
Exploiting inherent regularity in control of
multilegged robot locomotion by evolving neural

fields
Benjamin Inden∗, Yaochu Jin†, Robert Haschke‡ and Helge Ritter‡

∗Research Institute for Cognition and Robotics, Bielefeld University, Germany
Email: binden@cor-lab.uni-bielefeld.de

†Department of Computing, University of Surrey, United Kingdom
‡Neuroinformatics Group, Bielefeld University, Germany

Abstract—The control of multilegged robots is challenging
because of the large number of sensors and actuators involved.
However, the regularity inherent to gait control can be taken
into account to design controllers for multilegged robots. In this
paper, we show that NEATfields, a method designed for the
evolution of large neural networks, can exploit this regularity to
evolve significantly better gaits than those evolved by the standard
NEAT method. We also show how evolved networks can control
a robot with a ball-like morphology to move on a rough terrain.
The success in evolving large neural networks suggests that the
NEATfields method is a promising tool for studying complex
behaviors in robotics and artificial life.

Index Terms—Multilegged Walking, Neuroevolution

I. INTRODUCTION

Neuroevolution [1], i.e. the generation of artificial neural
networks by means of evolutionary algorithms, has often
been used to automatically create controllers for robots and
simulated agents. For example, much research on the evo-
lution of controllers for multilegged robot morphologies has
been reported (see [2], [3], [4], [5], [6] and the references
therein). In addition, methods to coevolve robot morphology
and controllers have resulted in multilegged structures (e.g.
[7]). Robots with legs can cross rough terrain, but are quite
difficult to control [8], [9].

One problem faced in the evolution of controllers for multi-
legged robots is that the input and output spaces are quite large.
As more neurons and connections are required for control,
the performance of evolutionary algorithms typically degrades
because the genome that encodes these elements becomes too
large to handle with the limited resources that are typically
available for artificial evolution. In the work mentioned above,
two approaches are typically used to overcome this obstacle.
The first approach is to evolve the controller for one leg, and
produce replicates for controlling the other legs. Connections
between the replicates can also sometimes be evolved. This
approach is computationally efficient but requires a priori
knowledge and excludes some possible solutions (e.g. those
with unequal controllers for different legs) from being found.
The second approach is to use an artificial developmental
process, also known as artificial embryogeny, to grow a large

network from a small genome. This method is potentially very
powerful, but also presents many challenges [10], [11].

We have recently proposed an alternative to the above
approaches that can also generate large neural networks from
comparatively small genomes [12], [13]. The basic idea is
to evolve networks of neural fields instead of networks of
single neurons only. Each element in these fields is a small
neural networks evolved using a standard method. As the
higher level structure of the network is evolved together with
these elements, evolution can discover the regularity inherent
in a given task automatically. This approach is more flexible
than manually replicating a controller evolved for a single leg,
allows the system to generate different controllers for different
legs, and allows fine-tuning the individual connection weights.

The NEATfields method is used here for the evolution of
controllers for multilegged robots, but the intention is to show
that it can more generally be used as a tool for studying cogni-
tion. Evolved neural networks have been occasionally used to
explore in a relatively bias-free way how certain behaviors can
be generated [14], [15]. However, the limitation to small neural
networks in most existing research makes it difficult to study
complex behaviors, e.g. where visual information processing
is involved. The results in this work suggest that NEATfields,
along with some other recently proposed methods (e.g. [16]),
is a powerful new tool for studying cognition.

II. METHODS

A. The NEATfields method

1) General approach: NEATfields is based on the well
known NEAT method [17], [18] that simultaneously evolves
the topology and the connection weights of neural networks.
NEAT starts evolution with the simplest possible network
topology and proceeds by complexification: There is a muta-
tion operator that adds neurons (always between two connected
neurons), and adjusts the connection weights such that the
properties of these connections changes as little as possible.
Another operator adds a connection between two previously
unconnected neurons. Once a new gene is created by mutation,
it receives a globally unique reference number. These numbers

Figure 1. The three-levels architecture in NEATfields.

are used to align two genomes during recombination. They are
also used to define a distance measure between networks.

The NEATfields method has been designed to extend the
NEAT method to the evolution of much larger neural networks.
One assumption made by the method is that the input and
output spaces of a task can to some degree be decomposed into
a number of equal or similar subspaces. Many real-world tasks
indeed require one or two dimensional fields of networks that
do the same or similar information processing. For example,
an eye or a camera provides large amounts of sensory data
with a natural two-dimensional topology. Also, robots with
actuated limbs often require a number of similar controllers
in addition to a coordinating mechanism.

NEATfields networks have a three-level architecture, see
figure 1. At the highest level, a network consists of a number
of fields that are connected just like individual neurons are in a
NEAT network. At the intermediate level, fields are collections
of identical (or similar) subnetworks with a two-dimensional
topology. At the lowest level, subnetworks, or field elements,
are NEAT networks of individual neurons. In accordance with
the idea of searching in smaller topologies first, NEATfields
usually starts evolution with a single internal field of size 1×1
that has one neuron for each different output occurring in an
output field.

2) Neural networks: Similar to many artificial neural net-
works, the activation level of the neurons in NEATfields is a
weighted sum of the outputs of the neurons j ∈ J to which
they are connected, and a sigmoid function is applied on the
activation: oi(t) = tanh(

∑
j∈J wijoj(t − 1)). As in other

NEAT implementations, connection weights are constrained
to the range [−3, 3]. There is no explicit threshold for the
neurons. Instead, a constant bias input is available in all
networks.

A field element in NEATfields is a recurrent neural network
with almost arbitrary topology, which means that no discon-

Figure 2. Construction of a NEATfields network from its genome (bottom).
The balls in the central network represent field elements. Their contents are
shown in the circles above and below. In these circles, black dots represent
the individual (input, output or hidden) neurons.

nected neurons are allowed and that at most one connection
is generated between neurons. A field is a two-dimensional
array of field elements. In special cases, the field size along
one or both dimensions can be one. A complete NEATfields
network is a NEAT-like network where the nodes are fields.
It consists of at least one internal field as specified by the
genome, and fields for network input and output as specified
by the given task. There can be several input and output
fields with different dimensions. For example, a bias input
can be provided as an input field of size 1 × 1. Within
the NEATfields network, connections can be local (within a
field element), lateral (between field elements of the same
field), or global (between two fields). It should be noted
that connections between field elements or fields are in fact
connections between individual neurons in these field elements
or fields. How they are established will be described below.

3) Encoding connections and other network elements in the
genome: The parameters for an individual field are encoded
in the genome in a corresponding chromosome (see figure
2). The first gene in a chromosome specifies the field size
in x and y dimensions. The other genes in a chromosome
encode the nodes and connections for one field element. In
the current implementation, all genes have a length of 160
bit and may contain several numerical parameters and flags
as well as unused space for extensions. However, each flag
or numerical value within the gene basically has its own
specialized mutation operator, so the genes could equally well
be implemented as any kind of data structure as long as there
are enough bits available for a sufficiently good numerical
accuracy. All genes contain a unique reference number that is
assigned once the gene is generated by mutation. In addition,
connection genes contain a connection weight, a flag indicating
whether the connection is active, and the reference numbers of

Figure 3. An example of how the global connections between neurons in
fields of different sizes (shown here as one dimensional) are created using
a deterministic and topology preserving method. The genetically specified
weights are automatically scaled if necessary. As shown in detail on the right
side, connections go in fact to individual neurons within the field elements as
specified by the connection gene.

the source and target neurons (as well as additional data that
is explained below). Node genes contain additional values that
are not used for the experiments described in this article.

There is a special chromosome that contains genes encod-
ing global connections. Global connections contain reference
numbers of a source and a target. These can be reference
numbers either of neurons or of inputs and outputs as specified
by the task description. They must be in different fields —
global connections between two neurons in the same field
will never be created by the NEATfields method. Due to the
hierarchical architecture of NEATfields, a neuron with a given
reference number will be present n times in a field with n field
elements. A single global connection gene implicitly specifies
connections for all these neurons. If a global connection is
between neurons in fields with the same sizes, every field
element in the target field will get a connection from the field
element in the source field that has the same relative position
(in x and y dimension) in its field. Their connection weights
are all the same. If field sizes are different in a dimension,
then the fields will still be connected using a deterministic and
topology preserving method (see figure 3): if the source field is
smaller than the target field, each source field neuron projects
to several adjacent target field neurons, whereas if the source
field is larger than the target field, the target field neurons get
input from a number of adjacent source field neurons, while
the genetically specified connection weight is divided by that
number. This way, field sizes can mutate without changes in
the expected input signal strength.

4) Mutation operators for the field element networks: The
NEATfields method uses mutation operators that are very
similar to those of the original NEAT implementation for
evolving the contents of the field elements. The probabilities
of these operators are also chosen based on experience with
NEAT and the derivative NEON method [19], [18]. The
most common operation is to choose a fraction of connection

weights and either perturb them using a normal distribution
with standard deviation 0.18, or (with a probability of 0.15)
set them to a new value. The application probability of this
weight changing operator is set to 1.0 minus the probabilities
of all structural mutation operators, which amounts to between
0.8815 and 0.949 in the experiments reported here. In general,
structural mutations are applied rarely because they will cause
the evolutionary process to operate on larger neural networks
and search spaces. A structural mutation operator to connect
neurons is used with a probability of 0.02, while an operator to
insert neurons is used with a probability of 0.001. The latter
inserts a new neuron between two connected neurons. The
weight of the incoming connection to the new neuron is set
to 1.0, while the weight of the outgoing connection keeps
the original value. The existing connection is deactivated but
retained in the genome where it might be reactivated by further
mutations. There are two operators that can achieve this: one
toggles the active flag of a connection and the other sets the
flag to 1. Both are used with probability 0.01.

5) Evolving network topology on higher levels: For evolv-
ing the higher level topology, NEATfields introduces some new
operators. At the level of a single field, one operator doubles
the field size along one dimension (with a probability of 0.001)
and another changes the size of each dimension independently
to a random value between its current size and the size of the
largest field it is connected to (with a probability of 0.005).

At the level of the complete NEATfields network, there is an
operator that inserts global connections (with a probability of
0.01) and an operator that inserts a new field into an existing
global connection (with a probability of 0.0005 — higher
probabilities will often lead to the evolution of unnecessarily
large neural networks). The size of the new field is set
randomly to some value between 1 and the larger of the sizes
of the two fields between which the new field is inserted.
This is done independently for both dimensions. These two
operators correspond to operators already used to evolve the
topology of the individual field elements. In addition, an
existing field can also be duplicated, where all elements of
the new field receive new reference numbers. The new field
can either be inserted parallel to the old one (in this case,
the outgoing connection weights will be halved to prevent
disruption of any existing function) or in series with the old
one (in this case, every neuron in every field element in the
new field receives input from the corresponding neuron in the
corresponding field element in the old field, while the output
from the new field goes to where the output from the old
field went previously). These two operators allow for reuse of
previously evolved structure. The serial duplication operator is
also applied on input fields, in which case an internal field is
created that contains one neuron for every input in the input
field. Both mutations occur with a probability of 0.0005.

6) Flow of information within neural fields: NEATfields
networks can also have lateral connections between field
elements of the same field. These connections enable flow of
information within the neural field. Like local connections,
lateral connections are between two neurons in the NEAT

Figure 4. Lateral connections are established between a neuron in a field
element and another neuron in each of the up to four neighbor field elements.
There are less neighbors if it is at the border of the field. (a) Lateral
connections are only shown for the central element as dotted lines here for
clarity. (b) All lateral connections constructed from a single gene.

network that describes the field elements. However, the con-
nection from the source neuron does not go to a neuron in
the same field element, but to the corresponding neurons in
the up to four immediate neighbor field elements (see figure
4). The gene encoding a lateral connection specifies source
and target neuron reference numbers just as genes encoding
local connections do. It is also located in the chromosome that
describes its field. However, it has a lateral flag set to 1, and
is created by a lateral connect operator (with a probability of
0.02).

7) Dehomogenizing neural fields: By default, correspond-
ing connections in different field elements all have the same
strength because they are represented by a single gene. The
same is true for the global connections between field elements
of two fields. For some tasks, it is useful to have field
elements that react slightly differently to the input, which
can create what has been called repetition with variation
[20]. One way to realize this is that connection strengths are
larger in a neighborhood of a given position on the field. The
NEATfields method can scale connection weights according
to exp(−ϵ(distance

field size)
2) (in our implementation, this is done

separately for the x and y dimensions), where ϵ = 5.0
is chosen such that connections close to the specified focal
position have a large weight and the rest have small weights
(see figure 5). The focal position is specified in the following
way: There are two eight bit values in the gene encoding a
connection, one for each dimension. These are converted to
two numbers between −1 and 1. If a number is between -
0.15 and 0.15, the connection weights will be homogeneous
in the corresponding dimension. This is the default for all
connections because they are usually created with these values
set to 0.0. If a value is outside this range, on the other hand,
then it is mapped linearly to a position between the two field
borders. There is a mutation operator that (at a probability of
0.03) sets the values for a single connection gene.

In principle, a field can be completely dehomogenized by
many of these focal area connections. One even faster way
of completely dehomogenizing the weights is to scale them
with a random factor. Here, a random factor does not mean

Figure 5. Dehomogenization of neural fields by the focal areas technique.
The thickness of connections here symbolizes their weights.

Figure 6. Connection weight patterns for local feature detection. Black
denotes a connection weight of 1.0, white a connection weight of -1.0, and
the gray scales denote connection weights between 0.0 and 1.0.

that the factors are randomly drawn every time the network is
created. Instead, the same random data is retrieved every time
the network is created using the innovation number of the gene
as a key. This is achieved by passing the innovation number
as seed to a common random number generator that then
generates the required amount of data. A similar technique
was used in [19]. In those experiments that use random
dehomogenization, we set a corresponding flag in the genes
of 25% of all newly created connection genes. The flag does
not mutate in subsequent generations.

8) Building local feature detectors: With ordinary global
connections, a field element can only receive input from
field elements with corresponding positions in other fields.
If the fields are of unequal sizes, a field element can get
input from several adjacent field elements in another field as
described above, but these inputs all have the same connection
weights, so processing is possible in a limited way only.
More sophisticated processing is useful for some tasks. For
example, if the input field contains camera data, detection of
local features such as lines or edges in a particular orientation
requires the comparison of adjacent cells of the input. To deal
with this requirement, connection genes have an additional
number that refers to one of at most 16 prespecified connection
weight patterns. These patterns have been designed by hand
with the aim of providing useful building blocks for local
feature detection (see figure 6). A value from the pattern is
multiplied by the original connection weight specified in the

gene to get the weight of the connection from the field element
at the corresponding position. The patterns have a size of 7×7.
The central element of the pattern corresponds to the weight
modification of the connection between the field elements with
identical relative positions. The feature detectors do not have
to use an entire pattern. Instead, the maximal offsets between
the field element positions in the source and target fields can
be between 0 and 3 for the x and y dimensions, and are
also specified on the genome. There is a mutation operator
(used with a probability of 0.02 if local feature detectors are
used) that changes the pattern reference and maximal offsets
of an already existing connection. Both for existing and newly
created connections, choices of pattern use and sizes are made
based on probabilities that are externally specified for a given
experiment. In the experiments reported below, patterns 1 to
4 from figure 6 are used with equal probabilities by default.
The maximal offsets in x and y direction are 0 or 1 with
equal probabilities by default. Comparisons to other parameter
settings and to a number of alternative approaches have been
done previously using other tasks and show that the exact
choice of patterns and parameters is not important as long as
a reasonably rich set of building blocks is provided [13].

B. Selection methods

Here we use a hybrid selection method that combines fitness
based tournament selection and a recent approach known as
novelty search [21]. We found that this method, and some
other hybrid methods, performed quite well on a wide range
of different task as compared to standard methods [22]. Half
of the population is chosen based on fitness, and the other half
is chosen based on novelty. Each half has its own elite of size
10 that is copied to the next generation unchanged.

To calculate novelty, a measure for calculating the distance
between two individuals is necessary. Here we use a measure
that is tuned to give roughly equal weights to differences
in the genotype and the behavior of the individuals. The
behavioral distance measure for the tasks presented here is the
distance of the final positions of two individuals. Because this
distance is often very small in the first generations compared
to the expected genetic distance, it is multiplied by 10000 for
these particular tasks. The globally unique reference numbers
assigned to each gene by NEATfields when it arises by
mutation is used to calculate genetic distance as follows:

d = cn#refn + cr#refc + cw
∑

∆w

+cf#reff + cs
∑

log(1 + ∆sx +∆sy)

where #refn is the number of neuron genes present in only
one of these networks, #refc is the number of connection
genes present in only one of these networks (#refn and
#refc are only counted in fields that are present in both
networks, otherwise the excess neuron and connection genes
are just ignored), #reff is the number of fields present in
only one of these networks, ∆w are the connection weight
differences (summed over pairs of connection genes that are
present in both networks), the ∆s are the field size differences

Figure 7. Robot morphology for the legged locomotion task.

in the x and y dimension (summed over pairs of fields present
in both networks), and the c variables are weighting constants.

Once all pairwise distances have been calculated, the nov-
elty of an organism can be estimated by taking the mean of its
15 lowest distance values. Only the distances to the 50% less
fit individuals are taken into account to calculate novelty to
minimize the distortion of novelty based selection by fitness
based selection. Selection by novelty, like selection by fitness,
is then done with tournament selection. If an individual is
above a task specific novelty threshold, it is copied into an
archive. In every 10 generations, the number of individuals
that have been copied into the archive will be checked. If
this number is above 3, the threshold is multiplied by 1.05,
whereas if it is below 3, the threshold is multiplied by 0.95.
Individuals from both the current population and the archive
are taken into account for calculating novelty.

For the experiments reported here, we use an initial genetic
novelty threshold of 10.0, and set cn = 0.0, cr = 1.0, cw =
1.0, cf = 1.0, cs = 1.0. A population of 100 individuals is
evolved for 1000 generations.

To avoid exhausting the available hardware resources, the
fitness and novelty of networks having more than a predefined
number of nodes or connections are set to 0.0. The limits
obviously depend on the problem, the implementation of the
algorithm, and the available hardware. Here we set them to
10000 nodes and 100000 connections.

C. Quadruped walking task

We use a task similar to the one reported in [6], where
both the motivation for the problem and previous results are
described in more detail. Robots with four legs are simulated
using the ODE physics engine for 60 seconds using a time
step of 0.01 s. The fitness is calculated based on the total
distance travelled by a robot in x and y direction as (x2 +
y2)2. A trial is aborted if any body segment of the robot other
than the four lowest leg segments touches the ground, or if
the directions of movement of the joints have been changed
more than 960 times altogether. Besides, a trial is aborted if a
robot jumps higher than some threshold value because that can
only be achieved by exploiting the inaccuracies of the physics
simulation. In the latter case, the fitness is set to 0.0.

The robot (see Fig. 7) has a rectangular torso of size
0.15 × 0.3 × 0.05 units. Each of its four legs consists of
three cylindrical segments of length 0.075 and radius 0.02.
They are connected to the body or their preceding segments
by hinge joints. The first joint allows forward and backward
movements and is constrained within a maximum of 180°

Figure 8. The morphology of legged spheres (right) and how a rectangular
input/output field is mapped to the legs. Empty circles denote field elements
that are not connected to any actuators in the robot.

rotation. The second joint allows the two lower leg segments to
swing towards or away from the body. The third joint, which,
like the second, is unconstrained, allows the lowest segment
to move forward or backward. The controller gets a 2 × 2
input field where the element of each leg contains the three
joint angles and a touch sensor for the lowest segment. It gets
another input field with the yaw, pitch, and roll values of its
torso, as well as a bias input. The output field, which is of size
2 × 2, contains three outputs for the desired joint angles psi
for each field element. The simulator takes these to move the
joints with a desired speed vi = 2.0(pi − psi) and a maximal
force of 100 units for every joint i (where pi is its current
position). Unlike in [6], no periodic signal was provided as
input because it was found in preliminary experiments that it
did not facilitate the evolution of periodic gaits.

In principle, joints on the opposite sides of the robot body
can have either the same orientation (“p”) or exactly opposite
orientations (“n”). For example, an “n” for the first joint
would mean that for the same motor command, the legs
on one side of the body would swing forward, while those
on the other side would swing backward. We used “nnn”
as standard configuration, but tested also “pnp”, “pnn”, and
“nnp”. Different configurations are expected to bias evolution
towards the behavior of different locomotion strategies.

D. Control of legged spheres

In the task decribed now, the robot body is shaped like a ball
(with a radius of 0.2) with 12 legs (of length 0.1) surrounding
it. The legs consist of a single element that is connected to the
ball using a universal joint, so there are 24 degrees of freedom
altogether. While there was no exact biological example for
this design, tumbleweeds and many other plants produce seeds
that are ball-shaped and move with the help of wind [23].
Besides, many sea urchins habitually walk on some of their
spines, although they do not roll, but keep their oral side
towards the solid surface [24].

A ball-like robot obviously cannot topple over. This is useful
for exploration of rough terrains, and a similar design was
already suggested for exploration of planetary surfaces [23].
Here we assume that the robot will not be not damaged
by rolling down a hill, and that the problem of correctly
orienting the body once a location of interest is reached can

Figure 9. Performance of four legged walking machines. “p” stands for same
orientation of a joint on both sides of the body, while “n” stands for different
orientations. The letters are given in a proximal-distal order.

be solved independently or is not of interest. We focus on
the generation of behavior for fast movement. The 12 legs
are mapped onto input and output fields of size 5 × 4 (see
Fig. 8). Each field element in this input field has a size of 4
because the legs are controlled by two pairs of antagonistic
actuators. The desired velocity of a leg in one dimension is
v(t + 1) = vmax

2 (
op(t)−on(t)

2 − 2α(t)
π), where op(t) and on(t)

are the antagonistic outputs at time step n, and α(t) is the
current joint angle, which is restricted to be within ±π

2 . So
the desired velocity will be within ±vmax in each direction,
which is hard-constrained by the physics engine with a defined
maximal force.

A terrain was generated using 65 × 65 points separated
by a distance of 0.625 from each other. The heights of the

points were derived from h(x, y) =
r(x,y)+

√
2(x−32)2(y−32)2

2 ,
where the r(x, y) are drawn from a uniform distribution in
[0, 1], and the other summand grows towards the borders of the
terrain. The terrain is enclosed by walls that are high enough
to prevent the robot from moving out of the terrain. The
fitness assigned to the robot is again the squared distance. The
trial is aborted for robots jumping too high or changing joint
directions too often as described in the preceeding section. In
addition, a check is done every 3 seconds whether the robot’s
distance from its point of origin is at least 5 · t

60s , where t
is the current time. If the condition is not fulfilled, the trial
is terminated to save simulation time. Results are reported
below for NEATfields and and a NEAT configuration where
each output is randomly connected to 20% of the input from
all legs in the common ancestor.

III. RESULTS

The NEATfields method always finds successful gaits for
four legged robots (20 runs were performed for each experi-
ment). On average, they walk a distance of 8.6 length units,
whereas robots evolved with NEAT walk only1.5 length units.

In fact, many NEAT runs do not produce any useful walking
behavior at all. The difference between NEAT and NEATfields
is significant (p < 10−13, t-test). Using a very similar setup,
it has been reported in [6] that evolved HyperNEAT networks
walk to a distance of about 7 on average, while evolved P-
NEAT (NEAT with a fixed feedforward architecture) networks
walk to a distance of about 3 on average (because both Hyper-
NEAT and P-NEAT are configured as feedforward networks
there, the authors provide an additional sine wave signal as
input to facilitate the evolution of gaits, whereas we rely on the
evolution of recurrent connections or environmental feedback
to produce oscillations). Thus NEATfields, like HyperNEAT,
can exploit the regularity inherent in the task, thereby gaining
an advantage over neuroevolution methods like NEAT that use
a direct encoding of connections in the genome. The gaits
produced by NEATfields networks are in general very regular
(see Fig. 10 (a)). The best evolved NEAT networks also have
rather regular gaits, but much slower and less synchronized
ones (see Fig. 10 (b)). This is understandable given that
improvments must occur independently in all four legs. Other
NEAT walkers use very different control strategies for different
legs (see Fig. 10 (c)).

As for the other joint configurations, the “pnp” configuration
walks 8.2 length units on average, the “pnn” configuration
8.4 length units, and the “nnp” configuration 8.8 length units
(see also Fig. 9). Different directions of locomotion evolve in
different runs using the same configuration.

An evolved controller for a quadruped is shown in Fig. 11.
It can be observed that (a) the network captures the regularity
inherent in the task by having the same topology in the
internal field elements for the four legs, (b) it uses recurrent
connections for control, (c) the four controller instances in
the internal field have evolved connections between them, (d)
the connections to the legs of the left and the right side of
the body have evolved to be slightly different (there is an
additional connection to the output field elements for the left
side each).

We also found (results not shown) that the task does not
become more difficult if we insert a third pair of legs between
the other pairs. So hexapod control can also be achieved easily
by NEATfields.

Finally, legged spheres travel an average distance of 11.5
with NEATfields, but 1.9 with NEAT (p < 10−14, t-test, see
also Fig. 12). They travel by rolling, not by just walking on
the same few legs all the time.

IV. DISCUSSION

We show that evolution using the NEATfields method can
automatically exploit the regularity inherent in the considered
tasks. Control stategies for multilegged robots are considered
here because they are not only technically interesting, but may
be used to explore the generation of locomotion behavior in
arthropods [25] and other animals. More generally, the evolu-
tion of large networks consisting of neural fields opens up new
opportunities for studying complex behaviors in evolutionary
robotics. For example, NEATfields networks are well suited Figure 10. (a) Hip joint angles over time for an evolved NEATfields walker.

(b, c) Hip joint angles over time for two evolved NEAT walkers.

Figure 11. An evolved controller for walking on four legs.

Figure 12. Performance of NEATfields and NEAT on the legged spheres
task.

for processing camera data, as shown in our previous work on
evolving networks for visual pattern recognition [12], [13]. In
addition, the NEATfields method can be used for the evolution
of multisensory integration [26]. While it is a complex method
with many free parameters, it is also quite robust to changes in
many of these parameters [13]. Besides, almost all parameters
can remain unchanged for all kinds of different tasks [13],
so there is no need for extensive parameter tuning. Further
experiments show that the evolution of walking behaviors is
also possible with other selection methods besides the one
used here [22].

Acknowledgments

Benjamin Inden gratefully acknowledges the financial sup-
port from Honda Research Institute Europe. We would like to
thank Jeff Clune for providing us with his simulation code as
a reference.

REFERENCES

[1] D. Floreano, P. Dürr, and C. Mattiussi, “Neuroevolution: from architec-
tures to learning,” Evolutionary Intelligence, vol. 1, pp. 47–62, 2008.

[2] R. D. Beer and J. C. Gallagher, “Evolving dynamical neural networks
for adaptive behavior,” Adaptive Behavior, vol. 1, pp. 91–122, 1992.

[3] J. Kodjabachian and J.-A. Meyer, “Evolution and development of neu-
ral networks controlling locomotion, gradient-following, and obstacle-
avoidance in artificial insects,” IEEE Transactions on Neural Networks,
vol. 9, pp. 796–812, 1998.

[4] A. von Twickel and F. Pasemann, “Reflex-oscillations in evolved single
leg neurocontrollers for walking machines,” Natural Computing, vol. 6,
pp. 311–337, 2007.

[5] V. K. Valsalam and R. Miikkulainen, “Modular neuroevolution for mul-
tilegged locomotion,” in Proceedings of the Genetic and Evolutionary
Computation Conference, 2008.

[6] J. Clune, B. E. Beckmann, C. Ofria, and R. T. Pennock, “Evolving
coordinated quadruped gaits with the hyperneat generative encoding,” in
Proceedings of the IEEE Congress on Evolutionary Computing, 2009.

[7] T. Miconi, The Road to Everywhere: Evolution, Complexity and Progress
in Natural and Artificial Systems. PhD thesis, School of Computer
Science, University of Birmingham, 2007.

[8] C. Ridderström, Legged locomotion: Balance, control and tools — from
equation to action. PhD thesis, Department of Machine Design, Royal
Institute of Technology, Stockholm, Sweden, 2003.

[9] A. Abbott, “Working out the bugs,” Nature, vol. 445, pp. 250–253, 2007.
[10] K. Stanley and R. Miikkulainen, “A taxonomy for artificial embryogeny,”

Artificial Life, vol. 9, pp. 93–130, 2003.
[11] S. Harding and W. Banzhaf, Organic Computing, ch. Artificial Devel-

opment. Springer-Verlag, 2008.
[12] B. Inden, Y. Jin, R. Haschke, and H. Ritter, “Neatfields: Evolution

of neural fields,” in Proceedings of the Conference on Genetic and
Evolutionary Computation, 2010.

[13] B. Inden, Y. Jin, R. Haschke, and H. Ritter, “Evolving neural fields for
problems with large input and output spaces,” submitted, 2011.

[14] E. Ruppin, “Evolutionary autonomous agents: A neuroscience perspec-
tive,” Nature Reviews Neuroscience, vol. 3, pp. 132–141, 2002.

[15] I. Harvey, E. D. Paolo, R. Wood, and M. Quinn, “Evolutionary robotics:
A new scientific tool for studying cognition,” Artificial Life, vol. 11,
pp. 79–98, 2005.

[16] J. Gauci and K. Stanley, “Generating large-scale neural networks through
discovering geometric regularities,” in Proceedings of the Genetic and
Evolutionary Computation Conference, 2007.

[17] K. Stanley and R. Miikkulainen, “Evolving neural networks through
augmenting topologies,” Evolutionary Computation, vol. 10, pp. 99–127,
2002.

[18] K. Stanley, Efficient Evolution of Neural Networks through Complexifi-
cation. PhD thesis, Report AI-TR-04-314, University of Texas at Austin,
2004.

[19] B. Inden, “Neuroevolution and complexifying genetic architectures for
memory and control tasks,” Theory in Biosciences, vol. 127, pp. 187–
194, 2008.

[20] K. Stanley, “Compositional pattern producing networks: A novel abstrac-
tion of development,” Genetic Programming and Evolvable Machines,
pp. 131–162, 2007.

[21] J. Lehman and K. O. Stanley, “Exploiting open-endedness to solve
problems through the search for novelty,” in Proceedings of the Eleventh
International Conference on Artificial Life, 2008.

[22] B. Inden, Y. Jin, R. Haschke, and H. Ritter, “An examination of different
fitness and novelty based selection methods for the evolution of neural
networks,” submitted, 2011.

[23] Y. Bar-Cohen and C. Breazeal, “Biologically inspired intelligent robots,”
in Proceedings of the SPIE Smart Structures Conference, 2003.

[24] B. Grzimek and G. M. Narita, eds., Grzimek’s animal life encyclopedia
vol. 3: Mollusks and echinoderms. van Nostrand, 1974.

[25] F. Delcomyn, “Insect walking and robotics,” Annual Review of Entomol-
ogy, vol. 49, pp. 51–70, 2004.

[26] B. Inden, Y. Jin, R. Haschke, and H. Ritter, “Evolution of multisensory
integration in large neural fields,” in Tenth International Conference on
Artificial Evolution, 2011.

