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Abstract—Consider a sender, Alice, who wants to transmit pri-
vate messages to two receivers, Bob and Calvin, using unreliable
wireless broadcast transmissions and short public feedback from
Bob and Calvin. In [1], we assumed that Bob and Calvin provide
honest feedback, and characterized the secure capacity region of
the private messages under the requirement that Bob and Calvin
do not learn each other’s message. In this paper, we assume
that Bob (or Calvin) may provide dishonest feedback; or even
control the input message distributions, as is commonly assumed
in cryptography literature. We characterize the capacity region
in the case of dishonest adversaries, as well as an achievable
region for the case when the adversary has complete control on
the distribution of the messages. We also design polynomial time
protocols for both cases, that rely on the use of coding techniques
to mix and secure the private messages. As a side result, we
define an extended notion of semantic security for this problem
and using a similar approach to [2], we show the equivalence of
different security notions.

I. INTRODUCTION

A promising application of network coding in wireless is

when a wireless access point, Alice, wants to send private

messages to two receivers, Bob and Calvin, who can send

back to Alice packet acknowledgments. It is well known

in the network coding literature that to achieve the optimal

communication rates, Bob and Calvin should try to overhear

the packets intended for the other user, while Alice should

code across the private packets she has for Calvin and Bob

[3], [4]. However, this rate-optimal scheme seems to come

with a security compromise, since Bob and Calvin learn parts

of each other’s message.

In our work, we are interested in security guarantees we can

provide in this setting. As a first step, in [1] we assumed that

Calvin and Bob send honest acknowledgments, that correctly

report what are the packets they have received, and we char-

acterized what is the capacity region of secure communication

in such a broadcast setting. That is, we assumed that Bob (or

Calvin) is curious, but still honest – which is an optimistic

assumption. In this paper, we look at the more realistic setting

where Bob (or Calvin) are no longer honest, and try to deceive

Alice on what are the packets he correctly received. Moreover,

following security definitions in the cryptography literature,

we also look at the case where Bob (or Calvin) may even

control the input message distributions that Alice sends.
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For the case of a dishonest user, we provide a com-

plete capacity characterization, as well as a polynomial time

achievability algorithm that leverages coding techniques. Our

achievability protocol uses coding and feedback to exploit

three aspects of wireless: (i) Alice can broadcast; (ii) Bob and

Calvin will not receive exactly the same broadcast packets

due to channel errors and (iii) each of them passively collects

information about the other’s (encrypted) message. Clearly,

if a user dishonestly reports what are the messages he has

correctly received, we cannot offer guarantee on the message

rates he will experience; our guarantees are for the honest

receiver. Interestingly, we find that the achievable rate of

secure communication to the honest receiver is not affected

by the dishonest acknowledging of the other receiver.

We also define a stronger notion of security and design a

scheme that is secure independently of the joint distribution

of the messages, i.e., the adversary might even choose this

distribution arbitrarily. Building on the approach of [2] we

show equivalence of our security definitions with other notions

of security that are used more commonly in the realm of

cryptography.

Related work: Secure transmission of messages using noisy

channel properties was pioneered by Wyner [5], who charac-

terized the secret message capacity of wiretap channels. This

led to a long sequence of research on information-theoretic

security on various generalizations of the wiretap channel [6],

[7]. Notably, when the eavesdropper and legitimate channel

are statistically identical, then the wiretap framework yields no

security. The fact that feedback can give security even in this

case was first observed for secret key agreement by Maurer [8]

and further developed by Ahlswede-Csiszár [9] – but secure

key agreement is not the same as secure transmission of

specific messages. The wiretap channel with secure feedback

and its variants for message security have been studied in [10],

[11]. The use of feedback and broadcast for private message

transmission, without security requirements has been studied

in [3], [4].

Closest to the current work are [12] and [1]. In [12] the

secret message capacity of a single receiver broadcast channel

against a passive eavesdropper was established. As mentioned

earlier, [1] investigates a similar setting but with a much more

restrictive adversary model.

II. PROBLEM FORMULATION AND SYSTEM MODEL

We consider a three party communication setting with one

sender (Alice) and two receivers (Bob and Calvin). The goal



of Alice is to securely send private messages W1 and W2 to

Bob and Calvin, such that the receivers may not learn each

other’s messages.

Alice employs a memoryless erasure broadcast channel

defined as follows. The inputs of the channel are length L

vectors over Fq, which we call sometimes packets. The ith

input is denoted by Xi. The ith output of the channel seen

by Bob is Y1,i, while the output seen by Calvin is Y2,i.

The broadcast channel consists of two independent erasure

channels towards Bob and Calvin. We note that our assumption

on independence eases presentation, but it is not crucial in

deriving our results. We denote δ1 the erasure probability of

Bob’s channel and δ2 that of Calvin’s channel. More precisely,

Pr{Y1,i, Y2,i|Xi} = Pr{Y1,i|Xi}Pr{Y2,i|Xi},

Pr{Yk,i|Xi} =

{

1− δk, Yk,i = Xi

δk, Yi =⊥,
, k ∈ {1, 2}

where ⊥ is the symbol of an erasure.

Assumptions: We assume that the receivers send public

acknowledgments after each transmission stating whether or

not they received the transmission correctly. By public we

mean that the acknowledgments are available not only for

Alice but for the other receiver as well.

We assume that some authentication method prevents the

receivers from forging each other’s acknowledgments. Also,

we assume that both Bob and Calvin only know each other’s

acknowledgments causally, after they have revealed their own.

Let Si denote the state of the channel in the ith trans-

mission, Si ∈ {B,C,BC, ∅} corresponding to the receptions

“Bob only”, “Calvin only”, “Both” and “None”, respectively.

Further, S∗
i denotes the state based on the acknowledgments

sent by Bob and Calvin. If both users report honestly, then

Si = S∗
i . We denote as Si the vector that collects all the states

up to the ith, i.e., Si = [S1 . . . Si], and similarly for S∗i.
Beside the communication capability as described above, all

users can securely generate private randomness. We denote by

ΘA,ΘB and ΘC the private random strings Alice, Bob, and

Calvin, respectively have access to. All parties have perfect

knowledge of the communication model.

A. Security and reliability requirements

An (n, ǫ,N1, N2) scheme sends N1 packets of length L to

Bob and N2 to Calvin using n transmissions from Alice with

error probability smaller than ǫ. Formally:

Definition 1. An (n, ǫ,N1, N2) scheme for the two user

message transmission problem consists of the following com-

ponents: (a) message alphabets W1 = F
LN1

q and W2 = F
LN2

q ,

(b) encoding maps fi(.), i = 1, 2, . . . , n, and (c) decoding

maps φ1(.) and φ2(.), such that if the inputs to the channel

are

Xi = fi(W1,W2,ΘA, S
∗i−1), i = 1, 2, . . . , n, (1)

where W1 ∈ W1 and W2 ∈ W2 are arbitrary messages in

their respective alphabets and ΘA is the private randomness

Alice has access to, then, provided the receivers acknowledge

honestly, their estimates after decoding Ŵ1 = φ1(Y
n
1 ) and

Ŵ2 = φ2(Y
n
2 ) satisfy

Pr{Ŵ1 6= W1} < ǫ, and (2)

Pr{Ŵ2 6= W2} < ǫ. (3)

Dishonest user: We will say that a user is dishonest if the

user can (a) select the marginal distribution of the other user’s

message arbitrarily; his own message is assumed to be inde-

pendent of the other user’s message and uniformly distributed

over its alphabet and the dishonest user does not have (a

priori) access to his own message, and (b) produce dishonest

acknowledgments as a (potentially randomized) function of

all the information he has access to when producing each

acknowledgment (this includes all the packets and the pattern

of erasures he received up to and including the current packet

he is acknowledging and the acknowledgments sent by the

other user over the public channel up to the previous packet).

In the following σ denotes the dishonest user’s acknowledging

strategy.

Note that at most one of the receivers can be dishonest.

Indeed, if a user is dishonest, we cannot guarantee that his

private messages will remain secure from the other user; thus

if both users are dishonest the problem is not meaningful.

It is common to define the advantage of the adversary (in

our case a dishonest user), which measures the gain that the

adversary obtains by observing a protocol. We express the

adversarial advantage Adv
mis in terms of mutual information

(mis = mutual information security). We discuss the relation

between different security definitions in Section II-B.

Definition 2. An (n, ǫ,N1, N2) scheme is said to be secure

against a dishonest user, if it guarantees decodability and

security for an honest user even if the other user is dishonest

(as defined above). That is, if Bob is honest, then (2) and

Adv
mis = max

PW1
,σ
I(W1;Y

n
2 SnΘC) < ǫ (4)

are satisfied, and if Calvin is honest, then (3) and

Adv
mis = max

PW2
,σ
I(W2;Y

n
1 SnΘB) < ǫ. (5)

are satisfied. The maxima are taken over all adversarial

acknowledging strategies and all possible distributions PW1

or PW2
of the corresponding message.

The secret message capacity region R ⊂ R
2
+ is the set of

all rate pairs (R1, R2), such that for every ǫ, ǫ′ > 0 there are

N1 and N2 and a large enough n for which there exists an

(n, ǫ,N1, N2) scheme that is secure against a dishonest user

and

R1 − ǫ′ <
1

n
N1L log q, R2 − ǫ′ <

1

n
N2L log q. (6)

Clearly a scheme which is secure against a dishonest user

is also secure against honest (but curious) users since the

dishonest user may choose to acknowledge truthfully.

When defining security against a dishonest user (Defini-

tion 2), we assumed that the dishonest user cannot control

his own message distribution. Relaxing this assumption leads



to a stronger notion of security. We define the adversarial

advantage Adv
mis
dis (dis = distribution independent security)

for this case.

Definition 3. An (n, ǫ,N1, N2) scheme is said to provide

distribution independent security, if it guarantees decodability

and security for the honestly acknowledging user (or users)

independently of the joint distribution PW1,W2
of (W1,W2).

That is, if Bob is honest, (2) and

Adv
mis
dis = max

PW1,W2
,σ
I(W1;Y

n
2 SnΘC |W2) < ǫ (7)

are satisfied, and if Calvin is honest, then (3) and

Adv
mis
dis = max

PW1,W2
,σ
I(W2;Y

n
1 SnΘB|W1) < ǫ. (8)

are satisfied.

A rate pair (R1, R2) belongs to the rate region Rdis if for

every ǫ, ǫ′ > 0 there are N1 and N2 and a large enough n

for which there exists an (n, ǫ,N1, N2) scheme that provides

distribution independent security and

R1 − ǫ′ <
1

n
N1L log q, R2 − ǫ′ <

1

n
N2L log q. (9)

B. Security notions

We formulate our results in information theoretic terms,

defining secrecy as a mutual information term being negligibly

small. In the realm of cryptography it is more common to

prove security of an encryption scheme by showing dis-

tinguishing security or semantic security. To facilitate the

interpretation of our results and to allow a fair comparison

with other schemes, we cite a recent result from [2], which

shows equivalence between the two approaches. By this, our

definition of security against a dishonest user is equivalent

to semantic security. We also extend the notion of semantic

security such that it handles joint message distributions, which

results in a definition matching distribution independent secu-

rity. We will give the definitions for Bob’s security, the security

for Calvin is completely symmetric.

The notion of semantic security captures the intuition that

an adversary should not learn anything useful about the

message. In other words, the probability that the adversary

can compute a function f of the message should not increase

significantly after observing the protocol compared to the a

priori probability of a correct guess. The semantic security

advantage is defined as

Adv
ss = max

f,PW1
,σ

{

max
A

Pr {A(Y n
2 , Sn,ΘC , σ) = f(W1)}

−max
S

Pr {S(PW1
, f) = f(W1)}

}

,

where f is any function of W1, A is any function the adversary

may compute after observing the protocol and S is a simulator

trying to compute f without accessing the protocol output.

Here also, W2 is uniformly distributed and independent of W1.

The term simulator to denote guessing functions comes from

the intuition that ideally there exists an algorithm (simulator)

that simulates the run of a protocol without having access to

the message and whose output is indistinguishable from the

output of a real protocol. Theorems 1, 5 and 8 from [2] prove

the following inequalities:

Adv
ss ≤

√

2 ·Adv
mis; Adv

mis ≤ 4 ·Adv
ss log

(

2n

Adv
ss

)

This result shows that requirement (4) is naturally equivalent

to semantic security. i.e., a small ǫ in (4) implies that Adv
ss

is also small.

The above discussion assumed that Calvin cannot choose

the distribution of his own message W2. We now extend the

above definition of semantic security such that it does not rely

on the distribution of W2, which results a stronger notion of

security. We define the adversarial advantage for this case as

Adv
ss
dis =

max
f,PW1,W2

,σ

{

max
A

Pr {A(Y n
2 , Sn,ΘC , σ,W2) = f(W1,W2)}

− max
S

Pr {S(PW1,W2
, f,W2) = f(W1,W2)}

}

. (10)

Note that here we allow the simulator to have access to the

message W2 which an honest Calvin will learn. We show

the following lemma which implies that requirement (7) is

equivalent to this extended notion of semantic security. Due

to space constraints we give the proof in the extended version

of this paper [13].

Lemma 1.

Adv
ss
dis ≤

√

2 ·Adv
mis
diss

Adv
mis
dis ≤ 4 ·Adv

ss
diss log

(

2n

Adv
ss
diss

)

.

This lemma suggests that our results on mutual informa-

tion security (see Theorems 1-2 in the next section) also a

characterize the rate region for semantic security.

III. MAIN RESULT

Theorem 1. The secret message capacity region as defined in

Definition 2 is the set of all rate pairs (R1, R2) ∈ R
2
+ which

satisfy the following two inequalities:

R1(1− δ2)

δ2(1− δ1)(1 − δ1δ2)
+

R1

1− δ1
+

R2

1− δ1δ2
≤ L log q, (11)

R2(1− δ1)

δ1(1− δ2)(1 − δ1δ2)
+

R1

1− δ1δ2
+

R2

1− δ2
≤ L log q. (12)

We prove Theorem 1 in two steps. First, we provide a

protocol in Section IV and show that this protocol achieves

all the rate pairs in the capacity region. We then apply the

converse proof developed for the weaker honest-but-curious

security definition to get an upper bound. The two regions

match, i.e., a dishonest user cannot deteriorate the performance

experienced by an honest user. The first term of (11) and (12)

can be interpreted as the overhead for security, because – as we

will see soon – it corresponds to the duration of a secret key

generation phase. Omitting these terms gives us the capacity



region for the message transmission problem with two users

without any secrecy requirements [4].

In the case of distribution independent security we do not

have a complete characterization: we construct a scheme that

satisfies this stronger security definition, however its optimality

is not clear. The next theorem gives the rate region achieved

by our scheme.

Theorem 2. If a rate pair (R1, R2) satisfies

R1(1− δ2)

δ2(1− δ1)(1− δ1δ2)
+

R2(1− δ1)

δ1(1− δ2)(1− δ1δ2)

+
R1

1− δ1
+

R2

1− δ1δ2
≤ L log q, (13)

R1(1− δ2)

δ2(1− δ1)(1− δ1δ2)
+

R2(1− δ1)

δ1(1− δ2)(1− δ1δ2)

+
R1

1− δ1δ2
+

R2

1− δ2
≤ L log q. (14)

then (R1, R2) ∈ Rdis.

IV. PROTOCOL FOR DISHONEST RECEIVERS

We describe an (n, ǫ,N1, N2) scheme that is secure against

a dishonest user as defined in Definition 2. In our new scheme

we bring together ideas that secure message transmission in

the presence of an adversary and ideas that allow efficient

transmissions for multiple parties.

Main steps: We apply a two-phase approach intro-

duced first in [12]. Alice attempts to send N1 mes-

sage packets W1 = (W1,1,W1,2, . . . ,W1,N1
) to Bob and

W2 = (W2,1,W2,2, . . . ,W2,N2
) to Calvin using at most n

packet transmissions.

I. Key generation. Alice sends uniform i.i.d. random pack-

ets over the channel. From the acknowedged packets,

secret key packets between Alice-Bob and between

Alice-Calvin are set up such that Bob’s key is secret

from Calvin and Calvin’s key is secret from Bob. Privacy

amplification [14], [15] is used to ensure security of the

keys.

II. Message encryption and transmission. Alice encrypts the

messages using the key packets and reliably transmits

them to the two receivers. The encryption operation is a

simple XOR with the encryption key packets, however

the encryption key packets are not independent. Instead,

they are produced from the secret key packets using a

maximum distance separable (MDS) code. This allows

efficient usage of the keys [12].

In both phases we rely on channel properties and exploit that

neither receiver receives all transmitted packets. This allows

both efficient key generation and efficient (in terms of key size)

encryption. Previous work [12] has shown that it is sufficient

to know the expected behavior of the channel, there is no need

to know exactly which packets are received by an adversary.

To illustrate, consider the key generation phase. Assume

that Alice transmits three random (independent and uniformly

distributed) packets X1, X2, X3, and assume Bob receives

X1, X2, while Calvin receives X2, X3. If we could rely on

Bob and Calvin’s honesty, we could then assign KB = X1

as a secret key between Alice and Bob, while KC = X3

as the key between Alice and Calvin. If we cannot rely on

Bob and Calvin’s honesty, but we do know that Bob and

Calvin have received at most one packet in common, we could

allocate KB = X1 ⊕X2 as the key between Alice-Bob, and

KC = X2 ⊕X3 as the Alice-Calvin key.

Note that although similar techniques are used in [1], [12],

none of these previous schemes can handle an adversary who

– being a legitimate receiver – has some control over the

protocol run and who can also actively deviate from the

protocol. To summarize, our new scheme has the following

distinguishing features:

1) In the key generation phase the set of packets we use to

compute the keys for Bob and for Calvin are not disjunct, still

keys are secure.

2) Although Calvin can influence the run of the protocol, we

ensure that independently of his acknowledging strategy, he

cannot control how many times a given encrypted packet with

Bob’s message appears on the channel. From this property it

follows that we can estimate accurately the number of packets

Calvin overhears which makes it possible to use an encryption

similar to [12].

3) In the second phase we need coding to make transmissions

maximally useful for both users as seen in [4]. Alice can

send an XOR-ed packet only if both receivers have a side

information packet. However, a dishonest user might deny

having a side information packet and hinder these coded

transmissions. In our scheme we apply a round robin type

scheduling to ensure that dishonest feedback cannot diminish

the rate experienced by the other user.

A. Protocol description

Parameters: The operation of the protocol utilizes a set of

parameters which we can directly calculate before the protocol

starts, and whose use will be described in the following.

kB = N1

1− δ2

1− δ1δ2
+

(

N1

1− δ2

1− δ1δ2

)3/4

, (15)

kC = N2

1− δ1

1− δ1δ2
+

(

N2

1− δ1

1− δ1δ2

)3/4

. (16)

k1 =
kB

δ2
+

1

δ2

(

2kB
δ2

)3/4

, k2 =
kC

δ1
+

1

δ1

(

2kC
δ1

)3/4

.

n1 = max

(

k1

1− δ1
+

(

k1

1− δ1

)3/4

,
k2

1− δ2
+

(

k2

1− δ2

)3/4
)

(17)

n′
2 =

N1

1− δ1
+

N2

1− δ1δ2
+

(

N1

1− δ1
+

N1

1− δ1δ2

)3/4

(18)

n′′
2 =

N2

1− δ2
+

N1

1− δ1δ2
+

(

N2

1− δ2
+

N2

1− δ1δ2

)3/4

(19)

n = n1 +max{n′
2, n

′′
2}. (20)

Key Generation



1) Alice transmits n1 packets X1, . . . , Xn1
. She generates

these packets uniformly at random from F
L
q using her private

randomness, and independently of W1, W2.

2) Bob and Calvin acknowledge which packets they have

received. If Bob receives less than k1 packets we declare a

protocol error for him. Similarly for Calvin if he receives less

than k2 packets. When an error is declared for both users, the

protocol terminates. If not, we continue with the user not in

error, as if the user in error did not exist.

3) Let XB
1 be a L × k1 matrix that has as columns the first

k1 packets that Bob acknowledged. Alice and Bob create

kB secret key packets as KB = XB
1 GKB

, where GKB

is a (k1 × kB) matrix and is a parity check matrix of a

(k1, k1 − kB) MDS code. Similarly, using the first k2 packets

that Calvin acknowledges, Alice and Calvin create kC secret

key packets using the matrix GKC
. Matrices GKB

, GKC
are

publicly known and fixed in advance.

Message encryption and transmission

Encryption

4) Alice and Bob produce N1 linear combinations of their

kB secret key packets as K ′
B = KBGK′

B
, where GK′

B
is a

(kB × N1) matrix and is a generator matrix of an (N1, kB)
MDS code which is also publicly known. Similarly, Alice and

Calvin create N2 linear combinations of their kC key packets.

5) Alice creates N1 encrypted messages to send to Bob

UB,i = W1,i ⊕K ′
B,i, i = 1 . . .N1

where ⊕ is addition in the F
L
q vector space. Let UB denote

the set of UB,i, i = 1, . . . , N1. She similarly produces a set

UC of N2 encrypted messages to send to Calvin.

Encrypted transmissions

6) Alice sequentially takes the first encrypted packet from

UB,i, i = 1 . . .N1, that is not yet acknowledged by Bob

and repeatedly transmits it, until there is one that only Calvin

acknowledges. That is, if at time i Alice transmits Xi = UB,j

for some j < N1, then

Xi+1 =

{

Xi, if S∗
i = ∅

UB,j+1, if S∗
i ∈ {B,BC}.

(21)

Let QB denote the last transmitted packet of this step, i.e., the

first such packet that only Calvin acknowledges. If there is no

such packet, QB is empty.

7) Similarly, Alice sends the first not-yet-acknowledged (by

Calvin) encrypted packet from UC,i, i = 1 . . . N2, until there

is one that only Bob acknowledges. If at time i Alice transmits

Xi = UC,j for some j < N2, then

Xi+1 =

{

Xi, if S∗
i = ∅

UC,j+1, if S∗
i ∈ {C,BC}.

(22)

Let QC denote the first such packet that only Bob acknowl-

edges. If there is no such packet, QC is empty.

8) Alice transmits the sum of the two undelivered packets:

QB ⊕ QC . If QB or QC is empty, then Alice sends the

non-empty packet. If both QB and QC are empty, then both

messages W1 and W2 are successfully delivered and we stop.

If at time i Alice sends Xi, then


















if S∗
i = ∅, then Xi+1 = Xi

if S∗
i = B, then repeat steps 6 and 8.

if S∗
i = C, then repeat steps 7 and 8.

if S∗
i = BC, then repeat steps 6, 7 and 8.

(23)

If at any point, the overall number of transmissions would

exceed n as defined in (20) we stop and declare an error for the

party (or parties) who has not acknowledged all his encrypted

message packets.

B. Protocol analysis

We prove that the presented scheme is secure against a

dishonest user as defined in Definition 2 and runs without

error with high probability. We use lemmas whose proofs

are provided in [13]. A simple calculation with the given

parameters shows that it achieves any rate pair in the the region

defined by (11)-(12).

1) Security: In our argument we focus on the secrecy of

W1 against a dishonest Calvin, but the same reasoning works

for W2 against a dishonest Bob as well.

To analyze the secrecy of W1, we may, without loss of

generality, assume that no error was declared for Bob during

the key generation phase. Recall that an error is declared for

Bob only if Bob fails to acknowledge at least k1 packets. If

an error was in fact declared for Bob, no information about

Bob’s message W1 is ever transmitted by Alice. However, note

that we do account for this error event when we analyze the

probability of error for Bob (Section IV-B2).

We first show that I(KB;Y
n1

2 Sn1) can be made small,

i.e., the key generation phase is secure.

Lemma 2. When Bob is honest and no error is declared for

Bob in the key generation phase,

I(KB;Y
n1

2 Sn1) ≤ kBe
−c1

√
k1L log q, (24)

if k1 = kB

δ2
+ 1

δ2

(

2kB

δ2

)3/4

and kB ≥ 2

δ2
, where c1 > 0

is a constant. Further, KB is uniformly distributed over its

alphabet.

The key facts we use in proving this lemma are (i) the

number of packets seen by Calvin concentrates around its

mean and (ii) an MDS parity check matrix can be used to

perform privacy amplification in the packet erasure setting.

We still need to show that the secrecy condition is satisfied

by the scheme even if Calvin chooses any message distribution

PW1
and applies any acknowledging strategy, i.e., (4) holds.

In the proof we omit taking the maximum, but the argument

holds for any message distribution and any adversarial strategy,

so the statement follows. We have

I(W1;Y
n
2 SnΘC) ≤ I(W1;Y

n
2 |Y n1

2 SnΘCUC), (25)

where the inequality used the fact that ΘA,ΘC ,W2, S
n are

independent of W1 and we may express Y n1

2 , UC as deter-

ministic functions of ΘA,ΘC ,W2, S
n. Let MC

B be the random



variable which denotes the number of distinct packets of UB

that Calvin observes either in its pure form or in a form where

the UB,i packet is added with some UC,j packet. We have the

following two lemmas:

Lemma 3. H(Y n
2 |Y n1

2 SnΘCUC) ≤ E
{

MC
B

}

L log q.

Lemma 4.

H(Y n
2 |W1Y

n1

2 SnΘCUC) ≥ E
{

min
(

kB,M
C
B

)}

L log q

− I(KB;Y
n1

2 Sn1)

Using these in (25), we have

I(W1;Y
n
2 SnΘC) ≤ E

{

max
(

0,MC
B − kB

)}

L log q (26)

+ I(KB;Y
n1

2 Sn1). (27)

Lemma 2 gives a bound for the second term. We can bound

the first term using concentration inequalities. Notice that

the probability that Calvin overhears a packet UB,i (where

we count overhearing in both pure form or as part of a

linear combination), is 1−δ2
1−δ1δ2

independently of Calvin’s ac-

knowledging strategy. Thus, MC
B is a sum of N1 independent

random variables, and hence E
{

MC
B

}

= N1
1−δ2

1−δ1δ2
. Since

kB = N1
1−δ2

1−δ1δ2
+
(

N1
1−δ2

1−δ1δ2

)3/4

, by applying Chernoff-

Hoeffding bound we have

E
{

max
(

0,MC
B − kB

)}

≤ N1 Pr
{

MC
B > kB

}

≤ N1e
−c2

√
N1 ,

for a constant c2 > 0. Substituting this together with Lemma 2

in (27) we get

I(W1;Y
n
2 SnΘC) ≤ N1e

−c2
√
N1 + kBe

−c2
√
kB ,

for constants c1, c2 > 0. By choosing a large enough value of

N1, we may meet (4).

2) Error probability: An error happens if (a) Bob receives

less than k1 packets in the first phase, or (b) he does not

receive N1 encrypted message packets in steps 6 and 8 before

the protocol terminates. Both these error events have the same

nature. An error happens if Bob collects significantly fewer

packets than he is expected to receive in a particular step.

We apply Chernoff-Hoeffding bound as we did to show the

security guarantee proving that the probability of these events

can be made arbitrarily small. We omit details to avoid parallel

arguments.

3) Optimality: We can assume that both Bob and Calvin

are honest and apply the converse proof developed in [1]

(Theorem 4 in [1]). Obviously, this is a valid upper bound

in the case of a dishonest user as well. With this we prove

optimality and complete the proof of Theorem 1.

Theorem 3. Any achievable rate pair (R1, R2) ∈ R as

defined in Definition 2 satisfies inequalities (11) and (12).

V. DISTRIBUTION INDEPENDENT SCHEME

In the following we describe a scheme which satisfies

the stronger security notion as defined in Definition 3. The

protocol of Section IV cannot satisfy distribution independent

security, because if Calvin knows his message a priori, then

UC carries information about the packets used in the key

generation phase, hence potentially giving him extra infor-

mation about Bob’s key. We can overcome this issue if we

modify the key generation phase and make sure that no packet

used in generating Calvin’s key contributes to Bob’s key,

thus UC is conditionally independent of Bob’s key given

Calvin’s observation of the protocol and W2. This results in

two separate key generation phases, one for Bob and one for

Calvin.

Instead of sending n1 key generation packets as defined in

(17), we have a key generation of length n∗
1 + n∗

2, where

n∗
1 =

k1

1− δ1
+

(

k1

1− δ1

)3/4

; n∗
2 =

k2

1− δ2
+

(

k2

1− δ2

)3/4

.

Bob’s key is then computed from the first n∗
1 packets, while

Calvin’s key is computed from the next n∗
2 packets. All other

parameters remain the same as in Section IV and the second

phase remains unchanged too.

This scheme provides distribution independent security,

which property is proved formally in [13]. A straightforward

rate calculation completes the proof of Theorem 2.
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