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Abstract—Artificial bee colony is a recently proposed 

metaheuristic optimization technique and is a new member of 
swarm intelligence based algorithms. It mimics the foraging 
behavior of honey bees. The performance of Artificial Bee 
Colony (ABC), like other metaheuristics, is heavily dependent on 
the tradeoff between their exploration and exploitation aptitude. 
In this paper a variant called Local Global variant Artificial Bee 
Colony (LGABC) is proposed to balance the exploration and 
exploitation in ABC. The proposal harnesses the local and global 
variant of Particle Swarm Optimization (PSO) into ABC. The 
proposed variant is investigated on a set of thirteen well known 
constrained benchmarks problems and three chemical 
engineering problems, which show that the variant can get high-
quality solutions efficiently. 

Index Terms—Artificial Bee Colony, Metaheuristic, PSO, 
Optimization, Swarm Intelligence  

I. INTRODUCTION 
Now a day’s swarm intelligence gathers a strong attraction 

of researchers, academicians and scientist to solve many 
complex optimization problems emerging in almost every 
field. Swarm intelligence is a branch of nature inspired 
algorithms focused on insect behavior to develop 
metaheuristics which can imitate social insect’s problem 
solution abilities [1]-[[5]. Swarm intelligence is a heuristic 
method that models the population of entities that are able to 
self-organize and interact among them [6][7][24-29].  

Many swarm intelligence algorithms have been proposed to 
solve optimization problems such as PSO (Particle Swarm 
Optimization) [8], CSO (Cat Swarm Optimization) [9], ACO 
(Ant Colony Optimization) [10] and ABC (Artificial Bee 
Colony) [1]. 

Karaboga in 2005 [1] proposed ABC, inspired and 
motivated by the intelligent foraging social behavior of honey 
bees. The performance of ABC in terms of efficiency and 
accuracy are analyzed with that of PSO, DE (Differential 
Evolution) and the EA (Evolutionary Algorithms) for both 
unconstrained and constrained numerical optimization 
problems [11][12].  

Like other metaheuristics, ABC has certain inherent 
drawbacks like: ABC is good at exploration while poor at 

exploitation. Further, it is also observed that in structure of 
basic ABC the onlooker bee, can only move straight to one of 
the food sources of those are discovered by the employed bees. 
This characteristic may constrict the search area in which the 
bees can explore and could become a drawback of the ABC.  

In this study an attempt is made to balance the trade-off 
between exploration and exploitation in ABC by embedding 
the local and global variants of particle swarm optimization 
(PSO). The proposed variant based on this scheme is termed as 
LG-ABC (Local Global variant Artificial Bee Colony). 

The rest of the paper is structured as follows. Section 3 
describes basic PSO; Section 4 is devoted to the description of 
the proposed variant, LG-ABC of ABC. Parameter settings are 
given in section 5 and considered constrained test benchmark 
problems and chemical engineering problems with result 
discussions are presented in Section 6 & 7 respectively. The 
paper closes with conclusions in Section 8. 

II. ARTIFICIAL BEE COLONY (ABC) 

A. Unconstrained ABC 
In ABC the colony of honey bees is comprised of three 

types of bees namely scouts, employed and onlooker bees. The 
bees in the colony perform tasks like searching for the nector 
and sharing the information about the food source intelligently 
by dividing the labor themselves. The main difference between 
ABC and other intelligent swarm based algorithms is that in 
ABC food sources (the population generated) represents the 
solutions of the problem, not the bees.  

The scout bee initiates the food sources randomly which is 
later exploited by employed bees. The employed bees pass the 
information about the food source based on their nectar quality 
to the onlooker bees waiting in the hive. This sharing of 
information is done by performing a special dance called 
waggle dance. In ABC the number of employed bees is equal 
to the number of food sources and each employed bee is 
assigned to one of the food sources. Employed bees upon 
reaching to the food source, calculate a new location or fly to 
the nearby position from the old and preserve the best position. 
This is a greedy selection process. The number of onlooker 
bees is also the same as that of employed bees and are allocated 



to the food sources based on their profitability. Similarly as the 
employed bees, onlooker bees also calculate the new position 
from the old one. If the food source does not improve after 
predetermined number of iterations, then employed bees 
abandons that food source and becomes scouts and searches the 
new food source randomly. Mathematical explanation of the 
complete process is described below. 

• Mathematical presentation of ABC 
Define SN as the colony size of the bees. SNE is the colony 

size of employed bees and SNO as the onlooker bees, which 
satisfies the equation: SN = SNE + SNO. As stated above SNE is 
equals to SNO.  

N is the dimension of the individual solution vector.The 
basic ABC can be expressed as: 
1) Initialization: A set of feasible food sources (x1,x2,..., xN) 

is randomly initialized and the specific solution xi can be 
generated using equation (1) given below: 

      ))(1,0( LjUjLjij xxrandxx −+=                                    (1) 

where j∈{1,2,…,N} is the jth dimension of the solution 
vector. Calculate the fitness value of each solution vector 
respectively. 

2) Employed Bee Movements: Search new solutions for an 
employed be in the neighborhood of the current position 
vector according to the equation (2): 

      )( kjijijijij xxxv −+= φ                                                       (2) 

where x∈SN, j∈{1,2,…,N}, k∈{1,2,…,SNE}, k ≠ i, Øij is 
random number between -1 and 1. 

3) Selection: Apply the greedy selection operator to choose 
the better solution between searched new vector vij and the 
original vector xij into the next generation. The greedy 
selection operator ensures that the population is able to 
retain the elite individual, and accordingly the evolution 
will not retreat. 

4) Nectar Evaluation by Onlooker Bee: Each onlooker bee 
selects an employed bee from the colony according to their 
fitness values. The probability distribution (pi) of the 
selection operator can be described as follows. 
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where fiti is the fitness value of the solution i which is 
proportional to the nectar amount of the food source in the 
position i. 

5) Onlooker Bee Movements: The onlooker bee searches in 
the neighborhood of the selected employed bee’s position 
to find new solutions using equation (2). The updated best 
fitness value can be denoted with f best, and the best 
solution parameters. 

6) Scout Movement: If the searching times surrounding an 
employed bee exceeds a certain threshold limit, but still 
could not find better solutions, then the location vector can 
be reinitialized randomly according to the equation (1). 

7) If the iteration value is larger than the maximum number 
of the iteration then stop, else, go to 2. 

B. Constrained ABC 
ABC was originally designed for solving the 

unconstrained optimization problems [12]. However, with 
small changes it can easily be modified for dealing with 
problems having constraints as well. In the present study, we 
have followed ‘three feasibility rules’ method given in [13]   
to decide which solution vector (food source) will be 
beneficial for handling constraints. An advantage of this 
method is that unlike penalty method we need not have a 
penalty constant, which itself is a tedious work to decide. 
Moreover, here we consider feasible as well as infeasible 
solutions and prioritize these solutions as per the following 
rules: 
1). If we have two feasible food sources, we select the one 

giving the best objective function value.  
2). If one food source is feasible and the other one is 

infeasible, we select the feasible one;  
3). If both food sources turn out to be infeasible, the food 

source giving the minimum constraint violation is 
selected.  

It can be observed that these rules bias feasible food sources 
over infeasible food sources and a pairwise comparison 
(tournament selection) is done to select the best option.  

 In this method a control parameter called modification 
rate (MR), pre defined by the user is introduced. With the help 
of MR, it is decided stochastically whether a food source xi 
should be retained or not. It given by the equation:   
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Where k∈{1, 2,..., SN} – randomly chosen such that k ≠ i ;  
j∈{1, 2,...,N}.Rj is generated randomly between 0 and 1in 
each iteration. 

III. PARTICLE SWARM OPTIMIZATION (PSO) 
Particle Swarm Optimization (PSO), introduced in 1995 by 

Eberhart and Kennedy [8], is a stochastic, population–based 
metaheuristic algorithm for solving numerical optimization 
problems. Its dynamics is based on principles that govern 
socially organized groups of individuals called particles. In 
PSO’s context, the population is called a swarm and its 
individuals (search points) are called particles. Each particle in 
the swarm has the following three main characteristics:  

1) an adaptable velocity with which it moves in the search 
space,  

2) a memory where it stores the best position it has ever 
visited in the search space (i.e., the position with the lowest 
function value), and 

3)  the social sharing of information, i.e., the knowledge of 
the best position ever visited by all particles in its 
neighborhood.  

The particles of the swarm fly through a multidimensional 
search space looking for a potential solution. Each particle 
adjusts its position in the search space from time to time 



according to the flying experience of its own and of its 
neighbors (or colleagues). For an N-dimensional search space 
the position of the ith particle is represented as Xi = (xi1, xi2, …, 
xiN). Each particle maintains a memory of its previous best 
position Pbesti = (pi1, pi2… piN). The best one among all the 
particles in the population is represented as Pgbest = (pg1, pg2… 
pgN). The velocity of each particle is represented as Vi = (vi1, 
vi2, … viN). In each iteration, the P vector of the particle with 
best fitness in the local neighborhood, designated g, and the P 
vector of the current particle are combined to adjust the 
velocity along each dimension and a new position of the 
particle is determined using that velocity. The two basic 
equations which govern the working of PSO are that of 
velocity vector and position vector given by: 

)]()([ 2211 ijgjijijijij xprcxprcvv −+−+= χ  (5)) 
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where i= 1,2,...,N; χ is the constriction coefficient; c1 and c2 are 
positive acceleration constants, referred to as cognitive and 
social parameters, respectively; and r1, r2 are the uniformly 
generated random numbers in the range of [0, 1]. 

IV. LG-ABC: A PROPOSED APPROACH 
The performance of a population–based algorithm is 

heavily dependent on the trade–off between its exploration and 
exploitation abilities, i.e., its ability to explore wide areas of the 
search space and its ability to converge rapidly towards the 
most promising solutions, respectively. The basic ABC 
performs good exploration but poor exploitation [14]. In this 
study we tried to balance exploration and exploitation aptitude 
of basic ABC by embedding the local and global variants of 
particle swarm optimization [15]. 

Exploration is promoted by local variant of PSO since the 
information regarding the best position of each neighborhood is 
communicated to the rest of the particles in swarm through 
neighboring particles. On the other hand, the global variant has 
better exploitation properties is promoted by the global variant 
of PSO since all particles are attracted by the same best 
position, thereby converging faster towards the same point. 

Let Gi and Li denote the velocity update of the particle Xi 
for the global and local PSO variant, respectively [15], 

Gij= χ [vij + c1r1(pij − xij) + c2r2(pg − xij)]                                  (7) 

Lij= χ [vij + c1r’1(pij − xij) + c2r’2(pgi − xij)]                               (8) 

where g is the index of the best particle of the whole swarm 
(global variant); and gi is the index of the best particle in the 
neighborhood of xi (local variant). Now the scheme is defined 
by: 

Uij =  u Gij + (1− u) Lij                                                             (9) 

xij = xij + Uij                                                                            (10) 

where u∈ [0,1] is a unification factor parameter [15], which 
balances the influence of the global and local search directions 
in the unified scheme. The standard global PSO variant is 

obtained by setting u = 1 in Eq. (5), while u = 0 corresponds to 
the standard local PSO variant. All values u∈ [0,1], correspond 
to composite variants of PSO that combine the exploration and 
exploitation characteristics of the global and local variant. 

In LG-ABC the position of new food source is calculated 
using: 
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The pseudocode of the proposed variant is given below in 
Figure 1. 

1. Begin 
2.  Initialize the population set of food sources xi, 

i=1,...,SN 
3.  Evaluate each xi  
4.  g = 1 
5. Repeat 
6.  For i = 1 to SN 
7.  Generate vi ,g with xi,g-1 (new solutions for employed 
               bees) using equation (4) 
8.  Apply Deb’s method for selection process 
9.        Evaluate vi,g  
10.  
11.  If vi,g < xi,g-1 
12.   xi,g = vi,g 
13.  Else 
14.   xi,g = xi,g-1 
15.  End If 
16.  End For 
17.  For i = 1 to SN 
18.   Select, based on fitness proportional 
                              selection food source xi,g 
19.   Generate vi,g with xi,g by equation (11) 
20.          Apply Deb’s method [13] for selection process     
                between vi,g & xi,g     
21. Evaluate vi,g  

22.  If vi,g < xi,g 
23.   xi,g = vi,g 
24.  End If 
25.  End For 
26.      Generate new food sources at random for 
                                those whose limit to be improved has been 
                                reached using equation (1) 
27.   Keep the best solution so far 
28.        g = g + 1 
29.         Until  g = MCN 
30.     End 

Fig. 1.  Pseudocode of proposed variant LG-ABC. 

V. PARAMETER SETTINGS 
In	
   this	
  case	
  study	
  we	
  have	
  compared	
  the	
  performance	
  

of	
  proposed	
  LG-­‐ABC	
  with	
  the	
  basic	
  versions	
  of	
  GA,	
  PSO,	
  DE	
  
and	
  ABC.	
  Their	
  key	
  characteristics	
  are	
  described	
  as:	
  



• GA	
   [17]:	
   The	
   size	
   of	
   population	
   is	
   taken	
   as	
   100	
   and	
  
two	
  point	
   crossover	
   along	
  with	
   standard	
   single	
  point	
  
mutation	
  and	
  ranking	
  selection	
  are	
  used.	
  

• PSO	
   [18]:	
   A	
   classic	
   Particle	
   Swarm	
   Optimization	
  
model	
   for	
   numerical	
   optimization	
   has	
   been	
  
considered.	
  The	
  parameters	
  are	
  c1	
  =	
  2.8,	
  c2	
  =	
  1.3,	
  and	
  
w	
   from	
   0.9	
   to	
   0.4.	
   Population	
   is	
   composed	
   by	
   100	
  
individuals	
  

• DE	
   [19]:	
   A	
   classic	
   Differential	
   Evolution	
   model	
   is	
  
considered	
   where	
   F	
   &	
   CR	
   are	
   fixed	
   to	
   0.5	
   &	
   0.9,	
  
respectively,	
  and	
  the	
  population	
  size	
  to	
  100.	
  

• ABC	
  and	
  LG-ABC: The colony size (SN) or the number 
of solutions in the colony is 40, the value of modification 
rate (MR) is 0.4, and the maximum cycle number (MCN) 
is 6000.  

All the considered algorithms have been run for 30 times for 
each test function in C++. The stopping criterion is, for all 
algorithms, 1000 iterations.   

VI. BENCHMARK TEST FUNCTIONS 
To validate and inspect the performance of the LG-ABC, 

13 benchmark test functions have been taken from [16]. The 
considered test function include different type of objective 
functions (e.g., linear, nonlinear, and quadratic) and constraints 
[e.g., linear inequality, nonlinear equalities, and nonlinear 
inequalities). Among which the test functions g02,	
   g03,	
   g08,	
  

and	
   g12	
   are	
  maximization	
   problems	
   and	
   are	
   transformed	
  
into	
   minimization	
   problem	
   by	
   multiplying	
   it	
   with	
   “−”	
   i.e.	
  
−f(x).	
   And	
   rest	
   of	
   the	
   test	
   functions	
   are	
   minimization	
  
problems.	
   The	
   simulated	
   results	
   for	
   benchmark	
   test	
  
functions	
  obtained	
  by	
  proposed	
  LG-­‐ABC	
  are	
  almost	
  equal	
  to	
  
the	
   known	
   optimal	
   values	
   and	
   are	
   presented	
   in	
   Table	
   1.	
  
From	
  the	
  Table	
  1	
  it	
  can	
  be	
  observed	
  that	
  LG-­‐ABC	
  is	
  able	
  to	
  
find	
  the	
  global	
  optima	
  consistently	
  in	
  12	
  test	
  functions	
  over	
  
30	
  runs	
  with	
   the	
  exclusion	
  of	
   test	
   function	
  g02.	
   In	
  case	
  of	
  
g02	
   the	
   optimal	
   solutions	
   are	
   not	
   consistently	
   found,	
   but	
  
the	
   result	
   achieved	
   is	
   very	
   close	
   to	
   the	
   global	
   optimal	
  
solution.	
  	
  

From Table 1, a better result is indicated in boldface or that 
the global optimum (or best known solution) was reached. (–) 
Means that no feasible solutions were found.  

The	
   success	
   rates	
   of	
   GA,	
   DE,	
   PSO,	
   and	
   basic	
   ABC	
  
algorithm	
   with	
   the	
   proposed	
   LG-­‐ABC	
   algorithm	
   are	
  
presented	
   in	
   Table	
   2.	
   Comparing	
   the	
   results	
   in	
   terms	
   of	
  
success	
  rates,	
  LG-­‐ABC	
  algorithm	
  outperforms	
  all	
  algorithms	
  
employing	
  Deb’s	
  rules.	
  

The	
   statistical	
   simulation	
   results	
   in	
   terms	
   of	
   best,	
  
median,	
   worst	
   and	
   standard	
   deviation	
   (Std.	
   Dev.)	
   for	
   the	
  
proposed	
  variant	
  LG-­‐ABC	
  are	
  presented	
  in	
  Table	
  3.	
  

  

TABLE I.  THE MEAN SOLUTIONS OBTAINED BY GA, PSO, DE, ABC & LG-ABC FOR 13 BENCHMARK TEST FUNCTIONS 

f Optimal GA PSO DE ABC LG-ABC 
g01 -15.000 -14.236 -14.710 -14.555 -15.000 -15.000 
g02 0.803619 0.788588 0.419960 0.665 0.792412 0.799672 
g03 1.000 0.976 0.764813 1.000 1.000 1.000 
g04 -30665.539 -30590.455 -30665.539 -30665.539 -30665.539 -30665.539 
g05 5126.498 - 5135.973 5264.270 5185.714 5135.242 
g06 -6961.814 -6872.204 -6961.814 - -6961.219 -6961.723 
g07 24.306 34.980 32.407 24.310 24.473 24.413 
g08 0.095825 0.095799 0.095825 0.095825 0.095825 0.095825 
g09 680.63 692.064 680.630 680.630 680.640 680.630 
g10 7049.25 10003.225 7205.5 7147.334 7224.407 7213.786 
g11 0.75 0.75 0.749 0.901 0.750 0.750 
g12 1.000 1.000 0.998875 1.000 1.000 1.000 
g13 0.053950 - 0.569358 0.872 0.968 0.897 

TABLE II.  SUCCESS RATES OF ALGORITHMS WHEN COMPARED WITH THAT OF THE ABC ALGORITHM RUN THROUGH 1000 ITERATIONS, DUALLY. + INDICATES 
THAT ALGORITHM IS BETTER WHILE − INDICATES IT IS WORSE THAN OTHER. IF BOTH ALGORITHMS SHOW SIMILAR PERFORMANCE, THEY ARE BOTH + 

f LG-ABC − GA LG-ABC − PSO LG-ABC − DE LG-ABC − ABC 
LG-ABC GA LG-ABC PSO LG-ABC DE LG-ABC ABC 

g01 + − + − + − + + 
g02 + − + − + − + − 
g03 + − + − + + + + 
g04 + − + + + + + + 
g05 + − − + + − + − 
g06 + − − + + − + − 
g07 + − + − − + + − 
g08 + − + + + + + + 
g09 + − − + − + + − 
g10 + − − + − + + − 
g11 + + + − + − + + 
g12 + + + − + + + + 
g13 − − − + − + − − 

Total 12 2 8 7 9 8 12 6 



 

TABLE III.  EXPERIMENTAL STATISTICAL RESULTS OF  LG-ABC FOR 13 BENCHMARK TEST FUNCTIONS 

f Optimal Best Mean Median Worst Std. Dev. 
g01 -15.000 -15.000 -15.000 -15.000 -15.000 6.84E-11 
g02 0.803619 0.803494 0.799672 0.809833 0.683522 3.28E-02 
g03 1.000 1.000 1.000 1.000 1.000 6.84E-15 
g04 -30665.539 -30665.539 -30665.539 -30665.539 -30665.539 8.64E-13 
g05 5126.498 5129.045 5135.242 5137.9934 5138.036 5.12E-13 
g06 -6961.814 -6961.842 -6961.723 -6961.703 -6961.401 4.84E-12 
g07 24.306 24.306 24.413 24.516 24.963 6.98E-11 
g08 0.095825 0.095825 0.095825 0.095825 0.095825 4.74E-18 
g09 680.63 680.63 680.630 680.639 680.641 9.17E-12 
g10 7049.25 7076.867 7213.786 7224.68 7425.98 4.52E-03 
g11 0.75 0.750 0.750 0.750 0.750 5.23E-14 
g12 1.000 1.000 1.000 1.000 1.000 7.01E-01 
g13 0.053950 0.62192 0.897 0.90233 0.90412 3.05E-13 

VII. OPTIMIZATION OF CHEMICAL ENGINEERING PROBLEMS 
Three chemical engineering problems are considered to 

further test the efficiency of the proposed variant of ABC. The 
first problem is: 
1. Reactor network design problem 

The problem taken from [20] is about the design of a 
sequence of two CSTR reactors (say V1 & V2). The objective 
of this problem is to find the volumes of both reactors and 
concentration of each product in each tank (CA1, CA2, CB1 & 
CB2) in order to maximize the concentration of product in the 
exit stream. The detail can be found in [21]. The optimization 
problem converted to minimization is 

2BCFMinimize −=  
01.. 1111 =−+ VCkCtrw AA  

              022212 =+− VCkCC AAA  
              0111311 =−++ VCkCC BAB  
              02241212 =+−+− VCkCCCC BAABB  

              04 5.0
2

5.0
1 ≥−− VV  

such that 0 ≤ CA1,CA2,CB1,CB2 ≤ 1 and 10-5 ≤  V1 & V2 ≤ 16 
where k1 = 0.09755988, k2 = 0.99k1, k3 = 0.0391908, and k4 = 
0.9k3 
Result & discussions: The reported global optimum values are 
(V1 = 3.036504, V2 = 5.096052, CA1 = 0.771462, CB1 = 
0.204234, CA2 = 0.516997 and CB2 = 0.388812 with F = -
0.388812). 
This problems was solved by [21] & [22] by reformulating it. 
In this study we tried to solve it without reformulating it with 
colony size of 40 bees and simulations were executed 25 times 
with MR=0.4 and obtained the values for V1 = 3.036876, V2 = 
5.097129, CA1 = 0.771447, CB1 = 0.204238, CA2 = 0.516986 
and CB2 = 0.388799 with F = -0.388812. The problem took 
2113 NFE to reach to the reported global value. The graph 
showing average objective function value is plotted in Figure 
2. 
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Fig. 2.   Plot of Mean objective function value for Reactor network design problem 

2. Heat exchanger network design problem  
This problem has been taken from [23] which address the 

design of a heat exchanger (A1, A2, A3) network. The objective 
in this problem is to minimize the overall heat exchange area. 

321 AAAFMinimize ++=  
01)(0025.0.. 31 =−+TTtrw  

              01)(0025.0 421 =−++− TTT  

              01)(01.0 52 =−+− TT  
              0333.8333333252.833100 1311 ≤−+− TTAA  
              012502500 214212 ≤+−− TTTATA  
              0000,250,12500 25323 ≤+−− TTATA  

such that 100 ≤ A1 ≤ 10,000; 1000 ≤ Ai=2,3 ≤ 10,000; 10 ≤ 
Ti=1,2,3,4,5 ≤ 1000; 



The reported global optimum is at (A1 = 579.19, A2 = 
1360.13, A3 = 5109.92, T1 = 182.01, T2 = 295.60, T3 = 217.99, 
T4 = 286.40 and T5 = 395.60 with F = 7049.25). 
Similarly this problem was also reformulated by [21] and 
solved. But again in this case we have solved this problem 
with out reformulating it and with the same parameter settings 

as above. This problem took 37823 NFE to converge to the 
reported global optima. The obtained values using the 
proposed variant are A1 = 579.21, A2 = 1360.25, A3 = 5108.99, 
T1 = 182.08, T2 = 295.67, T3 = 217.97, T4 = 286.64 and T5 = 
395.76 with F = 7049.249. The graph showing average 
objective function value is plotted in Figure 3. 
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Fig. 3.  Plot of Mean objective function value for Heat exchanger network design problem.

3. Separation network synthesis problem  
This problem is taken from [20]. The detail problem may 

be consulted from [20] & [22] and superstructure for the 
separation of a three component mixture into two products. 
There are 22 variables and 16 equality constraints in the 
problem. The optimization problem is expressed as: 
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01517.0
01517.000432.000432.09979.0

F
FFFFMinimize

+

+++=  

0300.. 4321 =−+++ FFFFtrw  
                0765 =−− FFF  
                0111098 =−−− FFFF  
                015141312 =−−− FFFF  
                0181716 =−− FFF  
                0333.0 1512,13 =+− FFxF A  
                0333.0 18,812,13 =+− FxFxF BB  

                0333.0 18,8 =+− FxF C  

                0333.0 212,12 =+− FxF A  

                0333.0 212,128,9 =+− FxFxF BB  

                0333.0 2168,9 =+− FFxF C  

                030333.0 6312,14 =−++ FFxF A  

                050333.0 312,148,10 =−+− FxFxF BB  

                030333.0 1738,10 =−++ FFxF C  

                018,8, =−− CB xx  

                0112,12, =−− BA xx  
such that 0 ≤ Fi=1,2,...,18 ≤ 150; 0 ≤ xA,j=1,2,...,18 ≤ 1; 0 ≤ xB,j=1,2,...,18 
≤ 1; 0 ≤ xC,j=1,2,...,18 ≤ 1. 
It is reported in the literature that the problem was solved 
using a α-BB algorithm [20] and obtained the solution at F = 
1.8640. With the same parameter settings stated above and 
with out formulating it we have solved and obtained the 
following values: F1 = 60.02, F2 = 0.0, F3 = 90.0, F4 = 152.0, 
F5 = 20.0, F6 = 0.0, F7 = 20.0, F8 = 40.0, F9 = 40.0, F10 = 0.0, 
F11 = 0.0, F12 = 20.0, F13 = 0.0, F14 = 20.0, F15 = 0.0, F16 = 
20.0, F17 = 0.0, F18 = 20.0, xB,8 = 0.5, xC,8 = 0.5, xA,12 = 0.0 and 
xB,12 = 1.0 with F = 1.86401. The graph showing average 
objective function value is plotted in Figure 4. 
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Fig. 4.  Plot of Mean objective function value for Separation network synthesis problem

VIII.  CONCLUSIONS 
In this research, the two global and the local variant of PSO, 
are embedded into the structure of basic ABC to enhance and 
balance the exploration and exploitation capability. In the 
global variant of PSO, the whole swarm is considered as the 
neighborhood of each particle, while in the local, strictly 
smaller neighborhoods are used. The proposed variant called 
LG-ABC is investigated on a set of six benchmark and three 
problems taken from the chemical industry. The statistical 
inferences show the efficiency of the proposal. Interesting 
findings on the behavior of LG-ABC and ABC were observed 
from the results of 13 test benchmark functions and three 
chemical engineering problems: 
• LG-ABC clearly improved ABC’s exploration and 

exploitation capabilities to reach better final results, based 
on both, quality and consistency. 

• LG-ABC was able to reach the vicinity of the best known 
or global optimum solution more frequently with respect 
to ABC and other state-of-art algorithms taken for 
comparison. 
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