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Abstract—This paper presents a multi-map recurrent neural
architecture, exhibiting self-organization to deal with the par-
tial observations of the phase of some dynamical system. The
architecture captures the dynamics of the system by building
up a representation of its phases, coping with ambiguity when
distinct phases provide identical observations. The architecture
updates the resulted representation to adapt to changes in
its dynamics due to self-organization property. Experiments
illustrate the dynamics of the architecture when fulfilling this
goal.
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I. INTRODUCTION

Artificial agents often deal with environments with no
known models. The environment can be considered as a dy-
namical system, whose phase changes over time. However,
the agent should execute the suitable action corresponding
to each phase of the dynamical system. The agent gets
observations on-line from a perceptive stream, and performs
a sequence of actions as a response to the input observations.

Observations may sometimes be ambiguous in the sense
that the agent perceive similar observations for different
system phases. However, the action to be taken relies rather
on the system phase than on the observation itself. For
the agent to perform the suitable action in the presence
of such ambiguity, it should know the system phase at
each time, or at least keep a reliable representation of it.
Reliable representations should be obtained from a bijective
mapping that can be implicit between the dynamical system
phase space and the agent’s representation space. Such built-
in representational space is required for the agent to take
the right action, using for example reinforcement learning
techniques.

Moreover, the underlying environment dynamics is not
always fixed, and its dynamics may be non-stationary. If the
agent builds a fixed representation of the world dynamics, its
performance will become poor when the dynamics changes.
Non-stationary evolution of the system phase requires the
agent to update its representation of the environment in an
on-line and unsupervised manner.

Let us consider the toy example of a simplified au-
tonomous power system where an artificial agent drives the

process of a hydroelectric station.
The electrical load changes with time, depending on the

consumption profile of the region it serves. The latter is a
dynamical system whose phase xt at a specific time t is the
consumers activity. From current phase xt of the system,
the agent gets an observation ot = O (xt) that is the current
power consumption value. The phase changes over time and
is ruled by a evolution function φt so that the next phase is
given by: xt+1 = φt (xt).

The consumption in short periods follows a regular dy-
namics, for example, consumption in day and night periods
almost repeats its same values on 24-hours intervals within
the same month, thus φt can be considered as fixed on short
time intervals like one month. However, the consumption
profile changes between summer and winter months. This is
related to the use of warming systems, and to the change in
consumption for lighting according to daytime length. On
the year scope, the evolution function φt is changing and
the dynamical system is non-stationary.

Let us first consider the case of short periods where
φt can be considered as fixed. Let us also suppose that
the consumption increases normally in the daytime to and
decreases at night. This means that the agent will get the
same observation ot1 = ot2 in two different times within
the 24-hours interval, each corresponding to a different phase
xt1 6= xt2, one when consumption increases and the other
when it decreases. Such observation is ambiguous, because
knowing it is not sufficient for the agent to anticipate the
system behavior which -in turn- is necessary to drive the
station. Therefore, the first task of the agent is to distinguish
the actual phase starting from ambiguous observations. A
straightforward solution is to build distinct internal represen-
tations x̂ corresponding to distinct system phases x in such
a away that x̂t1 6= x̂t2 correspond to xt1 6= xt2 although the
agent observes ot1 = ot2. This means setting up a bijective
mapping between the internal representation of the agent and
the dynamical system phase space. Fig. 1 shows a schematic
of the process of a dynamical system phase representation
extraction.

On the other side, the evolution function φt changes on
a year scope. The second task of the agent is to follow the
changes in the system dynamics throughout the year, i.e.
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Figure 1. Dynamical system phase extraction.

to update its internal representations of the succession of
phases while the dynamics changes, thus tracking the non-
stationary behavior of the dynamical system.

This work presents an unsupervised method for the on-line
extraction of an adaptive representation of a non-stationary
dynamical system phase. The extracted representation forms
a bijective mapping between the representation space and the
system phase space. The proposed architecture depends on
recurrent neural networks employed to build self-organizing
maps (SOMs). The latter uses a neural field as a competition
process that controls learning.

In the literature of recurrent neural networks considering
the temporal dimension of the input, most works using
self-organization rather focused on the clustering of input
sequences [1], [2] than on setting up a mapping of the
system dynamics generating these sequences. Some other
works [3] focused on setting up an on-map representations to
inputs, and used the difference in representations on the map
to compare input temporal sequences. Reservoir computing
approach [4] aims basically to set up a mapping between the
input phase space and the reservoir state space. This resides
in the mapping in a supervised way the relevant states in the
large reservoir state space to the input space. However, the
use of supervised learning leaves it necessary to re-train the
model each time the system dynamics changes.

II. THE ARCHITECTURE

The proposed architecture is based on bijama model
[5] developed in our team. bijama is inspired from
biological information about the cerebral cortex. It enables
building 2D-neural assemblies called maps, analogical to
cerebral cortex structure. Each map contains a group of
units inspired from a functional view of cortical columns.
Units process external and internal signals carried out by
connections. The proposed architecture consists of three
maps, interconnected as illustrated in Figs. 2 and 3. The
main map in the architecture is called the input map. This
map receives the input stream values ot and builds a spatial
coding of the state x̂t corresponding to the actual dynamical
system phase xt. In fact, this coding resides in the map
activity profile, as show further. The other two maps are the
delay map and the associative map. They are intermediate
structures that form with the input map a macroscopic recur-
rent pathway. This pathway re-injects the input map activity
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Figure 2. Model architecture. Input map and delay map are connected
via one-to-one connections, other connections are one-to-many connections
organized in strips. For unit q, Iq is the strip of kind I handled by q.

in its dynamics via strip-like connections. The interest of
the intermediate architecture is to consider the past of the
input stream in current map response. Units within a map
are interconnected. Each unit is connected to others by
an on-center/off-surround kernel [6], [7], giving the map a
neural field structure. Neural fields are differential equations
that describe the spatio-temporal evolution of a competitive
process within a population. The neural field used here
[7] executes competition between map units activities. It is
parametrized so that lateral competition results in a single
activity bump on the map. The bump-shaped global activity
is used to guide the process of self-organization. This is
rather difficult as explained in [7]. In bijama model, the
evaluation of units activities follows an asynchronous and
parallel scheme [5] not detailed here. Evaluation of all the
units occurs at discrete time instances which are called time
steps.

In addition to intra-map connectivity between units, there
exist inter-maps connections as mentioned previously. Each
unit at a position p in a map is connected to units at positions
q belonging to a partial region in the remote map. This
region has the shape of a strip as shown in Fig. 2. The
strip-shaped region related to p is referred to as Sp, and the
positions within the strip as q ∈ Sp.

The connection between a position p in the local map
and a position q in the remote map handles a weight s̄tpq
which is modified via a learning rule at every time step.
These connections are called cortical connections. The unit
p, manipulating cortical connections in strip Sp, handles a
vector of weights S̄tp =

(
s̄tpq
)
q∈Sp

. The set of strips Sp for
p in some map is referred to as S generally, but in Fig. 2
S should be replaced by A, I,D according to the name of
the map the strips originate from.

Each strip has an orientation ψS measured as the angle



of the axis connecting the center position of both local and
remote maps. In figure 2, ψA = 90◦ is represented for strip
A, and it can be seen that ψI = ψD = 0◦ since strips I
and D are horizontal. The width of the strip-shaped region
is referred to as the ρS (see Fig. 2). The remote value of
some unit q read through a connection is a scalar activity
noted utq . The unit p thus perceives a vector Stp =

(
utq
)
q∈Sp

of some remote units activities via the strip Sp.
In bijama model, a unit is modeled as a stack of

modules as shown in Fig. 3. Each module handles a set of
scalar values. These values can be computed from external
inputs provided to the unit, or from scalars handled by other
modules in the unit. Module stacks are the same for all
units within a map, providing the map with a functional
homogeneity. Fig. 3 facilitate the reading of the following
description.

Let us start by describing the stack of the input map units
in light of its function. Units in this map receive two entries:
external input ot and strips from the associative map (see
strips noted A on Fig. 2). The map output is an activity
bump which current position will be used to represent x̂t as
explained later.

The unit stack is composed of several modules. The lower
one is the thalamic module which computes a similarity
value θtp by matching the external input ot against some
stored prototype ωtp:

θtp = e−
(ot−ωtp)2

2σ2 (1)

Above the thalamic module is the cortical module. It com-
putes the similarity ctp,A between the strip weight vector Ātp
and the strip activity vector Atp of the strip Ap handled by
unit p:

ctp,A =

〈
Atp.Ā

t
p

〉
max

(∥∥Ātp∥∥2
, B
) (2)

Where B is a numerical constant.
θtp and ctp,A are combined in a third module called cortico-

thalamic merging, in order to determine the participation of
thalamic and cortical modules in the competition described
next. The combination is given by:

νtp =
√
θtp.β + (1− β).ctp,A (3)

Where β is a constant.
The latest value is passed to the neural field module which

computes the unit activity utp, so that the utp profile within
the map is a bump arising around the highest νtp.

The value of utp is then used to modulate learning in tha-
lamic and cortical modules. For thalamic learning, weights
are updated as follows:

ωt+1
p = ωtp + αω.u

t
p.(o

t − ωtp) (4)
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Figure 3. Module stacks of the units in the three maps and their cortical
inter-connections.

Where αω is a fixed thalamic learning rate for all input map
units. On the other hand, the same rule is applied for cortical
learning for each connection weight in the strip Ap:

āt+1
pq = ātpq + αS .u

t
p.(u

t
q − ātpq) (5)

αS being a unified fixed learning rate for all S ∈ {A, I,D}.
The second map in the architecture is the delay map. Its

units are connected to the input map units via one-to-one
scheme, so that each unit in the delay map is connected to
the unit in the input map having the same coordinates. The
role of the delay map is to copy the input map activity and
delay it for a period T of time. There is no lateral connection
neither neural field modules in this map. The stack of a
unit in this map has two modules: a copy module that reads
its value from an input map unit on the other side of the
cortical connection and a FIFO module which implements
a T -length queue. For each position q in the input map and
the corresponding position p in the delay map the delay map
activity is utp = ut−Tq .

The last map in the architecture is the associative map.
Units in this map receive as inputs the activity of the input
map (via strip I in Fig. 2) in addition to a delayed copy of
this activity from the delayed map (via strip D in the same
figure). The neural field of the associative map performs
lateral competition between its units. The resulting activity
is then re-injected in the input map dynamics through A
strip.

In this map, the two lower modules of a unit q handle the
strips Iq and Dq emerging from the input map and the delay
map respectively. They compute the corresponding matches
ctq,I and ctq,D similarly to equation 2. These two modules
are then combined in a third module called cortico-cortical
merging, and computes a scalar as follows:

µtq =
√
ctq,I .c

t
q,I + noiseµ (6)

The value µtq is the actual input to the neural field of the
associative map, which in turn computes the unit activity



utq . Cortical learning for strip I and D connections occurs
similarly to equation 5. Noise helps boosting the associative
map activity in units receiving null cortical activity. This is
necessary to avoid drastic bump eliminations in the input
map.

The proposed architecture does not require any knowledge
about the dynamical system neither about the observation
stream, it is thus model free. As there is no need for any
parameter adjustment during learning, the architecture is
able to follow the changes in the dynamical system. This is
why the learning rates in the architecture are fixed values:
There is no coarse-mapping and fine-tuning learning stages
that are often used in architectures based on self-organizing
maps [8].

III. EXPERIMENTS

In this section, the goal is to test the architecture capability
to find a suitable representation of the dynamical system
phases, as well as the adaptation of such a representation to
some changes in the evolution function φt. The architecture
should set up a representation from the ambiguous observa-
tions provided by the dynamical system. The building up of
such representation actually occurs in the input map. This is
performed by the spatio-temporal self-organization of both
the thalamic and the cortical weights [9]. Let us consider the
system phase at time τ to be xτ . When the phase is observed
it gives the observation O (xτ ), provided as an input to the
input map in the architecture. Like in Kohonen maps [10],
each input value is presented to all the units in the input map.
A single input O (xτ ) is presented and maintained during
several time steps. This gives time for the neural field to
form the bumps and for thalamic and cortical learning to
occur. It appeared experimentally that a quite small T = 24
value was suitable for the experiment. In this experiment,
τ is incremented every T time steps. and the input O (xτ )
is presented to the input map during these T time steps, so
that:
ot = ot+1 = · · · ot+T−1 = O (xτ ) and ot+T = ot+T+1 =

· · · ot+2T−1 = O
(
xτ+1

)
, etc.

The T used here is the same as the delay map FIFO
length. This means that the input map activity is delayed
until the next input O

(
xτ+1

)
is sampled.

At the end of each T time steps, the neural field results in
a stable bump. For further analysis of the map behavior, let
us compute the barycenter Gτ of the activity u of all units
in the map. It is computed as follows:

Gτ =
∑
p

utp.p/
∑
p

utp (7)

Giving p ∈
{

(i, j) :
√

(i−R)2 + (j −R)2 < R

}
, R is the

radius of the input map, and t is the time step at the end of
T interval.

When a group of l barycenter (l = 50) are computed, they
are organized in a list P τ = {Gτ−l+1, Gτ−l+2, · · · , Gτ}
that form a path of successive bump positions. This will be
drawn on the map snapshot as shown in Fig. 4.

In experiments, artificial observations are used as inputs.
They are two series of values in the range [0..1]. Values
in each series are fed to the architecture one by one
periodically. The first series is (S1 = ABCDEFEDCB)
and the second one is (S2 = ABCBAFEDEF ) where
the values are coded as follows: (A = 0, B = 0.20, C =
0.40, D = 0.60, E = 0.80, F = 1).

Ambiguous values exist in both input series. Some input
values (D for example in S1) are preceded by different
values (once by C and once by E). Thus, the same ob-
servation could corresponds to two distinct states of the
dynamical system. The proposed architecture is expected
to resolve this ambiguity and find distinct representations
for the same input value according to its temporal context,
more specifically, in S1 it should find two representations for
each input except for A and F which are always preceded
by the same series of values. Similarly, for S2 it should
find two representations for each value except for C and
D. Furthermore, the architecture should update the way it
maps the real system phase xt over its surface, i.e. the way
it determines the states x̂t representing xt, when the input
series switches from S1 to S2. The robustness to noise is
tested by perturbing each observation by a noiseo value
before being presented to the architecture.

The architecture is trained on the first series S1 for a
period τs of time, then the input is switched to the second
series S2 for the rest of experiment time. This simulates
the change in the dynamical system evolution function at
time τs.

System evolution as a response on both input series is
shown in Fig. 4. Fig. 4(a) shows the first stages of the self-
organization process. On the left of the map, initialization
with random ωtp is still visible (noisy grey-scaled area), while
on the right, ωtp values are spatially organized (continuous
variation of shade).

Along the experiment time, the duplication of states rep-
resentation related to the same ot occurs as self-organization
sets up. This can be seen by comparing Fig. 4(b) to Fig. 4(a).

Fig. 4(b) shows that the map exhibits better spatially
dispersed thalamic regions handling each a different range
of ot values. Six grey-scale regions can be distinguished,
they correspond to the six values of input. Each unit in the
map belongs to some region handling some ot. This means
that the map is fully recruited.

Each input is assigned to a thalamic region corresponding
to its value. A region could be split into two regions corre-
sponding to the same ot value (as for the region encoding
C values). However, the representation held by each region
resolves the ambiguity of the observation in the input series.
For example, the two phases that give the D observation
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(a) Map activity as a response to S1 after τ = 25 × l i.e t =
τ × T = 30000 time steps.
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(b) Map activity as a response to S1 after τ = 438 × l i.e.
t = τ × T = 525600 time steps.
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(c) Map activity as a response to S2 after τ = 602 × l i.e.
t = τ × T = 722400 time steps. Second input series.
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(d) Map activity as a response to S2 after τ = 872 × l i.e.
t = τ × T = 1046400 time steps. Second input series.

Figure 4. Status of the input map during the system evolution as a response for both input series. Grey-scaled values are the ω prototypes (black for 0,
white for 1). P τ is represented with a poly-line, linking successive positions Gτ−l+1, Gτ−l+2, · · · , Gτ , that are localized on the figures with red dots.
The higher figures represent the map response on the first input series S1 = ABCDEFEDCBA. The two lower figures represent its response on the
second input series S2 = ABCBAFEDEF . Step number t are computed with l = 50 and T = 24.

have two representations in a region corresponding to the
same thalamic value. Each representation corresponds to the
observation in a different context, one representation for D
preceded by C and the other for D preceded by E. There-
fore, the architecture has built two distinct representations
for two different system phases although they correspond to
the same D observation. Nevertheless, A and F have unique
representations as they are not ambiguous. Thus, successive

bump positions (red dots) actually correspond to each term
in the input sequence (i.e. to the phases x), in spite of the
redundancy of some terms in the sequence. More precisely,
the poly-line that appears in the figure is formed by l = 50
points corresponding each to one Gτ . As sequences contain
10 items, l = 50 points shows five consecutive repetitions
of full sequences. The motivation for computing Gτ points
is to show the temporal succession of states. Each point in



the poly line corresponds to a representation x̂t of a single
phase of the dynamical system xt. Clusters of points can be
distinguished along the poly-line. Clusters result from the
repeated visits of some state. At some position in the map
(e.g. point E-left on Fig. 4(b)), there are rather clusters of
Gτ . They are always well localized, meaning that every visit
of the corresponding phase in the sequence leads to similar
bump positions. This is an indication of the stability of x̂t

representation.
Fig. 4(c) shows the map state after switching to the next

input series S2. The past organization of the map which was
fitting S1 does not fit S2 anymore. For example, the input F
was corresponding to one representation on the map, while
it is ambiguous now in S2.

In Fig. 4(d), it can be seen that the map has re-organized
to re-assign its regions to different thalamic values than in
the case of S1. New stable clusters of points are found, and
the path formed by them expresses a stable correct represen-
tation of S2. Two special cases should be emphasized: while
F was not ambiguous in S1 and was corresponding to one
representation on the map, it is ambiguous in S2, and the
map has re-organized to find two distinct representations.
The same is true for A. The second case is the case of
D which was ambiguous is S1 and corresponding to two
representations, but it corresponds to one representation in
S2 where it is not ambiguous. Noise was always present in
both input series values and didn’t affect the architecture
ability to find a suitable mapping.

The experience was launched with numerical values for
the dynamical system as follows: τs = 25000 and noiseo is
sampled from a uniform random noise U [−0.05, 0.05].

Architecture numerical values was initialized as follows:
R = 15 for all maps, u0

p = 0, ω0
p and ā0

pq, ī
0
pq, d̄

0
pq are

initialized to uniform random values from U [0, 1], σ = 0.07,
αω = αS = 0.0416, B = 10, β = 0.25, noiseµ was sampled
from a uniform random distribution U [0, 0.1], ρI = ρA =
ρD = 5. ψI = 90◦, ψA = 90◦, ψD = 0, T = 24, and
l = 50.

IV. CONCLUSION AND FUTURE WORK

Considering the obtained results, it was experimentally
shown that the proposed architecture is able to self-organize
in order to set up a suitable representation that maps in a
bijective way to the phase of a dynamical system, and to
overcomes the ambiguity of observations. The architecture
was also able to adapt on-line to the changes in the system
dynamics, without the need to re-parametrization during
simulation. There is no conditions on the dynamical system,
meaning that it is a model-free architecture. The architecture
has also exhibited the full recruitment of the resource map
units, besides to the capability to re-organize them to adapt
to the changing dynamics of the concerned system, ending
by setting up an adaptive representation.

Future work will be oriented in two main directions.
First, the robustness of the spatio-temporal self-organizing
process has to be investigated with much larger maps since
scalability condition still need to be investigated, allowing
the representation of more complex dynamical systems.
With more available space on the map surface, the ar-
chitecture should be able to represent richer systems, or
several separate systems at once. Second, the longer term
purpose of our work is to set up Markovian state space
from partial observations, allowing an agent to schedule ac-
tions in Partially Observable Markovian Decision Processes
framework. This implies considering actions rather than just
observing the world transitions, which requires extensions
of the architecture proposed in this paper.
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