limited memory
and bandwidth, and they might disappear from the network at
any time due to limited battery lifetime. The storage nodes
have large memory and bandwidth, but they do not sense
information about the region.

We assume that the data collector (base station) is far away
from the nodes , but it is connected with a set of storage nodes.
The sensor nodes are able to sense data and distribute it to the
storage nodes.

A. Assumptions

We consider the following assumptions about the sensor
network modelN :

i) Let S = {s1, . . . , sk} be a set of sensing nodes that
are distributed randomly and uniformly in a given region
R. All sensor nodes have the same capabilities such as
mobility, homogeneous, limited memory and power.

ii) Let R = {r1, . . . , rn−k} be the set of storage nodes
such that(n − k)/n = 10% ∼ 20%. This assumption
differentiates between the work and problem considered
in [1], [2], [12]. All storage nodes have the same amount
of memory, power and bandwidth.
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iii) The nodes do not maintain routing or geographic tables,
and the topology of the wireless sensor network is not
known. Each storage noderi can send multicasting mes-
sages to neighboring nodes. Also, each noderi can detect
its total number of neighbors by sending a simple flooding
query message, and any sensor node that responds to this
message will be a neighbor of this node. Therefore, our
work is more general and different from the work done
in [4], [6] which depends on the knowledge of network
topology and routing tables. The degreedn(u) of a nodeu
is the total number of neighbors with a direct connection
with this node.

iv) Each storage node has a memory buffer of sizeM and
this buffer can be divided into smaller buffers, each of
size c, such thatǫ = ⌊M/c⌋. For simplicity we assume
that all storage nodes have equal memory sizeM .

v) Every nodesi prepares a packetpacketsi with its IDsi ,
sensed dataxsi , and aflag that is set to zero or one:

packetsi(IDsi , xsi , f lag) (1)

vi) We will consider two different types of packets depending
on theflag value: initialization and update packets. If the
source node sends a packet and theflag is set to zero, then
it will be considered as an initialization packet. Otherwise,
it will be considered as an update packet.

vii) The network is divided into clusters (sub-regions). Every
cluster region is identified by a storage noderi, which
exists in this cluster. Hence the storage node is also
called the cluster head. Every storage node will accept the
incoming packets with probability one, and will update its
buffer if the flag is set to one.

B. Distance Measurement and Clusters Distribution

Since the sensing and storage nodes are distributed ran-
domly, the distances between nodes are not known, but can
be measured using the coverage radius of the nodes. When
a storage node sends a flooding beacon message to all other
sensing nodes, those sensing nodes that can receive this beacon
will respond with reply messages. The storage node will accept
these reply messages and decide to receive information from
a nodesi based on the following comparison:

drisj ≤ δ, (2)

wheredrisj denotes the (Euclidean) distance betweenri and
sj , andδ is a fixed distance for all storage nodes. In this case
if the distancedrisj is greater thanδ, then the sensing node
sj does not lie in the cluster identified byri [13].

III. D ISTRIBUTED DATA COLLECTION ALGORITHMS

In this section, we propose a distributed data collection
algorithm for the storage problem proposed in the previous
section. The clustering storage algorithm runs in the following
phases:

i) Clustering phase: We assume that the sensor network
hask/n ≈ 80% sensing nodes, and(n − k)/n ≈ 20%
storage nodes. All clusters in the network are established

Input : A sensor network withS = {s1, . . . , sk} source
nodes,k source packetsxsi , . . . , xsk , andn− k
storage nodesR = {r1, r2, ..., rn−k}.

Output : storage buffersy1, y2, . . . , yn−k for all storage
nodesR.

foreach storage noderi = 1 : n− k do
Generate a beacon packet with itsIDri and send
flooding message to all sensing neighbors;
Every sensing node will decide the storage nodes to
connect to;

end
foreach source nodesi, i = 1 : k do

Generate header ofxsi andflag = 0;
Prepare thepacketsi ;
Send thepacketsi to storage nodes;

end
while source packets remainingdo

foreach noderj receives packetsdo
if the flag=0 then

Put xsi into rj ’s buffer;
end
else

Update theyj buffer of the storage noderj
yj = yj ⊕ xsi ;

end
end

end

Algorithm 1 : DSA-I Algorithm: Distributed data collection
algorithm for a WSN in which the data is disseminated using
multicasting messages to all storage nodes.

using clustering algorithms [13], [15]. In the clustering
phase, each storage node sends a flooding beacon mes-
sage with its ID to all neighboring nodes in the network.
Due to the random locations of the sensing nodes, some
nodes will be able to receive this message and reply with
their IDs to the storage nodes. In addition the sensing
nodes will store the IDs of the storage nodes in which
they received beacon messages:

packetri→S(IDri) (3)

ii) Sensing phase:In the sensing phase, the sensor nodes
sense data from the environment. Once the data is
collected, they send their packets to the storage node,
from which they have received beacon packets:

packetsi→Rsi
(IDsi , xsi , Rsi , f lag), (4)

whereRsi is the set of storage nodes with whomsi is
connected. The flag value determines whether the packet
contains an update or initially sensed data. The update
data from the sensing nodes will occur whenever they
sense new information about the surrounding environ-
ment.

iii) Data collection and storage phase:When a sensing
node senses the environment, it sends its packets to its
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storage nodes. The storage nodes collect the incoming
packets and store them encoded in their own buffer.
Based on the type of the incoming packets, the storage
nodes will store these packets or update the existing data
in their buffers.

iv) Querying phase: The query process can be done by
the base station or server that collects all data from the
storage nodes. In the following sections we will study
the total number of nodes that must be queried in order
to obtain the data sensed by the sensor nodes.

IV. DSA-I A NALYSIS

In this section we will analyze the proposed data collection
algorithm, which we call DSA-I.

Lemma1: With high probability, the data collector can
retrieve information about the sensing nodes if

ǫ ≥ k/(n− k), (5)

whereǫ is the number of buffers in each storage node.
Lemma2: The probability that a sensorsj lands in the

range of a storage noderi is given by

πδ2 − a

L2k
. (6)

Proof: We know that the sensor and storage nodes are
distributed independently and uniformly in the regionR. So
the probabilities that a randomly chosen sensor issj and a
randomly chosen storage node isri are given by

Pr(sj) =
1

k
and Pr(ri) =

1

n− k
. (7)

Let us define the random variableXrisj to indicate the event
that one of the sensorssj lies within a radio rangeδ of a
storage noderi, for 1 ≤ j ≤ k and1 ≤ i ≤ n− k:

Xrisj =

{

1, if drisj ≤ δ;
0, if drisj > δ.

(8)

where drisj is defined in (2). We also define the random
variableYrisj to indicate the probability that any of the sensor
nodessj lies within the range of a given storage noderi, so:

Pr(Yrisj = 1) =
πδ2 − a

L2
(9)

which is the area covered by the radio range within the
regionR divided by the total area ofR, and a is the area
of the portion of the radio range of the storage node that
falls outsideR. The previous terms are obtained assuming a
uniform probability distribution, therefore, the probability that
a particular sensorsj lies within the radio range of a storage
noderi is obtained by multiplyingPr(sj) in (7) by (9), so,

Pr(Xrisj = 1) =
πδ2 − a

L2k
. (10)

The following lemma follows from Lemma2, and its proof
is a direct consequence.

Lemma3: The probability that a sensorsj lands in the
range of all storage nodesR is given by

(πδ2 − a

L2k

)n−k

. (11)

Proof: By Lemma2, we know that the probability of one
sensor located in one storage node is given by

P (Xdrisj
=1) =

πδ2 − a

L2k
.

Since all storage nodes are distributed randomly and uniformly
in the region, then we have

f(XdR sj
=1) =

n−k
∏

i=1

P (Xdrisj
≤δ)

=
(πδ2 − a

L2k

)n−k

.

We also turn our attention to study the probability of all
sensor nodes sited at one particular storage noderi. In this
case, the coefficientspi1, pi2, pi3, . . . , pik of the ith in the
storage codeC are not zeros. In the other words,pij 6= 0
for all j = 1, 2, . . . , k.

Lemma4: The probability of all sensorsS sited in the
range of a storage nodesri is given by

(πδ2 − a

L2k

)k

. (12)

V. PERFORMANCE ANDSIMULATION RESULTS

In this section, we study the performance of the proposed al-
gorithm for WSNs through simulation. The main performance
metric we investigate is the successful decoding probability
versus the query ratio. We assume a square regionR of size
L × L in the plane, in whichL = 100. Recall that, a sensor
node lies in the coverage radius of a storage node ifdri,sj ≤ δ,
in which δ is covering radius of the storage nodes.

Definition 5: (Storage Nodes Query Ratio) Leth be the
number of storage nodes that are queried among then′ = n−k
storage nodes inR. Let η be the ratio between the number of
queried nodes and the number of storage nodesn′, i.e.,

η =
h

n′
. (13)

Definition 6: (Revealed Sensors Ratio) We define the ratio
of the number of sensor nodesk′, in which their data is
retrieved based on queryingh storage nodes, to the total
number of sensor nodesk as therevealed sensors ratioρ:

ρ = k′/k. (14)

Definition 7: (Successful Decoding Probability) Thesuc-
cessful decoding probabilityPs is the probability that thek
source packets are all recovered from theh querying storage
nodes.

The main metric that we investigate is the revealed sensors
ratio. It shows the amount of information that we successfully
are able to obtain based on the proposed algorithm. We study
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Fig. 1. Network model representing a wireless sensor network with
sensing and storage nodes. The successful decoding probability increases with
increasing the total number of network nodes.

the relationship between the range of the storage nodesη and
the revealed sensors ratioρ. We first fixη and change the ratio
between the range of the storage nodes and the region length
L.

Fig. 1 shows that increasing the number of network nodes
and fixing the covering radius of each node will result in an
improvement in the successful decoding probability as well.
Particularly, forn > 500 andn′ > 100, we see that querying
up to 20% ∼ 30% will reveal the sensed data about allk
sensor nodes. Fig.1 shows that the revealed sensors ratio will
be the same and approximately equals one whenη is greater
than0.17 and also shows that for large number of sensors we
will have largerρ.

In Fig. 2, we show the effect of increasing the percentage
of queried nodes on the successful decoding probability when
each storage node has40 buffers and a radio range of2
distance units in this case of a square terrain of side length
L = 100 distance units. The percentage of storage nodes
is always 20% of the total number of nodes. Increasing
the number of nodes has a positive effect on the successful
decoding probability. When there are250 total nodes, the
nodes are more dispersed and with this small radio range, the
storage nodes cannot reach all the sensor nodes and thus we
are not able to decode more than60% of the sensors’ data.
This can be improved if the radio range is increased, thereby
allowing the storage nodes to contact more sensors.

Fig. 3 shows the effect of increasing the radio range with
respect to the terrain side lengthL when the buffer size can
hold 50 sensor messages per storage node and30% of the
storage nodes are queried. As we increase the radio range,
the number of encoded messages is increased. This makes
decoding a much harder task until, at some point, no messages
are decoded. When the number of nodes in the terrain is
limited,250 for example, the increase in the radio range results
in an increase in the contacted nodes. This goes on until the
radio range covers an area with a radius of almost20% of
the side length of the terrain area. Increasing the radio range
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Fig. 2. Effect of changing the percentage of queried nodes when the number
of buffers and the radio range of all the nodes are changed. Clearly increasing
the number of nodes decreases the decoding performance due to lack of
resources.

further results in encoding more nodes that we are not able
to decode and thus in a gradual decrease of the successful
decoding probability. We can deduce from the curve that
there is an optimal radio range for a network with a constant
buffer size and node distribution beyond which the successful
decoding probability decreases.

The simulation results demonstrate that the proposed model
is suitable for large-scale wireless sensor networks. Finding
practical applications and network topologies in which this
data collection algorithm can be deployed are directions for
our future work.

VI. RELATED WORK

In this section, we review some previous work in distributed
data collection which is relevant to our work.

• Dimakis et al. in [5] and [7] used a decentralized imple-
mentation of fountain codes that uses geographic routing
and every node has to know its location. The motivation
for using fountain codes instead of using random linear
codes is that the former requiresO(k log k) decoding
complexity but the later such as RS codes requiresO(k3)
decoding complexity in whichk is the number of data
blocks to be encoded.

• Lin et al. in [11] and [12] studied the question ”how
can we retrieve historical data that the sensors have gath-
ered even if some sensors are destroyed or disappeared
from the network?” They analyzed techniques to increase
”persistence” of sensed data in a random wireless sensor
network. They proposed two decentralized algorithms
using fountain codes to guarantee the persistence and
reliability of cached data on unreliable sensors. They used
random walks to disseminate data from a sensor (source)
node to a set of other storage nodes. The first algorithm
introduces lower overhead than naive random-walk, while
the second algorithm has lower level of fault tolerance
than the original centralized fountain code, but consumes
much lower dissemination cost.
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Fig. 3. The effect of increasing the radio range with respectto L. The
maximum radio range for better decoding performance depends on the number
of nodes in the system.

• Kamaraet al. in [9] proposed a novel technique called
growth codesto increase data persistence in wireless
sensor networks, i.e. increasing the amount of information
that can be recover at the sink.Growth codesis a
linear technique that information is encoded in an online
distributed way with increasing degree. They defined
persistence of a sensor network as”the fraction of data
generated within the network that eventually reaches the
sink” [9]. They showed thatgrowth codescan increase
the amount of information that can be recovered at any
storage node at any time period.

• Aly et al. in [1], [2] and [10] studied a model for
distributed network storage algorithms for wireless sensor
networks wherek sensor nodes (sources) want to dissem-
inate their data ton storage nodes with less computational
complexity. The authors used fountain codes and random
walks in graphs to solve this problem. They also assumed
that the total numbers of sources and storage nodes are
not known.

VII. C ONCLUSION

In this paper, we have studied the distributed storage prob-
lem in large-scale random wireless sensor networks, in which
there are sensing and storing nodes uniformly distributed in
a region. We have proposed a data collection algorithm to
precisely collect sensed data and successfully store it at storage
nodes. The simulation results show that, with high probability,
querying only 30% of the storage nodes with limited or
unlimited buffers will retrieve all sensed data gathered bythe
sensing nodes.
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