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Abstract—Widespread use of caching provides advantages for
users and providers, such as reduced network latency, higher
content availability, bandwidth reduction and server load balanc-
ing. In Information Centric Networking, the attention is shifted
from users to content, which is addressed by its name and not
by its location. Moreover, the content objects are stored as close
as possible to the customers. Therefore, the cache has a central
role for the improvement of the network performance but this is
strictly related to the caching policy used. However, this comes
at the price of increased tracing of users communication and
users behavior to define an optimal caching policy. A malicious
node could exploit such information to compromise the privacy
of users. In this work, we compare different caching policies
and we take the first steps for defining the tradeoff between
caching performance and user privacy guarantee. In particular,
we provide a way to implement prefetching and we define some
bounds for the users’ privacy in this context.

Index Terms—Information Centric Networking; Content Cen-
tric Networking; Named-Data Networking; Caching Policy;
Prefetching; User’s Ranking; Privacy; Data Perturbation;

I. INTRODUCTION

The number of contents in the Internet quickly grows. Users
continuously request content objects and want them as soon as
possible. The need for a network of caches is obvious. A lot
of research projects are focusing on this idea: CCN [1], NDN
[2], DONA [3].The core paradigm is that users send to the
network an interest message indicating the name of a content
and the network delivers it from the nearest node cache.

Nodes can either implement a reactive caching policy or
use prefetching, which if the user behavior can be well
predicted, provides better performance. The information for
determining which objects to prefetch can be either generated
using a server-hint method or a local method. In the former, a
server provides hints, which are based on previous requested
objects, to routers closer to the client. The routers prefetch the
contents according to the hints received. In the latter, the local
prefetcher uses only local information to determine what to
prefetch. In this paper, we consider prefetching policies based
on information deduced from user’s ranking.

Users have different preferences over the objects. Conse-
quently, the probability of requesting a content differs from
one user to another. This paper captures this aspect by defining
a dissimilarity metric between users. Our work stems from
the naive consideration that a prefetching policy that exploits
optimal per-user knowledge has optimal performance but is
not privacy-friendly. This paper confirms both intuitions. We
compare prefetching and reactive algorithms in scenarios with

growing dissimilarity. Then, we try to enhance the privacy of
the prefetching per-user policy and evaluate its cost in terms
of performance degradation. In order to achieve this goal,
we propose a mathematical definition of user privacy suitable
for Information Centric Networks. Finally, we evaluate the
tradeoff between privacy and latency.

The remainder of the paper is structured as follows: Section
II provides an overall view on related work about the possible
improvements of caching policies and the problems related
to user privacy. Section III presents the model: we define the
user dissimilarity, i.e. how user differs from each other, and
we consider different caching policies. Section IV proposes a
possible way to implement prefetching in ICN scenario. The
adversary model is given in Section V, together with the pri-
vacy definitions and a possible countermeasure against privacy
leakage. Section VI shows the results for the latency perceived
by user depending on popularity classes, the mean delay for
the most popular content classes, using data perturbation or
not, and the tradeoff between privacy and latency. Conclusion
and future research directions are left for the final Section VII.

II. RELATED WORK

There is a wide literature centered on the improvement of
caching and prefetching and on the privacy challenges in the
content centric scenario. However, only a few considers the
tradeoff between performance and privacy.

The authors of [4] analyze the caching potential to improve
network performance and take into account the need for
preserving users privacy-sensitive information. Moreover, they
propose some countermeasures to detect and prevent infor-
mation leaks. However, paper [4] considers caching policies
based only on past communication and does not point out the
improvement in performance. In this paper, we compare three
proactive algorithms and two reactive algorithms and we give
results for the latency achieved by each one.

The proposal for an high performance caching scheme
that also prevents cache pollution attacks is given in [5].
CacheShield is an add-on that can be used with any cache
replacement algorithm. Based on past requests, a shielding
function determines whether to cache a new content. Using
this function, it is possible to prevent cache pollution attacks
maintaing the cache robustness.

Another solution for efficient caching is given in [6]. The
authors propose WAVE, a collaborative in-network algorithm,
where upstream nodes suggest the number of chunks to be



stored to their downstream nodes. The number of chunks to
be cached exponentially increases according to the content
popularity. Results show that the hit ratio is improved and
less frequent replacements are needed.

Both previous papers consider the same Zipf-like popularity
distribution for all the contents and they do not take into
account problems related to users privacy.

Cache privacy is also in [7]. The authors analyze timing and
probing attacks and then they propose some countermeasures.
First, they propose to mark content as private; however this
method lowers the cache performance. Secondly, they describe
some methods that guarantee a tradeoff between performance
and privacy based on random caching. Our work considers the
tradeoff between privacy and latency. However, it proposes
also prefetching policies, a different adversary model and a
different countermeasure.

III. DEFINITIONS
A. User Dissimilarity

We assume a set of [ different contents uniformly dis-
tributed into C' classes of popularity. Each item of class
c has a probability of being requested equal to p., with
c=1,...,C. The probability distribution follows the Zipf law,
hence p. = K/c®, where K = 1/ 3% | = and o is the slope
of the distribution. In a more general scenario, the probability
associated to the same content could be different for distinct
users; therefore, we introduce a variable p. , that defines the
probability for a content of class ¢ of being requested by the
user u. This probability depends on the ranks that each user
gives for each content class r. ,,, hence p., = K/ o, Notice
that the smaller the rank r. ,,, the more important is the content
class c for the user w.

To capture how users differ from one another, we define
the dissimilarity between two users as the number of swaps
of two adjacent elements in order to obtain a permutation that
maps the first user’s ranks into the second one. In addition, we
define dissimilarity of a set the minimum dissimilarity between
all the users in the set and the natural ranking that gives the
highest probability to class 1, the second highest to class 2,
and so on.

B. Caching policy

There are various methods for choosing whether a content
should be cached or not. Here, we consider five caching
policies that can be distinguished into two classes: coordinated
and uncoordinated. In the uncoordinated case, each router de-
cides whether to cache a content using a reactive replacement
strategy, e.g. LRU (Least Recently Used) and LFU (Least
Frequently Used). While in the coordinate case, the routers
take decisions based on a proactive computation on users
ranking and on what other routers do.

We present the following prefetching and caching policies:

o Prefetch by Popularity (PxP): the contents are stored

into caches based on a reference popularity distribution.
Assuming that the contents are organized into C classes
of popularity, the ordered vector of content classes ¢ =

1,..,C is used as reference for prefetching. The contents
with a smaller class number are stored first into the
nearest caches to the users. The caches that have the same
distance from the users store the same contents.

o Prefetch by Ranking (PxR): the contents are cached
according to the popularity ranking resulting from the
actual set of user in the network. The first content class to
be stored is the class with the highest request probability
obtained by averaging the request probability of each con-
tent class over all the users, i.e. Z;V:l reu/N Vee O,
where N is number of users in the network. Also in this
case, the caches that have the same distance store the
same contents.

o Prefetch by User (PxU): the contents are put into caches
according to the popularity ranking of the downstream
users. The ranking of each user is used as reference,
i.e. r¢ 4. The most popular contents for a user are stored
first in the cache nearest to this user. Each cache stores
different content classes because users are different.

« Least Recently Used (LRU): the least recently used item
is discarded first from the cache. This algorithm requires
keeping track of all contents when they are used.

o Least Frequently Used (LFU): the contents that are
used least often are discarded first. This algorithm re-
quires counting how many requests for each content are
received.

As can be noted from the previous descriptions, we need
different amounts of information to choose what contents
should be stored into the caches. A cache that uses a reactive
policy should keep track of past requests and then, it decides
which content should be discarded or stored for each interest
received. Whereas, the family of prefetching methods is based
on users’ a priori preferences. In particular, these caching
policies exploit the values of r. , to store a content before it is
requested. Unfortunately, it is not easy to know the users’ rank-
ings because they are privacy sensitive information. Moreover,
obtaining more details on ranks produces an improvement in
caching performance. In the next Section, we propose how to
implement prefetching by user in a content centric scenario.

IV. PREFETCHING BY USER IN ICN

This section discusses a way to implement prefetching by
user for the ICN nodes, according to the definition in section
III. An estimator installed over the router nodes computes the
likelihood that a content will be requested in the next few
times and gives this information to the neighbor nodes. Then,
the node can choose whether or not to prefetch the content.

The estimator uses a prediction algorithm that could be
based on that described in [8]. It is out of the scope of this
paper to define the detailed algorithm. However, we provide
a brief description of it. However, the node can choose to
send a Prefetching Interest for the content suggests by the
algorithm. To distinguish between Interest and Prefetching
Interest, we propose to modify the Interest packet adding the
option Prefetching into the Selector field. In particular, the
Prefetching option can assume the following values: (i)



0: it means that the Interest is an ordinary interest packet; (ii)
1: it indicates that the Interest is sent for prefetching contents.
Clearly, we also need to add an option to the PIT (Pending
Interest Table), where it would be possible to keep track of
the Prefetching bit.

V. ADVERSARY MODEL AND COUNTERMEASURE

Indeed, the ICN scenario solves the problem of privacy
related to personally identifiable information, e.g. name, ad-
dress, etc., but poses new challenges into the privacy of users
behavior. In this Section, we present our attacker model, then
we define a possible countermeasure to guarantee user privacy.

A. Adversary Model

First, we consider an attacker A that interacts with a
challenger CH and we denote the interaction as ACH where
both the attacker and the challenger are Turing Machines (TM)
computationally bounded. Particularly, we consider probabilis-
tic polynomial time (PPT) TMs. The adversary goal is to
identify a user within a set of subjects observing the contents
stored in a chosen cache. Thus, the interaction continues until
A returns an output.

The interaction between the challenger CH and the adver-
sary A is described in the following Algorithm 1:

Algorithm 1 The A" game

1. CH chooses a user u <E U within the user space U;

2. CH chooses a cache k <> K within the cache space KC;
3. CH gives [, the level of the cache k in a tree topology,
and kc(i), the 7 contents’ classes stored in & to A.

4. A outputs T, True, or F, False.

The Adversary wins the A" game if its output is:
Apin = (T ANu€lUy)V (FAué¢Uy)

where u € U, means that the user w is part of the set of
downstream users of the cache k.

Thus, we give our privacy definition founding it on the
notion of sender anonymity introduced in [9]:

Definition 1: Anonymity of a subject from an attacker’s
perspective means that the attacker cannot sufficiently identify
the subject within a set of subjects, the anonymity set.

From this description, we formalize our notion of §-sender
anonymity. The parameter §, 0 < § < 1, quantifies the proba-
bility that a distinguishing event happens, e.g. when a cache is
compromised by the adversary, following the definition similar
to CDP (Computational Differential Privacy) given in [10].

Any user « in the user space U of size IV is equally probable
to be a user served by the cache k for any PPT-adversary
A with the capabilities previously described. This means that
there exists d such that:

1
Pr[Awm|u<£L{]§N+6 Vi &K ueu, (1)

PrlAuin|u <& U] < (1—%)+5 VEE Kiudt,

where = <+ X (z £ x ) means that x is drawn (uniformly at
random) from the set X. It is easy to note that the smaller is
0, the more the privacy is preserved. The following Section
presents a possible way to guarantee user anonymity.

B. Proposed Countermeasure: Data Perturbation

We propose to use a data perturbation technique in order to
lower the adversary probability of winning, Pr[A,;,]. A data
perturbation method attempts to preserve privacy by modifying
values of the sensitive attributes using a randomized process.

In the ICN scenario, the cached contents are privacy sensi-
tive information. A router node determines which contents are
to be cached based on interests received from users. Obviously,
the user sends interests for contents which is more interested
in based on its ranking vector. Thus, the router node can
profile its downstream users observing the contents it caches.
In order to hide his/her preferences, a user can send interests
for contents that are not really valuable for him/her.

In particular, these interests are sent based on a new ranking
vector r2  that is obtained making p permutations on the orig-
inal ranking vector of the user 7.,. The following algorithm
2 shows how to compute the perturbed ranking vector.

Algorithm 2 The data perturbation
for 1 <i<pdo
1. Extract a random number w in [0, C];
2. Swap ¢ [w] with 7, [w + 1]
end for

return the perturbed ranking vector 77,

Thus, the interests are sent based on the new rankings 2,
which does not really represent the user u but a user with
different preferences over the contents. As we show later,
introducing a perturbation guarantees user privacy but lowers

the performance.

VI. RESULTS

This Section presents the results obtained from both a
simulative scenario and an analytic method. The simulation
scenario takes advantage of ndnSIM [11] to evaluate the
perceived latency by users using the LRU and LFU policies.
While, a Montecarlo simulator, implemented with Matlab,
is used to evaluate proactive policies and the adversary’s
advantage.

From now on, we consider a tree topology, as depicted in
Figure 1, where there are four leaf nodes that send interests for
the contents and one root node that generates the data packets.
Moreover, the network is organized into three routers’ levels
that can cache the contents and answer to interests.

In this scenario, the probability of winning the game defined
in the section V by algorithm 1 given by equations 1 and 2 is
computed as follows:

PI‘[T — .ACH] = PI’[T|’U, € Z/[k] < ﬁ + 7.

Pr(F < A" = Pr[Flu ¢ U] < (1 — 2L—_1) +dp.
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Fig. 1. The tree topology

where L is the maximum number of the tree’s levels and T' «—
ACH means that the adversary output is True, conversely F <
ACH means False. Moreover, the adversary advantage § is
given by max(dr,dr).

In our simulations, having as reference the setup parameters
used in [12], we consider a set of I = 13.8-10% items divided
into C' = 400 classes of popularity. Each user has a rank vector
T¢ from which the probability p., is computed according
to the Zipf law. The slope of the probability distribution «
is equal to 2. We consider four cases of dissimilarity with
d = 100, 1000, 10000, 100000, where bigger d means more
different users. All contents are assumed to be of the same
size, i.e. 10kB, and to be requested with a request rate A, , =
ADe,u>» Where A = 27600 requests/sec. Moreover, we consider
a tree topology with three levels of caches as shown in Figure
1. The link between each pair of nodes has a transmission
delay equal to 2ms. Each router node, rtr, has a cache (i.e.
Content Store) of size s contents, which is equal to 207000,
that is exactly the number of content of six classes.

A. Performance without Data Perturbation

First, we consider the mean round trip time perceived by
users to retrieve a content depending on popularity classes.
The results are shown in Figure 2 for dissimilarity d = 100
and in Figure 3 for d = 100000, where all the caching policies
are compared.

As can be noted in Figure 2, where the dissimilarity
between users is low, the prefetching policies achieve better
performance in terms of Round Trip Time (RTT) than the
classical LRU and LFU policies. Moreover, the three lines
follow the same stepped trend because the caches contain the
same content classes in the same level of the tree.

With increasing dissimilarity, as shown in Figure 3, the PxU
policy guarantees the lowest latency for the six most popular
classes of popularity as seen by each user. For the least popular
classes, this policy has worse performance than the other ones.
However this is generally not an issue since the performance
seen by the user is dominated by the most popular classes,
which cover the majority of the content requests. The PxP
policy is independent of the popularity classes because it does
not take into account the users behavior. The PxR has a similar
trend as LRU policy because it reflects the mean ranking of
all users.

The results relative to d =

1000 and d = 10000 are
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Fig. 2. Mean Round Trip Time perceived by users with d = 100 depending
on popularity classes, c. Confidence 95%, Precision 10%
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Fig. 3. Mean Round Trip Time perceived by users with d = 100000
depending on popularity classes, c¢. Confidence 95%, Precision 10%

summarized in Figure 4, where the mean delay for the first
six popularity classes is depicted depending on growing dis-
similarity. Notice that we consider only the first six classes
because they cover 90% of the total number of requests.

Figure 4 compares the mean delay for the first six popularity
classes depending on dissimilarity. The prefetch by user policy
achieves the lowest latency, which is constant for growing
dissimilarity. The PxP and PxR performance decreases with
more different users; while the LRU and LFU policies slowly
increase the delay for the first classes with bigger dissimilar-
ity. The more the performance are good, the more personal
information are needed. This sentence poses a challenge that
should be overcome: we need users preferences to gain the best
but we should guarantee their privacy. Since the PxU policy
guarantees lower latency than the classical LRU and LFU, the
privacy analysis focuses on the PxU policy.

B. Performance with Data Perturbation

Now, let’s see what happens if data perturbation is applied
over the users’ ranking. Figure 5 compares the mean delay
for the first six popularity classes with growing dissimilarity
depending on perturbation using a PxU policy. As can be
noted, the performance are comparable to that without data
perturbation with p < 100. While, the performance decreases
with bigger perturbation: the mean delay grows. It can also be
noted that the performance decreasing does not highly depend
on dissimilarity.

Finally, Figure 6 reports the advantage ¢ that the Adversary
A has in winning the game previously defined, with i = 6,
that indicates how many of the k. classes are given to A.
The results are obtained repeating the challenging game until
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Fig. 4. Mean Delay perceived by users for retrieving a content of the first
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Fig. 5. Mean Delay perceived by users for retrieving a content of the first six
popularity classes with growing dissimilarity, d, depending on perturbation,
p.

a 95% of confidence is reached. We’d like to note that the
advantage in case of no perturbation, p = 0, is exactly 1
that means the adversary always wins the game. While if we
apply a perturbation, the advantage decreases till 0.05 with any
perturbation p > 100. This means that if there is this kind of
perturbation the adversary randomly chooses a user and wins
the game with a probability:

1 3
PriTu e U] < 1t 0.05V Pr[F|u ¢ U] < 1t 0.05.

Thus, the user privacy is guaranteed with a perturbation higher
than 100. However, we have seen in the previous figure that the
performance are not worsened with p < 100. This means that
we have to choose a tradeoff between latency and privacy, and
we think that using a perturbation p=100 could be the perfect
choice. Indeed, the performance are comparable to the case
without data perturbation and the adversary advantage is low,
so the user privacy is guaranteed.
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Fig. 6. Advantage that the Adversary A has in winning the ACY game
depending on perturbation, p, with growing dissimilarity, d

VII. CONCLUSION

This paper analyzes the tradeoff between network perfor-
mance and user’s privacy in a information centric scenario. On
the one hand, low latency provides both clients and providers
with advantages. On the other hand, user sensitive information
are needed to gain better performance. This work poses the
basis for finding a solution that simultaneously guarantees
performance and respects users’ needs. Indeed, we propose
a prefetching policy based on users’ ranking and a data
perturbation technique to guarantee users’ privacy.

We think that there is a lot of research to inspect in
this direction. First, we need to provide a privacy analysis
for LRU and LFU policies. Then, we can find the tradeoff
between privacy and performance using these caching policies
Moreover, we would like to extend our work considering users
churn and different popularity of content chunks in order to
provide better network capabilities. We believe that this change
slightly modifies the optimal caching policy and also requires
a deeper knowledge of user’s behavior. On the other side,
we would like to expand the solutions for guaranteeing user’s
privacy introducing an anonymization protocol.
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