
HAL Id: hal-03230724
https://hal.science/hal-03230724

Submitted on 21 May 2021

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Specification and Enforcement of Dynamic
Authorization Policies oriented by Situations

Bashar Kabbani, Romain Laborde, François Barrère, Abdelmalek Benzekri

To cite this version:
Bashar Kabbani, Romain Laborde, François Barrère, Abdelmalek Benzekri. Specification and Enforce-
ment of Dynamic Authorization Policies oriented by Situations. 6th IFIP International Conference
on New Technologies, Mobility and Security (NTMS 2014), IFIP: International Federation for Infor-
mation Processing, Mar 2014, Dubaï, United Arab Emirates. pp.1–6, �10.1109/NTMS.2014.6814050�.
�hal-03230724�

https://hal.science/hal-03230724
https://hal.archives-ouvertes.fr

Specification and Enforcement of Dynamic

Authorization Policies oriented by Situations

Bashar Kabbani, Romain Laborde, François Barrere, Abdelmalek Benzekri

Institute of Research in Informatics at Toulouse (IRIT)

University of Paul Sabatier (UPS)

Toulouse, France

{Kabbani, Laborde, Barrere, Benzekri @irit.fr}

Abstract — Nowadays, accessing communication networks

and systems faces multitude applications with large-scale

requirements dimensions. Mobility –roaming services in

particular– during urgent situations exacerbate the access

control issues. Dynamic authorization then is required. However,

traditional access control fails to ensure policies to be dynamic.

Instead, we propose to externalize the dynamic behavior

management of networks and systems through situations.

Situations modularize the policy into groups of rules and orient

decisions. Our solution limits policy updates and hence

authorization inconsistencies. The authorization system is built

upon the XACML architecture coupled with a complex event-

processing engine to handle the concept of situations. Situation-

oriented attribute based policies are defined statically allowing

static verification and validation.

Keywords— dynamic authorization, access control, policy-

based management, attribute-based; situation management,

situation-oriented systems, complex event processing

I. INTRODUCTION

Authorization process itself has a simple objective to
obtain. No matter how scenarios get complicated, authorization
process will always be to acknowledge users about their rights
and limits towards environments’ security and privacy. Identity
and Access Management (IAM) cares most about the right
identity getting authorized to the right resource at the right time
with respect to conditions and circumstances of the identity’s
holder. However, externalizing the authorization is no more
enough to protect access in the eyes of the business
management. Due to IAM complex scenarios, this
authorization process needs to have dynamicity in its decisions,
no more static authorizations (permissions).

For instance, IAM business requirements in Virtual
Organization (VO) are concerned about networks and tools
evolution that promote collaborative work. Multipartite
projects need to federate experts on different areas and
information systems toward completing the common objective.
Communications between distributed parties brings many
security issues. Under certain circumstances, administrators
have to unlock some of the security doors of parties
information systems. During a past European project called

VIVACE1
 [6], unlocking security issues was solved through a

workflow engine. This article retakes the use case scenario to
prove the concept of dynamic authorization using situation
orientation simplifies authorization specification and
management.

The article proposes a dynamic solution as a generic and a
flexible architecture. Therefore, we demonstrate the flexibility
by presenting a second use case where situations evolves and
changes frequently and in real-time. The use case is known in
healthcare as “Break The Glass”. A very good example
concerns about sharply changing rules for a noble reason of
saving people’s lives. The scenario is proposed by another
European project founded by ITEA22

, named PREDYKOT
3
.

Current research trends are treating both scenarios using
what we call static authorization policies. Static because
whenever a request is made, the evaluation of policies’ rules
will always return the same result (permit or deny) for this
given request. In this case, making authorization dynamic
requires modifying the policy; which is a complex task.

This article is about keeping the authorization policy simple
and static (immovable: defined once and for good), unless a
necessary changement is required as for the case of writing the
law. It proposes to follow software engineering best practice
[16-17]. The definition of security requirement should be clear
and sufficient for this approach to express entities situations
inside the environment.

Dynamicity is provided using an externalized architecture
that ensures the management of situations. Using attribute-
based approach to express the authorization policy side-by-side
to the dynamic architecture gives dynamic authorization
decisions. Whereas, dynamic authorization is: “the matter of
giving (allowing) and taking back rights (denying) for and
from entities who want to access resources at anytime,
anywhere and for any reason of which conditions and
circumstances are no more meeting business requirements.”

1 Value Improvement thought a Virtual Aeronautical Collaborative Enterprise
http://www.vivaceproject.com/
2 Information Technology for European Advancement http://www.itea2.org
3 Policy REfined DYnamically and Kept On Track
 http://www.itea2-predykot.org/

We define situations as remarkable conditions and
circumstances reflecting abstract semantics to describe past,
present or future behavior of entities or systems. Security
situations must not be limited anymore to system status, but
recognizing for example persons and/or tasks as well, i.e., any
systems’ entities.

We propose to implement our dynamic authorization
architecture as a solution for both scenarios by well expressing
the authorization policy. For that and toward a generic
architecture, we have chosen the generic model ABAC

4
. For

implementation, we use OASIS
5
 XACML as an attribute-based

policy language attached to Policy-Based Management (PBM)
architecture. We represent situations as attributes that
aggregate rules. Situations values are what give dynamicity to
the static policy. The values highlight the appropriate decision
that will be made after evaluating the associated rules. We use
Complex Event Processing (CEP) to identify situations and
calculate their values. CEP is an external component of the
XACML PBM architecture. The component dynamicity will
provide different values that dynamize the authorization.

The article is structured as following: Section II presents
two scenarios the first is from previous work about Virtual
Organization and the second is related to Healthcare
Information Systems. In Section III, we present a study on
related works. Section IV is dedicated to present the
architecture that we propose as a solution based on situation
management and attribute-based access control. Orienting the
authorization policy and decisions using situations to provide
Dynamic Authorization in both mentioned scenarios is
explained in Section V with a brief description about
prototypes implementing the architecture. Finally, we conclude
our presented work in Section VIII.

II. SCENARIOS

We present two scenarios that require a dynamic
authorization solution. In Virtual Organizations (VO), the
scenario is about authorizations managed by workflow in a
collaborative environment. The second scenario cares about
authorizations during abnormal situations in Healthcare
environments. Patients’ life could reach dangerous levels and
the authorization decision becomes a critical process.

A. Authorization in Virtual Organizations

This scenario deals with authorizations management in
virtual organizations [6]. We resume it as following:

People from different aeronautical companies wish to
collaborate in producing a technical specification document. Each
organization has people with specific skills and software to complete
specific tasks. The technical document has to be created by a
designer, then analyzed and finally validated. This sequence of tasks
is structured by a workflow, controlled by a conductor. The
collaboration is formalized by a contract that states which company
provides what kind of employees. Each company is responsible for
managing its people and no constrains on who is doing the job. The
contract also specifies access control policies on the shared
documents. During design task, only people with designer role are
permitted to access (read/write) the shared documents. The same for

4 Attribute-Based Access Control
5 Organization for the Advancement of Structured Information Standards

the analyzers and validator roles, they access only when their task
has started. However, any VO members can read the final results
when all tasks are finished. A workflow engine (WFE) acts as a
conductor. During design task, the engine enables the set of rules
that concerns the current document status and when it is completed,
workflow engine disables them and enables another. Finally, when
the process terminates, the engine informs participants and grant
the “read permission” to all roles on the shared documents.

B. Authorization when Breaking Glass

In healthcare, “Break The Glass” (BTG) is another good
example that treats the dynamic authorization problem through
bypassing traditional authorizations (static). In emergency
circumstances, unauthorized doctors can break the policy to get
rights to access information that they could never have in an
ordinary case. Well-known solution for BTG is giving entities
administrative rights to break policy and modify rules when it
comes to patients’ life. Our scenario is:

Emma is a doctor in a modern hospital. Patients’ information is
not an open access for doctors. The intervention should be legalized
by a reason, e.g. treatments. Therefore, only doctors with reasons
are allowed to access. Patients in such hospitals are observed
through many sensors that send information about: fever, pulse,
blood pressure, conscience status and numerous bio-medical
signals. These sensors are linked to a symptoms diagnosis system
(SDS). Contextual sensors (CSs) are connected to capture physical
movements and positions: room occupancy, patient’s position and
doctors’ position. SDS and CS are connected to an alarm system.
Once an alarm is launched expressing an emergency situation, a
notification message is sent to the doctor in charge in such situation
for the concerned patient. Assuming that one-day connected sensors
to patient Joe show urgent need for a doctor. While his responsible
doctor is not available, Emma was ready to involve. Unfortunately,
Joe is not one of her patients. Traditionally, she won’t have access.
The BTG solution gives Emma rights in emergency situations to
break general policy in order to saves Joe’s life.

III. RELATED WORK

Works on dynamic authorization can be divided into
mainly two axes. The existing approaches try to modify the
policy and replace part of it frequently. Dynamic access control
decisions [1] extended the role-based access control model to
keep traditional access control methodology alive. Adaptive
access control decisions takes in account different states of
subject, e.g. requesting and waiting, in the decisions [2,3,4]. It
is, however, oriented toward dynamic enforcement rather than
authorization [5]. Researches on leveraging healthcare privacy
in emergencies are obvious enough, e.g., [7,8].

To the best of our knowledge, using dynamic authorization
has presented only through modifying the policy. Situation
management is mostly active filed within situations and
context awareness for decision-making [1,2,4,9,10,13]. It is
currently concentrated on the pervasive computing trends.
Many researches published in aim of anticipating, calculating
and identifying situations and context to be proactive [14,15].

In retrospect, dynamic authorization is about energizing the
authorization mechanism to be changeable toward new factors.
Research trends are focused on having the dynamic
authorization as an outcome of modifying the policy, i.e.
dynamic policy by change, add and remove rules. None of the

work was directed to provide dynamic authorization” as an
income to the policy, translation of Law, without changing it.

IV. SITUATION-ORIENTED AUTHORIZATION

Dynamic authorization is provided using a situation-
oriented solution. The solution is an architecture composed of
two main parts: situations and authorizations. The Situation-
Oriented Authorization Architecture (SOAA) main objective is
to evaluate policies (set of rules) to provide dynamic
authorization decision when a situation starts, e.g., intrusion
detection, or during the period of situation occurrence, e.g.,
resource under attack. The situation orientation is an
independent process that monitors the behavior to deliver
dynamicity. To use this dynamicity, the policies expression
should contain a place to represent situations. We propose the
following representation for authorization policies:

When situations then Verify Conditions to Enforce actions

As a result, the situations will indicate the decision-making
process to the correct rule-set that match the correct context.
When the decision understands the context, the dynamicity is
met. Therefore, managing situations is an important phase as it
gives accurate and correct indicators about context in order to
dynamize the authorization-decision process.

A. Situation Management

In English and French literature, situation is “A set of
conditions and circumstances in which one finds oneself”.
Researches in pervasive systems are advanced in situation-
awareness domain and have proposed a more detailed
definition as: “A set of contexts in the application over a period
of time that affects the future system’s behavior”. A context is
any instantaneous, detectable, and relevant property of the
environment, system, or user, e.g. location, available
bandwidth and user's schedule. Pervasive Systems collect data
to predict or anticipate a situation [9].

This article is concerned about detecting and identifying
situations once they appear – not the fact of predicting future
situation. Therefore, we refine the definition of situation as: “a
set of contexts detected because of predefined conditions and
circumstances within the application over a timeline that
affects the current and future system’s behavior”. For any
situation, it is essential to determine 1) conditions, e.g., having
only designers the right to create the shared technical
document, 2) and circumstances, e.g., having readings from
sensors telling about the bad status of the patient, in which the
healthcare authorization system found itself in need of Emma.

Technically speaking, identification of situation’s
occurrences depends mainly on complex events (CE) [12].
Without context, events will not have any semantic. Events
express instantaneous activities and phenomena, e.g. patient’s
pulse or doctors’ appointments. Complex events are
aggregated, filtered and correlated events using logical
operations to express a meaningful phenomenon. Complex
event could be a single simple event or a collection of complex
events. CE has predefined meaning that helps defining
situations. For instance, the fact that designers created the
shared technical document and started working (writing) on it
is considered as the situation’s starting-point. Another example

could be “urgent need for a doctor” that is a situation starts
with the detection of complex events like a heart attack, nerves
crises and other of what indicate patient in danger and needs a
doctor urgently. This situation is an example of individual’s
situation (the patient). In the VO scenario, the document being
in the design task is an example of resource’s situations.

Figure 1 illustrates how to technically identify defines a
situation. Once a situation starts, its value as an attribute orients
the authorizations decisions towards suitable permissions until
the situation ends. The ending-point of a situation is identified
by complex event(s), e.g. the start of next task in the workflow
ends the previous. In Figure 1, the situation manager (SM) is
responsible about the identification of start-points and end-
points. However, the event-processing engine (as a complex
event processing) detects them and informs situation manager.
During the situation life, the event-processing engine (EPE)
traces its status and changes to keep the situation manager
updated. Therefore, the EPE tool defines patterns. Patterns are
mechanism similar to the polling that keeps the SM updated
about its situations’ status within a sliding window, time frame.
Once the situation is identified, patterns could be used to make
sure that the entities are still in the same situation (did not
evolve or vanish). Patterns are expressed using SQL-like
queries.

Fig. 1. Identification of Situations

The situation manager should well express business needs
as situations. Main interest of the SM is to well configure EPE
for the detection and calculation process. Adi et al. in Amit –
The Situation Manager [10] already made a remarkable
progress in terms of technical situations and event processing.
We were inspired by this article to introduce the situation
manager as a helpful part in SOAA architecture.

The situation manager has to determine the situation life
and to manage it during its life. The situation life is the
temporal context during which the situation detection is
relevant. It is an interval bounded by starting and ending point.
An occurrence of the start-point initiates the situation life and
an occurrence of end-point terminates it. Both occurrences
should be defined and initiated previously. Two situations may
have the same starting and maybe ending dates. However, the
semantic of each situation is evidentially different from one to
another. Moreover, each situation is coupled with the elements
participating in the creation of the situation.

The EPE will detect and monitor each activity in order to
determine in which situation the entities are. Therefore, the
architecture is built-up to never mix the management of
situations with the policy itself, but to ensure interactions in-
between. Finally, The situation management outcome could be
stored in a database where the authorization section could get
use of situations values to fill attributes.

B. Specification and Deployment of Situation-Oriented

Authorization

The following section introduces the language used in our
implementation to represent policies. Afterwards, we describe
how to deploy the policies inside the situation-oriented
architecture. Combined together, the policy

1) eXtensible Access Control Markup Language v3.0

XACML is a generic, flexible and abstract language with
an architecture that could express/enforce our expected policy.
This article takes advantage of such features to present how it
is possible to handle situation oriented authorization policies.
XACML is an XML-based language for access control that has
been standardized by OASIS. The XACML policy language
describes general access control requirements in term of
constraints on attributes, where an attribute could be any
characteristic of any security related object, known as
“categories” in XACML, for which the access request is made.

Thanks to categories tags, XACML v3.0 [11] is not limited
to basic authorization entities (subject, resource, action and
environment). Attributes are manipulated through predefined
data types and functions. Considering attributes makes the
language very flexible. We employ XACML V3 flexibility by
orienting the security policy rules using defined and recognized
situations attributes (see previous section). Aggregation in
version 3 is to use abstraction (being close to requirements) in
order to express groups of rules. We use this feature to group
or aggregate rules by situations. After the Situation Manager
provides situations values, the Policy Decision Point (PDP)
will consider them in its decisions.

Fig. 2. Situation-Oriented Authorization Architecture

The XACML management architecture describes different
entities. The entities’ roles participate in the decision-making
process; see Figure 2 boxes in white. Policy Administration
Points (PAP) write policies and make them available to the
PDP (step1). An access requester sends an access request to the
Policy Enforcement Point (PEP) (step2), and the PEP forwards
it to the context handler (step 3). The context handler
constructs a standard XACML request context and sends it to
the PDP (step 4). The PDP can request any additional subject,
resource, action and environment attributes from the context
handler (step 5). The context handler requests the attributes

from a Policy Information Point (PIP) (step 6), the box is in
violet as it is the connection between two architectures. The
PIP obtains the requested attributes and returns them to the
context handler (step 7, 8). The context handler sends the
requested attributes. The PDP evaluates the policy and returns
the standard XACML response context (including the
authorization decision) to the context handler (step 9, 10).
Finally, the context handler returns the response to the PEP that
enforces the PDP’s decision (step 11).

2) Situation-Oriented Authorization Architecture

Figure 2 demonstrates our complete proposed architecture
(SOAA) that combines the OASIS XACML (boxes in white)
architecture and situation management architecture (boxes in
gray). SOAA monitors the environments’ behavior to express a
very abstract terms, i.e. situations. Situations of systems or
systems’ entities play a role in any authorization decision. With
a well understanding of situations, the authorization process
will be dynamic. Decisions enforcement can be detected as
well as part of the environment’s behavior and then participate
in the situations calculation. As a result, we have a loop of
management that would participate in ensuring authorizations
dynamically in policies.

V. APPLYING DYNAMIC AUTHORIZATIONS TO SCENARIOS

Our solution is generic enough to be applied to both
proposed scenarios. We will apply the architecture by
analyzing each scenario apart. First, analyzing possible
situations that we should define, identify and calculate.
Furthermore, the EPE and SM are configured to take account
of these situations. The XACML policy is written based on
these situations in a way they can orient authorizations
dynamically to grant the right permission.

A. Virtual Organizations

Giving this scenario, instead of implementing this scenario
by changing the authorization rules like it is suggested, we
analyze it through our situation-based approach. We identify
several situations that could participate in the authorization
process. In Figure 3, all identified situations are from one-type
that concerns the resource situation, i.e. shared document.

Fig. 3. VO Situations Cycle

The situations are: work started, await analyze, await
design, await validation and work terminated. Initially, the VO
authorization system evaluates the access requests towards the

shared document based on the static policy and oriented by the
situation of developing the document. During these situations
(between their start-point and end-point), only employees from
the company that is responsible about the current work are
permitted to do actions specified in the policy. For example,
the start of the workflow begins with the situation work started
(start-point) and ends with work terminated (end-point). At the
simple vision, the start-point of each developing document
situation is an end-point for the next one, e.g. the await
designing is the end-point for await analyzing and so on.

We generalize the approach presented in [6]. The situation
manager defines situations values. However, workflow engine
(WFE) still in charge and it should interact with the SM in
order to define the status of each task. The SM however
controls the situation of the document. As a result we will have
following rules:

By considering these five situations, the policy expressing
the dynamic authorization can be represented by the seven
rules above. The first rule gives permissions to designers to
create the shared document. The rules 2, 3 and 4 ensure that a
user can access the shared document with read or write
permission if his role matches the current situation of shared
document represented by its situation, i.e. if he is designer
during await-design situation, if he is analyzer during await-
analyzer situation and if he is a validator during the await-
validation situation. The fifth rule means that a user can access
the shared document with read-only permission if he has the
role any, i.e. any designer, analyzer and validator, with the
document situation are delivered. The sixth rule express static
authorization that will allow, with discard to situation, the
WFE to modify the status of the document that defines the
situation of the work on the document. Finally, to manage
conflicts we declare a default seventh rule that denies all other
access requests.

B. Breaking the Glass

Breaking the general policy is required to change the
authorization. To change rules (break policy), one should have
administrative permissions to do. Emma will break the policy
and give herself authorization to access Joe’s files. It is
important to highlight the importance of this example for our
article. The objective of this contribution is to avoid Emma
from having administrative permissions, which does not belong
to her role as a doctor. All what Emma should concern about is
Joe’s life.

Giving the BTG scenario, three situations related to
authorization appear (Figure 4). Identified situations are from
two-type that concerns the resource situation, i.e. Patient’s
Information, and users’ or individuals’ situations.

Fig. 4. BTG Situation Cycle

Initially, the healthcare authorization system evaluates the
access requests to PI based on the static policy oriented by a
normal situation. Within these situations, Emma is not
permitted to do any of the following actions: access Joe’s PI,
request BTG to Joe’s PI or end the granted BTG. When Joe’s
health is in danger and no responsible doctor is nearby to save
him, Joe will be in a situation named “urgent need for a
doctor”. As Emma is the only available doctor, she will receive
a notification to take in charge the treatment of Joe. Emma
cannot access Joe’s PI directly, so she will present a BTG
request to Joe’s PI. Logically, she won’t have permission to
end the BTG, as it is not placed yet. Once the glass is broken
by a BTG request, Emma will be able to access Joe’s PI.
However, she cannot place another request to BTG, as it has
been already broken. Once Emma finishes treating Joe, she can
end the granted BTG. Then, the situation of Joe will be back to
normal and the cycle is completed.

By considering these three situations, the policy expressing
the dynamic authorization can be represented by the five rules
above. Persons Responsible of Patient’s information List
(PRPL) is a list contains all persons who can access the PI of a
patient with the patient himself. The first rule gives always a
static authorization: if the doctor requesting access to Patient
Information (PI) is mentioned in the PRPL. In order for Emma
to be able to place a request to break the glass (event BTG
Request), the patient should be in situation that needs an
external doctor. In this case only, she can break the glass using
the second rule. The third rule is to ensure that only doctors
who requested the BTG can access the patient information
when the PI situation is BTG granted. The fourth rule is to let
Emma ends the BTG process during the situation BTG granted.
Finally, we declare a default fifth rule that denies all other
access requests.

C. Prototyping Example

We have implemented our both examples to prove the
concept of Dynamic Authorization using Situation Orientation
approach. We required from this prototype to 1) Collect Events
from sources 2) Analyze and Process Events 3) define patterns
to detect Complex Events 4) translate complex events into
situations and store them in a situation database 5) use
situations as values for the XACML situation attribute 6)
respond to access requests based on the provided situations.
The solution expects as a result from this prototype to have
different decisions for the same access request, but in different
situations, i.e. different contexts as well.

Components that participate in the deployment of our
prototype are mainly the Complex Event Processor (CEP), all
the elements of the XACML Architecture (PAP, PDP, PEP and
PIP), the XACML Policy and a database to store the situations.
We have implemented our situation manager using the CEP
tool ESPER6

 and the BALANA
7
 XACML v3 implementation.

The ESPER engine will detect situations and monitor several
activities. The engine will react on situations by updating the
values in the situation’s database.

ESPER is configured to simulate events like: Fever, Pulse,
Status, Patient Position, Doctor Position and Room Occupancy.
It composes events and listens to both access and BTG
requests. ESPER detects a complex event (CE1) when the
Fever is high, the status of the Joe is claiming and there is no
one responsible near him. The detection of CE1 forwards an
alarm to the SM who understands Joe is in danger. SM stores
this situation in the DB. When an event detected about
unavailability of responsible doctors for Joe, ESPER CEP
engine detects that no one near Joe, he is in danger and no
responsible doctors. ESPER CEP generates (CE2) saying that
Joe needs a doctor urgently. SM understands that Jos is in a
situation “urgent need for a Doctor”, i.e. stored in the DB.
Emma was available, so she places directly a BTG request
about Joe’s PI and will be permitted to break the glass. Emma
now can access Joe’s PI and save his life.

VI. CONCLUSION & FUTURE WORK

Modern systems require dynamic authorizations. This
article has presented an approach for specifying and enforcing
dynamic authorization policies based on situations. Current
solutions propose to make a policy dynamic by modifying
authorization rules when the conditions and circumstances are
changed. The advantage of this approach is the ability to work
with existing systems. However, the drawback is the rule
management complexity when considering many situations and
many rules. Keeping loaded rules free of conflict is a big
challenge. In addition, re/analyzing the policy in this approach
requires knowing what rules are loaded at anytime. As a
consequence, it seems complicated to follow this approach.

In this article, we have presented a dynamic approach
handled by a situation manager that keeps authorization rules
static. The presented approach requires authorization policy
languages be able to express situations to orient authorizations
by their values. The benefits are important since policies are

6 http://esper.codehaus.org/
7 http://xacmlinfo.org/category/balana/

easier to: 1) Understand because they are closer to the security
requirements 2) Analyze since rules do not change. Our choice
of XACML language v3.0 refers to its capacity to represent
any security information using attributes. In addition, the
modularity of the XACML architecture facilitates its
integration for enforcing situation based authorization policies.
The architecture implementation demonstrated how it is
possible and simple to provide dynamic authorization without
modifying the policy. Based on a static policy, the prototype
was able to manage virtual organizations and Break-The-Glass
using situation-oriented authorizations.

ACKNOWLEDGMENT

The work is thankful to be financially supported by the EU
ITEA2, Project 10104 PREDYKOT (Policy REfined
DYnamically and Kept On Track).

REFERENCES

[1] Hu, J., & Weaver, A. (2004). A Dynamic, Context-Aware Security
Infrastructure for Distributed Healthcare Applications. Proc. 1st
Workshop on Pervasive Privacy Security, Privacy, and Trust (PSPT).

[2] G. Zhang and M. Parashar, “Dynamic Context-aware Access Control for
Grid Applications,” presented at the GRID '03: Proceedings of the 4th
International Workshop on Grid Computing, 2003.

[3] B. Aboba, M. Chiba, D. Mitton, M. Eklund, and G. Dommety,
“Dynamic Authorization Extensions to Remote Authentication Dial In
User Service (RADIUS),” 2008.

[4] Jih, W.-R., Cheng, S.-Y., Hsu, J., & Tsai, T.-M. (2005). Context-aware
Access Control in Pervasive Healthcare. Presented at the In EEE’05
Workshop: Mobility, Agents, and Mobile Services (MAM).

[5] Sans, T., CUPPENS, F., & Cuppens-Boulahia, N. (2006). A Flexible
and Distributed Architecture to Enforce Dynamic Access Control. IFIP
International Federation for Information Processing.

[6] R. Laborde, M. Kamel, F. Barrere, and A. Benzekri, “A secure
collaborative web based environment for virtual organizations,”
presented at the Digital Information Management, 2007. ICDIM, 2007.

[7] Carminati, B.; Ferrari, E.; Guglielmi, M., "Secure Information Sharing
on Support of Emergency Management," Privacy, security, risk and
trust, 2011 3rd international conference on social computing (socialcom).

[8] Røstad, L. (2009, January). “Access Control in Healthcare
Applications”. Norwegian University of Science and Technology.

[9] J. Ye, S. Dobson, and S. McKeever, “Situation identification techniques
in pervasive computing: A review,” Pervasive and Mobile Computing,
vol. 8, no. 1, pp. 36–66, Feb. 2012.

[10] A. Adi and O. Etzion, “Amit - the situation manager,” The International
Journal on Very Large Data Bases (VLDB), vol. 13, 2, 177–203, 2003.

[11] eXtensible Access Control Markup Language (XACML)
Version 3.0. 22 January 2013. OASIS Standard.

[12] Mozafari, B., Zeng, K., & Zaniolo, C., “High-performance complex
event processing over XML streams,” Proceedings of the 2012 ACM
SIGMOD International Conference on Management of Data, Scottsdale.

[13] Freudenthaler, B., & Stumptner, R. 2nd International Workshop on
Information Sys. for Situation Awareness and Situation Management.

[14] Situation Management: Basic Concepts and Approaches. In V.
Popovich, M. Schrenk, & K. Korolenko, Lecture Notes in
Geoinformation and Cartography. Springer Berlin Heidelberg. (2013).

[15] Dynamic situation monitoring and Context-Aware BI recommendations.
(M.-A. Aufaure, Ed.). Ecole Centrale Paris, MAS Laboratory, and SAP
Research, Business Intelligence Practice.

[16] Anderson, R. J. (2008). Security Engineering: A Guide to Building
Dependable Distributed Systems, 2 edition.

[17] Bhatti, R., Bertino, E., & Ghafoor, A. (2006). X-FEDERATE: a policy
engineering framework for federated access management. IEEE
Transactions on Software Engineering.

