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Abstract—A distributed data collection algorithm to accurately  topology.There have been several clustering algorithms to
store anq forward information obtained .by wireless sensor aggregate nodes in wireless sensor networks. The mostywidel
networks is proposed. The proposed algorithm does not depén  \nown are clustering by location or clustering using cotste
on the sensor network topology, routing tables, or geog.rapb 1911 d ref therein. Th d dat
locations of sensor nodes, but rather makes use of uniformly S€€ B]{ (13- 6] and reierences therein. The proposed data
distributed storage nodes. Analytical and simulation resits collection algorithm is suitable to use in terrains whereoan
for this algorithm show that, with high probability, the data not choose positions of the sensor nodes or the cluster heads
disseminated by the sensor nodes can be precisely collected |n this case, the system is self-stabilizing because if auen
querying any small set of storage nodes. fails, no computations are needed to establish the clusted.h

The rest of the paper is organized as follows. In Section
we present the network model and assumptions. The dis-

Wireless sensor networks (WSNs) often consist of smafibuted data collection algorithm is proposed in Sectitin
devices (nodes) with limited processing ability, bandWwidhd and an analysis for this algorithm is presented in Sedtionn
power. They can be deployed in isolated or dangerous areastztionV, we demonstrate performance and simulation results
monitor objects, temperatures, etc. or to detect fires, ipod for the proposed algorithm. In Sectiori, we describe other
other incidents. There has been extensive research onrsengsrk related to the proposed problem. Finally, the paper is

I. INTRODUCTION

networks to improve their utility and efficiency . concluded in SectioVIl.
In this paper we consider a wireless sensor netwdrith
n nodes among whiclk = n(1 — «) are sensing nodes and Il. NETWORK MODEL AND ASSUMPTIONS

n — k are storage nodes, for small fractionaland k/n ~ A | e wirel work with t of
80%. The sensor and storage nodes are distributed randoml SSUME a farge scale WIreless sensor network with a set o

in some regiork and cannot maintain routing tables or Shareae¥’13|ng nodes aqd a set. of stqrage nc_)des. Both are disttibute
domly and uniformly in a given regioR = L x L, where

knowledge of network topology. Some nodes might disappJ . : . S

from the network due to failure or battery depletion. It is o s the S'd_e length. The sensing hodes have limited memory

interest to design storage strategies to collect sensedden and bandwidth, and they might disappear from the network at
y time due to limited battery lifetime. The storage nodes

such sensors before they disappear suddenly from the rdetw | d bandwidth. but thev d ¢
Previous work on this problem has focused on situations | Ve large memory and bandwidth, but they do not sense
formation about the region.

which either the network topology is known or the sensd? ) )
We assume that the data collector (base station) is far away

nodes are able to maintain routing tablé} [9], [17]. h q bUL it 4 with ¢ q
The authors in]], [2] studied distributed storage algorithm rom the nodes, butitis connected with a set o _sto_rage nodes
he sensor nodes are able to sense data and distribute & to th

for wireless sensor networks in different topology in whic

k sensor nodes (sources) want to disseminate their data>13age nodes.
n storage nodes with low computational complexity, Wherlg
k/n ~ 20%. They used fountain codes and random walKs’
on graphs to solve this problem. They also assumed that théVe consider the following assumptions about the sensor
total numbers of sources and storage nodes are not knownnétwork model\:

other words, they demonstrated an algorithm in which everyi) Let S = {s1,...,s;} be a set of sensing nodes that
node in a network can estimate the number of sources and are distributed randomly and uniformly in a given region
storage nodes. In this work we solve the storage problem in R. All sensor nodes have the same capabilities such as

Assumptions

WSNs by developing data collection algorithms with peesist mobility, homogeneous, limited memory and power.
storage nodes and dividing the regi@ninto smaller regions. ii) Let R = {ry,...,r,—r} be the set of storage nodes
We do not assume routing or topology propositions about the such that(n — k)/n = 10% ~ 20%. This assumption
network, as was done in], [17]. We consider situations in differentiates between the work and problem considered
which the sensor nodes are distributed uniformlyRn and, in [1], [2], [17]. All storage nodes have the same amount

again, they do not maintain any routing tables or network of memory, power and bandwidth.
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i) The nodes do not maintain routing or geographic tables, Input: A sensor network withS = {s,..

and the topology of the wireless sensor network is not
known. Each storage node can send multicasting mes-
sages to neighboring nodes. Also, each nqdean detect

its total number of neighbors by sending a simple flooding

Output: storage buffers, yo, . ..

., 8k} source
nodes,k source packetss,, ..., zs,, andn — k
storage node® = {r1,r2, ..., "n—k }-

, yn— for all storage
nodesR.

query message, and any sensor node that responds to thfgreach storage node; =1:n —k do

message will be a neighbor of this node. Therefore, our
work is more general and different from the work done
in [4], [6] which depends on the knowledge of network
topology and routing tables. The degrggu) of a nodeu

is the total number of neighbors with a direct connection
with this node.

Each storage node has a memory buffer of siZeand
this buffer can be divided into smaller buffers, each of
size ¢, such thate = | M/c|. For simplicity we assume
that all storage nodes have equal memory gize

Every nodes; prepares a packeicket, with its 1D,
sensed data,, and aflag that is set to zero or one:

1)

vi) We will consider two different types of packets depengin
on theflag value: initialization and update packets. If the
source node sends a packet andfthgis set to zero, then
it will be considered as an initialization packet. Othemyis
it will be considered as an update packet.

vii) The network is divided into clusters (sub-regions) eBv
cluster region is identified by a storage node which
exists in this cluster. Hence the storage node is alsQ

iv)

packets, (IDy,, xs,, flag)

called the cluster head. Every storage node will accept the
incoming packets with probability one, and will update its
buffer if the flag is set to one.

B. Distance Measurement and Clusters Distribution

Since the sensing and storage nodes are distributed ran-
domly, the distances between nodes are not known, but can
be measured using the coverage radius of the nodes. When
a storage node sends a flooding beacon message to all other
sensing nodes, those sensing nodes that can receive thmbea
will respond with reply messages. The storage node willpicce
these reply messages and decide to receive information from
a nodes; based on the following comparison:

dT,;S]‘ S 67 (2) ”)
whered,. s, denotes the (Euclidean) distance betwegand

sj, andd is a fixed distance for all storage nodes. In this case
if the distanced,.,; is greater thar§, then the sensing node

s; does not lie in the cluster identified by [13].

IIl. DISTRIBUTED DATA COLLECTION ALGORITHMS

In this section, we propose a distributed data collection
algorithm for the storage problem proposed in the previous
section. The clustering storage algorithm runs in the Vaithg
phases:

i) Clustering phase: We assume that the sensor network

hask/n ~ 80% sensing nodes, anth — k)/n ~ 20% i)
storage nodes. All clusters in the network are established

Generate a beacon packet with it®,, and send
flooding message to all sensing neighbors;

Every sensing node will decide the storage nodes to
connect to;

end
foreach source nodes;, 7 = 1: k do

Generate header af;, and flag = 0;
Prepare theacket,;
Send thepacket,, to storage nodes;

end
while source packets remainingp

foreach noder; receives packetdo
if the flag=0then
| Putzg, into r;’s buffer;

end

else
Update they; buffer of the storage node;
Yi = Yj @ Ts,;

end

end

end

Algorithm 1: DSA-I Algorithm: Distributed data collection
algorithm for a WSN in which the data is disseminated using
multicasting messages to all storage nodes.

using clustering algorithmsLg], [15]. In the clustering
phase, each storage node sends a flooding beacon mes-
sage with its ID to all neighboring nodes in the network.
Due to the random locations of the sensing nodes, some
nodes will be able to receive this message and reply with
their IDs to the storage nodes. In addition the sensing
nodes will store the IDs of the storage nodes in which
they received beacon messages:

packet,, s(ID,,) 3)

Sensing phasein the sensing phase, the sensor nodes
sense data from the environment. Once the data is
collected, they send their packets to the storage node,
from which they have received beacon packets:

paCketsiﬁRsi (IDSi y Lsys st flag)a (4)

where R;, is the set of storage nodes with whomis
connected. The flag value determines whether the packet
contains an update or initially sensed data. The update
data from the sensing nodes will occur whenever they
sense new information about the surrounding environ-
ment.

Data collection and storage phaseWhen a sensing
node senses the environment, it sends its packets to its



storage nodes. The storage nodes collect the incomind.emma3: The probability that a sensos; lands in the
packets and store them encoded in their own buffeange of all storage nodds is given by
Based on the type of the incoming packets, the storage 762 — ann—k
nodes will store these packets or update the existing data (W) . (11)
in their buffers. N

iv) Querying phase: The query process can be done by Proof: By Lgmmaz, we know tha‘F thg probability of one
the base station or server that collects all data from tRENSOr located in one storage node is given by
storage nodes. In the following sections we will study T2 —a

the total number of nodes that must be queried in order P(Xq,,.=1) = L2k
to obtain the data sensed by the sensor nodes. Since all storage nodes are distributed randomly and uml§or
IV. DSA-I ANALYSIS in the region, then we have
. . . . n—k
In this section we will analyze the proposed data collection -
algorithm, which we call DSA-I. FXap ;=1) = 111 P(Xa,.,<0)
Lemmal: With high probability, the data collector can 1;52 _ gk
retrieve information about the sensing nodes if = (W) )
e>k/(n—k), (5) [ |

We also turn our attention to study the probability of all
sensor nodes sited at one particular storage nedén this
case, the coefficient;, pio, pis, . .., pix Of the it" in the
storage code” are not zeros. In the other words;; # 0
2 —a forall j=1,2,...,k.

T2k (6) Lemmad4: The probability of all sensors$' sited in the

range of a storage nodesis given b
Proof: We know that the sensor and storage nodes are 9 9 IS 9 y

distributed independently and uniformly in the regi@ So (7T52 - a)’“ (12)
the probabilities that a randomly chosen sensos;isand a L2k '

randomly chosen storage noderisare given by V. PERFORMANCE AND SIMULATION RESULTS

wheree is the number of buffers in each storage node.
Lemma2: The probability that a sensos; lands in the
range of a storage node is given by

1 1 In this section, we study the performance of the proposed al-
Pr(sj) = and Pr(ri) = —. () gorithm for WSNs through simulation. The main performance
Let us define the random variablg.,; to indicate the event metric we investigatfa Is the successful decoding propglbili
that one of the sensors; lies within a radio rangej of a \l/;ersus_the query rat_lo. W(_e assijme a square regiaf size
storage node;, for 1 < j < k and1 <i <n — k: x L in the plane, in whichl, = 100. Recall that, a sensor
node lies in the coverage radius of a storage nodg if, < J,
Y. { 1, if d.,; <6 ®) in which ¢ is covering radius of the storage nodes.
T8 0, if dps;, >0. Definition 5: (Storage Nodes Query Ratio) Lét be the
number of storage nodes that are queried among'then—k

whered,,. is defined in (2). We also define the random . b
variableYr;j to indicate the probability that any of the senso?tOrage nodes i. Letn be the ratio between the number of

nodess; lies within the range of a given storage nogeso: queried nodes and the number of storage nodese.,
h
2 _ n=—. (13)
% 9) n'
o _ . Definition 6: (Revealed Sensors Ratio) We define the ratio
which is the area covered by the radio range within thef the number of sensor nodds, in which their data is
region R divided by the total area oR, anda is the area retrieved based on queryinh storage nodes, to the total

of the portion of the radio range of the storage node thatimber of sensor nodésas therevealed sensors ratip:
falls outsideR. The previous terms are obtained assuming a

uniform probability distribution, therefore, the probktyithat p=k/k. (14)
a particular sensos; lies within the radio range of a storage pefinition 7: (Successful Decoding Probability) Treaic-
noder; is obtained by multiplyingPr(s;) in (7) by (9), S0,  cessful decoding probability, is the probability that the:
852 —a source packets are all recovered from thquerying storage
Ik (10) nodes.

Pr(YvTiSj =1)=

Pr(X,, =1)=

] The main metric that we investigate is the revealed sensors
The following lemma follows from Lemma, and its proof ratio. It shows the amount of information that we succegsful
is a direct consequence. are able to obtain based on the proposed algorithm. We study
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Fig. 1. Network model representing a wireless sensor né&tweith  Fig. 2. Effect of changing the percentage of queried nodemvthe number

sensing and storage nodes. The successful decoding diybimsreases with  of buffers and the radio range of all the nodes are changedriglincreasing

increasing the total number of network nodes. the number of nodes decreases the decoding performanceodiaekt of
resources.

the relationship between the range of the storage ngdasl further results in encoding more nodes that we are not able
the revealed sensors raoWe first fix» and change the ratio to decode and thus in a gradual decrease of the successful
between the range of the storage nodes and the region lerdglboding probability. We can deduce from the curve that
L. there is an optimal radio range for a network with a constant
Fig. 1 shows that increasing the number of network noddsiffer size and node distribution beyond which the succéssf
and fixing the covering radius of each node will result in adecoding probability decreases.
improvement in the successful decoding probability as.well The simulation results demonstrate that the proposed model
Particularly, forn > 500 andn»’ > 100, we see that querying is suitable for large-scale wireless sensor networks. ifgnd
up to 20% ~ 30% will reveal the sensed data about &ll practical applications and network topologies in whichsthi
sensor nodes. Fid. shows that the revealed sensors ratio willlata collection algorithm can be deployed are directioms fo
be the same and approximately equals one whéngreater our future work.
than0.17 and also shows that for large number of sensors we
will have largerp.
In Fig. 2, we show the effect of increasing the percentage In this section, we review some previous work in distributed
of queried nodes on the successful decoding probabilitynwhe@ata collection which is relevant to our work.
each storage node hal buffers and a radio range df « Dimakiset al.in [5] and [7] used a decentralized imple-
distance units in this case of a square terrain of side length mentation of fountain codes that uses geographic routing
L = 100 distance units. The percentage of storage nodes and every node has to know its location. The motivation
is always 20% of the total number of nodes. Increasing  for using fountain codes instead of using random linear
the number of nodes has a positive effect on the successful codes is that the former requirg3(klog k) decoding
decoding probability. When there a@®0 total nodes, the complexity but the later such as RS codes requirés®)
nodes are more dispersed and with this small radio range, the decoding complexity in whicl: is the number of data
storage nodes cannot reach all the sensor nodes and thus we blocks to be encoded.
are not able to decode more tha6% of the sensors’ data. « Lin et al. in [11] and [L7] studied the question "how
This can be improved if the radio range is increased, thereby can we retrieve historical data that the sensors have gath-

V1. RELATED WORK

allowing the storage nodes to contact more sensors. ered even if some sensors are destroyed or disappeared
Fig. 3 shows the effect of increasing the radio range with  from the network?” They analyzed techniques to increase

respect to the terrain side lengthwhen the buffer size can "persistence” of sensed data in a random wireless sensor

hold 50 sensor messages per storage node 3¥d of the network. They proposed two decentralized algorithms

storage nodes are queried. As we increase the radio range, using fountain codes to guarantee the persistence and
the number of encoded messages is increased. This makes reliability of cached data on unreliable sensors. They used
decoding a much harder task until, at some point, no messages random walks to disseminate data from a sensor (source)
are decoded. When the number of nodes in the terrain is node to a set of other storage nodes. The first algorithm
limited, 250 for example, the increase in the radio range results introduces lower overhead than naive random-walk, while
in an increase in the contacted nodes. This goes on until the the second algorithm has lower level of fault tolerance
radio range covers an area with a radius of alnist, of than the original centralized fountain code, but consumes
the side length of the terrain area. Increasing the radigean much lower dissemination cost.
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The effect of increasing the radio range with resgecf.. The

maximum radio range for better decoding performance dependhe number [
of nodes in the system.

« Kamaraet al. in [9] proposed a novel technique called g)

growth codesto increase data persistence in wireless

sensor networks, i.e. increasing the amount of information

that can be recover at the sinkrowth codesis a [

linear technique that information is encoded in an online

distributed way with increasing degree. They define[q
persistence of a sensor network”#ése fraction of data

generated within the network that eventually reaches the

sink” [9]. They showed thagrowth codescan increase

. . 12
the amount of information that can be recovered at al[iy]

storage node at any time period.
Aly et al. in [1], [2] and [10] studied a model for [
distributed network storage algorithms for wireless senso

networks wheré: sensor nodes (sources) want to disseni4]

inate their data ta storage nodes with less computational

complexity. The authors used fountain codes and randgys,
walks in graphs to solve this problem. They also assumed

that the total numbers of sources and storage nodes &
not known.

VIl. CONCLUSION
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In this paper, we have studied the distributed storage prob-
lem in large-scale random wireless sensor networks, inhwhic
there are sensing and storing nodes uniformly distributed i
a region. We have proposed a data collection algorithm to
precisely collect sensed data and successfully storetibiatge
nodes. The simulation results show that, with high prolishbil
querying only 30% of the storage nodes with limited or
unlimited buffers will retrieve all sensed data gatheredHsy
sensing nodes.
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