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Abstract

Motivated by physical-layer network coding, this paper considers communication in multiplicative

matrix channels over finite chain rings. Such channels are defined by the law Y = AX , where X and

Y are the input and output matrices, respectively, and A is called the transfer matrix. It is assumed

a coherent scenario in which the instances of the transfer matrix are unknown to the transmitter, but

available to the receiver. It is also assumed that A and X are independent. Besides that, no restrictions

on the statistics of A are imposed. As contributions, a closed-form expression for the channel capacity is

obtained, and a coding scheme for the channel is proposed. It is then shown that the scheme can achieve

the capacity with polynomial time complexity and can provide correcting guarantees under a worst-case

channel model. The results in the paper extend the corresponding ones for finite fields.

Index Terms

Channel capacity, discrete memoryless channel, finite chain ring, multiplicative matrix channel,

physical-layer network coding.

I. INTRODUCTION

A multiplicative matrix channel (MMC) over a finite field Fq is a communication channel in which

the input X ∈ Fn×`q and the output Y ∈ Fm×`q are related by

Y = AX (1)
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where A ∈ Fm×nq is called the transfer matrix1. Such channels turn out to be suitable models for the

end-to-end communication channel between a source node and a sink node in an error-free, erasure-prone

network performing random linear network coding [1]–[3]. In this context, X is the matrix whose rows

are the n packets (of length `) transmitted by the source node, Y is the matrix whose rows are the m

packets received by the sink node, and A is a matrix whose entries are determined by factors such as

the network topology and the random choices of the network coding coefficients. Note that each packet

can be viewed as an element of the packet space W = F`q, a finite vector space.

The present work considers MMCs over finite chain rings (of which finite fields are a special case).

The motivation comes from physical-layer network coding [4]. Indeed, recent results show that the

modulation employed at the physical layer induces a “matched choice” for the ring to be used in the linear

network coding layer [5]. For instance, if uncoded quaternary phase-shift keying (QPSK) is employed,

then the underlying ring should be chosen as R = Z2[i] = {0, 1, i, 1 + i}, which is not a finite field,

but a finite chain ring. More generally, this is also true for wireless networks employing compute-and-

forward [6] over arbitrary nested lattices. In this case, the underlying ring happens to be a principal ideal

domain T (typically the integers, Z, the Gaussian integers, Z[i], or the Eisenstein integers, Z[ω]), with

the corresponding message space W being a finite T -module [5]. As such,

W ∼= T/〈d1〉 × T/〈d2〉 × · · · × T/〈d`〉,

where d1, d2, . . . , d` ∈ T are non-zero non-unit elements satisfying d1 | d2 | · · · | d`. A special situation

commonly found in practice is when the dis are all powers of a given prime of T . In this case, the

underlying ring can be taken as the finite chain ring R = T/〈d`〉, while the message space W can be

seen as a finite R-module.

Finite-field MMCs have been studied under an information-theoretic approach according to different

assumptions on the probability distribution of the transfer matrix [7]–[11]. In this work, following parts

of [9], [10], we consider finite-chain-ring MMCs under a coherent scenario, meaning that we assume

that the instances of the transfer matrix A are unknown to the transmitter (but available to the receiver).

Besides that, we impose no restrictions on the statistics of A, except that A must be independent of X .

Furthermore, we are also interested in codes that guarantee reliable communication with a single use of

the channel, in the same fashion as [12], [13].

As contributions, we obtain a closed-form expression for the channel capacity, and we propose a coding

scheme that combines several codes over a finite field to obtain a code over a finite chain ring. We then

1Throughout this paper, bold symbols are used to represent random entities, while regular symbols are used for their samples.
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show that the scheme can achieve the channel capacity with polynomial time complexity, and that it does

not necessarily require the complete knowledge of the probability distribution of A [only the expected

value of its rank (or, rather, its “shape”—see Section II) is needed]. We also present a necessary and

sufficient condition under which a code can correct shape deficiencies of the transfer matrix, and we

show that the proposed coding scheme can also yield codes with suitable shape-deficiency correction

guarantees. Finally, we adapt the coding scheme to the non-coherent scenario, in which the instances of

the transfer matrices are unknown to both the transmitter and receiver. Our results extend (and make use

of) some of those obtained by Yang et al. in [9], [10] and Silva et al. in [12], [13], which address the

finite field case. It is also worth mentioning that a generalization of the results in [8] from finite fields

to finite chain rings is presented in [14].

The remainder of this paper is organized as follows. Section II reviews basic concepts on finite chain

rings and linear algebra over them. Section III motivates the study of MMCs over finite chain rings, while

Section IV formalizes the channel model. Section V reviews some of the existing results on MMCs over

finite fields, and Section VI contains our contributions about MMCs over finite chain rings. Finally,

Section VII concludes the paper.

II. BACKGROUND ON FINITE CHAIN RINGS

We now present some basic results on finite chain rings and linear algebra over them. For more details,

we refer the reader to [15]–[18]. By the term ring we always mean a commutative ring with identity

1 6= 0.

A. Finite Chain Rings

A ring R is called a chain ring if, for any two ideals I, J of R, either I ⊆ J or J ⊆ I . It is known

that a finite ring R is a chain ring if and only if R is both principal (i.e., all of its ideals are generated

by a single element) and local (i.e., the ring has a unique maximal ideal). Let π ∈ R be any generator

for the maximal ideal of R, and let s be the nilpotency index of π (i.e., the smallest integer s such that

πs = 0). Then, R has precisely s+ 1 ideals, namely,

R = 〈π0〉 ⊃ 〈π1〉 ⊃ · · · ⊃ 〈πs−1〉 ⊃ 〈πs〉 = {0},

where 〈x〉 denotes the ideal generated by x ∈ R. Furthermore, it is also known that the quotient R/〈π〉

is a field, called the residue field of R. If q = |R/〈π〉|, then the size of each ideal of R is |〈πi〉| = qs−i,

for 0 ≤ i ≤ s; in particular, |R| = qs. Note that s = 1 (so that π = 0) if and only if R is a finite field.
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In this paper, if R is a finite chain ring with s non-zero ideals and residue field of order q, then we

say that R is a (q, s) chain ring. For instance, Z8 = {0, 1, . . . , 7}, the ring of integers modulo 8, is a

(2, 3) chain ring. Its ideals are 〈1〉 = Z8, 〈2〉 = {0, 2, 4, 6}, 〈4〉 = {0, 4}, and 〈0〉 = {0}, and its residue

field is Z8/〈2〉 ∼= F2. Note, however, that two (q, s) chain rings need not be isomorphic.

Let R be a (q, s) chain ring. In addition, let π ∈ R be a fixed generator for its maximal ideal, and

let Γ ⊆ R be a fixed set of coset representatives for the residue field R/〈π〉. Without loss of generality,

assume 0 ∈ Γ.2 Then, every element x ∈ R can be written uniquely as

x =

s−1∑
i=0

x(i)πi,

where x(i) ∈ Γ, for 0 ≤ i < s. The above expression is known as the π-adic expansion of x (with respect

to Γ). For example, the 2-adic expansion of 6 ∈ Z8 with respect to Γ = {0, 1} is 6 = 0 ·20+1 ·21+1 ·22,

i.e., the standard binary expansion of 6.

Note that the uniqueness of the π-adic expansion (given Γ) allows us to define the maps (·)(i) : R→ Γ,

for 0 ≤ i < s. We also define

xi =

i−1∑
j=0

x(j)πj ,

for 0 ≤ i ≤ s. One can show that xi ≡πi x for all x ∈ R, where ≡a denotes congruence modulo a (i.e.,

x ≡a y if and only if x− y ∈ 〈a〉). In particular, x(0) = x1 ≡π x.

B. Modules over Finite Chain Rings

An s-shape µ = (µ0, µ1, . . . , µs−1) is simply a non-decreasing sequence of s non-negative integers,

that is, 0 ≤ µ0 ≤ µ1 ≤ · · · ≤ µs−1. For convenience, we may write the s-shape (m,m, . . . ,m) simply

as m. Also, we set µ−1 = 0 whenever it appears on our expressions.

Let λ and µ be two s-shapes. We write λ � µ if λi ≤ µi for 0 ≤ i < s; otherwise, we write λ � µ.

This yields a partial ordering on the set of all s-shapes. Note that, according to our convention, λ � m

means λi ≤ m for 0 ≤ i < s.

We define the addition of s-shapes in a component-wise fashion, that is, µ + λ = (µ0 + λ0, µ1 +

λ1, . . . , µs−1 + λs−1). The subtraction of s-shapes in a component-wise fashion is not always well-

defined (because we can get negative elements, or a sequence which is not non-decreasing). But we define

µ− n = (µ0− n, µ1− n, . . . , µs−1− n), provided n ≤ µ0, and n− µ = (n− µs−1, . . . , n− µ1, n− µ0),

provided n ≥ µs−1, which clearly are well-defined s-shapes. Finally, we set |µ| = µ0 +µ1 + · · ·+µs−1.

2A particularly nice, canonical choice for Γ is Γ(R) = {x ∈ R : xq = x}, known as the Teichmüller coordinate set of R.
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Let µ = (µ0, µ1, . . . , µs−1) be an s-shape. We define

Rµ , 〈1〉 × · · · × 〈1〉︸ ︷︷ ︸
µ0

×〈π〉 × · · · × 〈π〉︸ ︷︷ ︸
µ1−µ0

× · · · × 〈πs−1〉 × · · · × 〈πs−1〉︸ ︷︷ ︸
µs−1−µs−2

.

Clearly, being a Cartesian product of ideals, Rµ is a finite R-module. Conversely, every finite R-module

U is isomorphic to Rµ for some unique s-shape µ [17, Theorem 2.2]. We call µ the shape of U , and

write µ = shapeU . Thus, two finite R-modules are isomorphic precisely when they have the same shape.

Also, from the fact that the size of the ideal 〈πi〉 is given by qs−i, we conclude that

|Rµ| = q|µ|. (2)

Note that, according to our convention that m = (m,m, . . . ,m), the notation Rm stands for the same

object, whether m is interpreted as an integer or as an s-shape. Also, in the finite field case (s = 1),

modules are vector spaces, and we have shapeU = (m), where m is the vector space dimension of U .

C. Matrices over Finite Chain Rings

For any subset S ⊆ R, we denote by Sm×n the set of all m × n matrices with entries in S. The set

of all invertible n × n matrices over R is called the general linear group of degree n over R, and is

denoted by GLn(R).

Let A ∈ Rm×n, and set r = min{n,m}. A diagonal matrix (not necessarily square)

D = diag(d1, d2, . . . , dr) ∈ Rm×n

is called a Smith normal form of A if there exist matrices P ∈ GLm(R) and Q ∈ GLn(R) (not necessarily

unique) such that A = PDQ and d1 | d2 | · · · | dr. It is known that matrices over principal rings (in

particular, finite chain rings) always have a Smith normal form, which is unique up to multiplication of

the diagonal entries by units. In this work, we shall require such entries to be powers of π ∈ R; by doing

so, the Smith normal form becomes (absolutely) unique.

Let rowA and colA denote the row and column span of A ∈ Rm×n, respectively. Clearly, rowA and

colA are both R-modules. Moreover, by using the Smith normal form, we can easily prove that rowA

is isomorphic to colA. We define the shape of A as shapeA = shape(rowA) = shape(colA). We thus

have that µ = shapeA if and only if the Smith normal form of A is given by

diag(1, . . . , 1︸ ︷︷ ︸
µ0

, π, . . . , π︸ ︷︷ ︸
µ1−µ0

, . . . , πs−1, . . . , πs−1︸ ︷︷ ︸
µs−1−µs−2

, 0, . . . , 0︸ ︷︷ ︸
r−µs−1

), (3)
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where r = min{n,m}. For example, consider the matrix

A =

4 3 6

6 7 2


over Z8. Then, A = PDQ, where

P =

1 0

1 1

 , D =

1 0 0

0 2 0

 , Q =


4 3 6

1 2 6

5 6 3

 ,
so that shapeA = (1, 2, 2). We also define the null space of A as usual, that is, nulA = {x ∈ Rn :

Ax = 0}. From the first isomorphism theorem [19, §10.2], colA ∼= Rn/ nulA. Also, [17, Theorem 2.5]

shapeA = n− shape(nulA). (4)

D. Matrices with Row Constraints

Let λ be an s-shape. We denote by Rn×λ the subset of matrices in Rn×` whose rows are elements

of Rλ, where ` = λs−1. From (2), we have |Rn×λ| = qn|λ|. For instance, let R = Z8, n = 2, and

λ = (1, 2, 3), so that ` = 3. Then,

Rn×λ =


x11 2x12 4x13

x21 2x22 4x23

 : xi,j ∈ R

 ⊆ Rn×`.
Note that the matrix A above does not belong to Rn×λ, while D does.

Finally, we extend the π-adic expansion map (·)(i) to matrices over R in an element-wise fashion.

Thus, A ∈ Rn×λ if and only if A(i) =
[
Bi 0

]
∈ Γn×`, for some Bi ∈ Γn×λi , for 0 ≤ i < s.

III. MOTIVATING EXAMPLES

A. MMCs as End-to-End Models for PNC

Figure 1 shows a wireless layered network with L = 3 layers and n = 3 relay nodes per layer. Suppose

that the network employs physical-layer network coding, with the packets from the upper layer being

elements of some R-module W = Rλ, where R is a (q, s) chain ring. Let w1, w2, w3 ∈ Rλ be the packets

transmitted by the source node s, and let w7, w8, w9 ∈ Rλ be the packets received by the sink node t. Let

s1, s2, . . . , s6 be the physical signals (complex vectors coming from a given lattice [5], [6]) transmitted

by the nodes 1, 2, . . . , 6, respectively, and let r4, r5, . . . , r9 be the physical signals received by the nodes

4, 5, . . . , 9, respectively, as shown in the figure. Note that, in this example, for the sake of simplicity,

the nodes 1, 2, and 3 do not receive physical signals from node s, but rather packets w1, w2, w3 coming
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Fig. 1: Wireless layered network with L = 3 layers and n = 3 relay nodes per layer.

directly from the upper layer. Similarly, the nodes 7, 8, and 9 do not transmit physical signals to node

t, but rather packets w7, w8, w9 through the upper layer.

From Layer 0 to Layer 1, the system works as follows. Nodes 1, 2, and 3 start by encoding the

packets w1, w2, w3 ∈ Rλ into the signals s1, s2, s3, respectively. The signals s1, s2, s3 are then transmitted

simultaneously, being subject to independent block fading and superimposed in the physical medium.

Therefore, the signal received by node j, for j = 4, 5, 6, is given by rj = h1js1 + h2js2 + h3js3 +

nj , where h1j , h2j , h3j ∈ C are fading coefficients and nj is a complex-valued noise vector. From

rj and (h1j , h2j , h3j), by employing the principles of PNC, the node j, for j = 4, 5, 6, can infer3 a

linear combination wj ∈ Rλ of the packets w1, w2, w3, that is, wj = b1jw1 + b2jw2 + b3jw3, for some

b1j , b2j , b3j ∈ R.

The system operates similarly from Layer 1 to Layer 2, so that, the node j, for j = 7, 8, 9, can infer

a linear combination wj ∈ Rλ of the packets w4, w5, w6, which is finally delivered to the sink node t.

By R-module linearity, it is not hard to check that the relationship between the transmitted packets X

and the received packets Y , where

X =


w1

w2

w3

 ∈ Rn×λ and Y =


w7

w8

w9

 ∈ Rn×λ,
is given by

Y = AX,

3Note that any additive error introduced at the physical layer may be avoided, at each relay node, by employing a linear

error-detecting code over the underlying ring.
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where

A =


b47 b57 b67

b48 b58 b68

b49 b59 b69



b14 b24 b34

b15 b25 b35

b16 b26 b36

 ∈ Rm×n.
In other words, the end-to-end communication between the source node and the sink node is suitably

modeled by an MMC over a finite chain ring.

B. Communication via MMCs over Finite Chain Rings

Consider now an MMC over the chain ring R = Z8 with packet space given by W = Z8×2Z8 = Rλ,

where λ = (1, 2, 2). Assume that n = m = 3. Suppose that the receiver observes (Y,A) ∈ Rm×λ×Rm×n,

where

Y =


7 2

4 4

6 0

4 0

 , and A =


1 0 0 0

0 2 0 0

0 0 2 0

0 0 0 4

 .

What information can the receiver extract about the channel input X =
[
xij

]
∈ Rn×λ (1 ≤ i ≤ 4,

1 ≤ j ≤ 2)? From the equation AX = Y we may conclude that

x11 = 7

2x21 = 4

2x31 = 6

4x41 = 4

=⇒



x11 = 1 · 4 + 1 · 2 + 1 · 1

x21 = ? · 4 + 1 · 2 + 0 · 1

x31 = ? · 4 + 1 · 2 + 1 · 1

x41 = ? · 4 + ? · 2 + 1 · 1

and 

x12 = 2

2x22 = 4

2x32 = 0

4x42 = 0

=⇒



x12 = 0 · 4 + 1 · 2 + 0 · 1

x22 = ? · 4 + 1 · 2 + 0 · 1

x32 = ? · 4 + 0 · 2 + 0 · 1

x42 = ? · 4 + ? · 2 + 0 · 1

where “?” denotes unknown entries, the squared entries indicates information that the receiver can extract

about X , and the non-squared entries (forced to 0) are due to the packet space constraints. Note that the

unknown entries are due to ρ = shapeA = (1, 3, 4), while the entries forced to 0 are due to λ = (1, 2, 2)

(see §II-D).
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Therefore, in the (non realistic) situation in which both the transmitter and the receiver know the

transfer matrix, it is clear that 4 + 6 + 2 = 12 bits of information can be sent through the channel. (In

general, it is not hard to check that ρ2λ0 + ρ1λ1 + ρ0λ2 bits can be transmitted.) For such, the squared

bits or X should be set to information bits, while the remaining bits cannot carry information.

This idea can be generalized if A is not diagonal, but an arbitrary matrix of shape ρ. In this case, we

compute invertible matrices P and Q such that A = PDQ, where D is the Smith normal form of A, as

given by (3). We then set Ỹ , P−1Y and X̃ , QX , so that we can communicate using the equivalent

channel Ỹ = DX̃ by employing the same scheme as before.

In this paper, we consider the problem of transmission of information through finite-chain-ring MMCs

in the more realistic situation where the transfer matrix is unknown to the transmitter but known to the

receiver (i.e., the coherent scenario) and chosen randomly according to some given probability distribution.

It is shown that we can transmit the same amount of information as if the transmitter knew the transfer

matrix, that is, at a rate given by E[ρ2]λ0 + E[ρ1]λ1 + E[ρ0]λ2, where ρ = (ρ0,ρ1,ρ2) is the random

variable representing the shape of the random transfer matrix, and E[·] denotes expected value. To do so,

however, a non-trivial coding scheme (potentially using the channel multiple times and allowing a non-

zero but vanishing probability of error) is needed. We also address the problem of reliable communication

with a single use of the channel. In this case, we show that, as long as λ0 ≥ n and the shape deficiency

of the transfer matrix is at most a given value, say β, we can have a one-shot zero-error coding scheme

of rate given by (n− β0)λ0 + (n− β1)λ1 + (n− β2)λ2, which is the best rate one could achieve with

zero error.

IV. CHANNEL MODEL

We next formalize the channel model. Let R be a (q, s) chain ring, let n and m be positive integers,

and let λ be an s-shape. Also, let pA be a probability distribution over Rm×n. From these, we can

define the coherent MMC over R as a discrete memoryless channel (see, e.g., [20]) with input alphabet

X = Rn×λ, output alphabet Y = Rm×λ ×Rm×n, and channel transition probability

pY ,A|X(Y,A|X) =

pA(A), if Y = AX,

0, otherwise.

In this work, we shall denote the channel just defined by CMMC(n,m, λ, pA), with the dependence on

R being implicit. We also make use of the random variable ρ = shapeA, distributed according to

pρ(ρ) =
∑

A: shapeA=ρ

pA(A),

August 9, 2021 DRAFT
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Finally, we set ` = λs−1 (interpreted as the packet length).

A matrix (block) code of length N is defined by a pair (C,Φ), where C ⊆ (Rn×λ)N is called the

codebook, and Φ : (Rm×λ × Rm×n)N → C is called the decoding function. We sometimes abuse the

notation and write C instead of (C,Φ). The rate of the code C is defined by R(C) = (log |C|)/N , and

its probability of error in the channel, denoted by Pe(C), is defined as usual [20]. When N = 1, we say

that C is a one-shot code; otherwise, we say that C is a multi-shot code.

The capacity of the channel is given by

C = max
pX

I(X;Y ,A),

where I(X;Y ,A) is the mutual information between the input X and the output (Y ,A), and the

maximization is over all possible input distributions pX .

From now on, all logarithms are to the base q, so that rates and capacities will always be expressed

in q-ary digits (per channel use).

V. REVIEW OF THE MMC OVER A FINITE FIELD

In this section, we briefly review some of the existing results about the coherent MMC over a finite

field (i.e., R = Fq). Note that, in this case, s = 1, λ = `, and ρ = rankA , r.

A. Finite-Field Coherent MMC

The following result is due to Yang et al. [9], [10].

Theorem 1. [9, Prop. 1] The capacity of CMMC(n,m, `, pA) is given by

C = E[r]`,

and is achieved if the input is uniformly distributed over Fn×`q . In particular, the capacity depends on

pA only through E[r].

Also in [9], [10], two multi-shot coding schemes for MMCs over finite fields are proposed, which are

able to achieve the channel capacity given in Theorem 1. The first scheme makes use of rank-distance

codes (more on these later) and requires ` ≥ n in order to be capacity-achieving; the second scheme is

based on random coding and imposes no restriction on `. Both schemes have polynomial time complexity.

Also important, both coding schemes are “universal” in the sense that only the value of E[r] is taken

into account in the code construction (the full knowledge of pA, or even pr, is not required).
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B. Rank Deficiency Correction Guarantees

We say that a one-shot matrix code C ⊆ Fn×`q is b-rank-deficiency-correcting if it is possible to uniquely

recover X from (Y,A), where Y = AX , as long as X ∈ C and rankA ≥ n − b. In other words, C

is b-rank-deficiency-correcting if and only if, for every two distinct codewords X1, X2 ∈ C, there is no

matrix A ∈ Fm×nq such that rankA ≥ n− b and AX1 = AX2.

Recall that the rank distance between two matrices X1, X2 ∈ Fn×`q is defined as dR(X1, X2) =

rank(X2 − X1). For a code C ⊆ Fn×`q , define dR(C) = min{dR(X1, X2) : X1, X2 ∈ C, X1 6= X2},

called the minimum distance of the code. The rank distance provides a necessary and sufficient condition

under which a code is b-rank-deficiency-correcting. The following result is a special case of a result due

to Silva et al. [12], [13].

Theorem 2. [13, Thm. 2] A code C ⊆ Fn×`q is b-rank-deficiency-correcting if and only if dR(C) > b.

Rank-distance codes were studied by Gabidulin [21], which shows that any linear rank-distance code

C ⊆ Fn×`q of dimension k has rate given by

R(C) = k`

and minimum distance satisfying

dR(C) ≤ n− k + 1.

Codes achieving equality in the above are said to be maximum rank distance (MRD) codes. A class of

such codes for every n, `, k, and q such that ` ≥ n was presented by Gabidulin. Theorem 2 implies that

any linear MRD code of dimension k is (n− k)-rank-deficiency-correcting.

Finally, note that if a code C ⊆ Fn×`q is (n−r)-rank-deficiency-correcting for every r in the support of

r = rankA, then C has Pe(C) = 0 in CMMC(n,m, `, pA). In particular, if r is a constant, a zero-error

capacity-achieving coding scheme can be obtained by employing a linear MRD code of dimension k = r.

VI. THE MMC OVER A FINITE CHAIN RING

This section contains the contributions of the paper, where we consider again the case of a general

(q, s) chain ring R.

A. Channel Capacity

We start by computing the channel capacity. The following result generalizes Theorem 1.
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Fig. 2: (a) Shape distribution for n = 3 and s = 2. (b) Channel capacity (normalized by n|λ|) as a function of n, for s = 2

and λ = (λ0, 2λ0). (c) Channel capacity (normalized by n|λ|) as a function of s, for n = 3 and λ = `.

Theorem 3. The capacity of CMMC(n,m, λ, pA) is given by

C =

s−1∑
i=0

E[ρs−i−1]λi,

and is achieved if the input is uniformly distributed over Rn×λ. In particular, the capacity depends on

pA only through E[ρ].

The following example illustrates the theorem.

Example: Let R = Z2s , which is a (2, s) chain ring. In addition, suppose that the transfer matrix A ∈

Rm×n has i.i.d. entries uniform over R, which is equivalent to say that A is uniformly distributed

over Rm×n (this is analogous to the transfer matrix distribution considered in [7]). Therefore, the shape

distribution of the transfer matrix can be expressed as

pρ(ρ) =
|Tρ(Rm×n)|
|Rm×n|

,
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where Tρ(Rm×n) denotes the set of matrices in Rm×n whose shape is ρ (its cardinality can be found

in [14, Thm. 3]). Suppose, for simplicity that n = m. Figure 2a shows the probability distribution of ρ

when n = 3 and s = 2. Figure 2b shows the channel capacity, normalized by n|λ|, as a function of n,

for s = 2 and packet space W = Rλ, where λ = (λ0, 2λ0). Figure 2c shows the normalized channel

capacity as a function of s, for n = 3 and packet space W = R`.

In order to prove Theorem 3, we need the following lemma.

Lemma 4. Let X ∈ Rn×λ be a random matrix, let A ∈ Rm×n be any fixed matrix, and let ρ = shapeA.

Define Y = AX ∈ Rm×λ. Then,

H(Y ) ≤
s−1∑
i=0

ρs−i−1λi,

where equality holds if X is uniformly distributed over Rn×λ.

Proof: Note that X and Y can be expressed as

X =
[
X0 X1 · · · Xs−1

]
,

Y =
[
Y0 Y1 · · · Ys−1

]
,

where Xi ∈ 〈πi〉n×(λi−λi−1) and Yi ∈ 〈πi〉m×(λi−λi−1), for 0 ≤ i < s. We have

Yi = AXi,

so that the support of each of the columns of Yi is a subset of colπiA. We have shapeπiA =

(0, . . . , 0, ρ0, . . . , ρs−i−1), so that, from (2), we have | colπiA| = qρ0+···+ρs−i−1 . Therefore, the support

of Y has size at most
s−1∏
i=0

| colπiA|λi−λi−1 =

s−1∏
i=0

q(ρ0+···+ρs−i−1)(λi−λi−1)

= q
∑s−1

i=0 ρs−i−1λi ,

from which the inequality follows.

Now suppose X is uniformly distributed over Rn×λ. This means that Xi is uniformly distributed over

〈πi〉n×(λi−λi−1). One may show that there exists X ′i uniformly distributed over Rn×(λi−λi−1) such that

Xi = πiX ′i. Let y denote a column of Yi, whose support is colπiA. Since Yi = AXi = πiAX ′i, we
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have, for every y ∈ colπiA,

Pr[y = y] =
|{x′ ∈ Rn : πiAx′ = y}|

|Rn|

=
|nulπiA|
|Rn|

=
1

| colπiA|
,

that is, y is uniformly distributed over its support. Therefore, Y itself is also uniformly distributed over

its support. This concludes the proof.

We can now prove Theorem 3.

Proof of Theorem 3: The channel mutual information is given by

I(X;Y ,A) = I(X;Y |A) + I(X;A)

= H(Y |A)−H(Y |X,A) + I(X;A)

= H(Y |A),

where H(Y |X,A) = 0 since Y = AX , and I(X;A) = 0 since X and A are independent. Thus,

I(X;Y ,A) = H(Y |A) =
∑
A

pA(A)H(Y |A = A),

and the result follows from Lemma 4.

B. Coding Scheme

Here we describe the proposed coding scheme. Before doing so, we present two simple lemmas

regarding the solution of systems of linear equations over a finite chain ring, via the π-adic expansion.

These results will serve as a basis for the coding scheme. From now on, let F = R/〈π〉 ∼= Fq.

1) Auxiliary Results: The first problem turns a system of linear equations over the chain ring into

multiple systems over the residue field.

Lemma 5. Let y ∈ Rn and A ∈ GLn(R). Let x ∈ Rn be the (unique) solution of Ax = y. Then, the

π-adic expansion of x can be obtained recursively from

A(0)x(i) ≡π y(i) −
(
Axi

)(i)
,

for 0 ≤ i < s.
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Proof: For 0 ≤ i < s, we have

y = Ax = A

i−1∑
j=0

x(j)πj +Ax(i)πi +A

s−1∑
j=i+1

x(j)πj ,

so that, from Lemma 10,

y(i) ≡π
(
Axi

)(i)
+
(
Ax(i)

)(0)
.

After simplifying and rearranging we get the equation displayed on the lemma. Since A(0) ∈ GLn(F ),

we can compute, recursively, x(0), x(1), . . . , x(s−1).

The second problem deals with the solution of diagonal systems of linear equations. Let Mj:j′ denote

the sub-matrix of M consisting of rows j up to, but not including, j′, where we index the matrix entries

starting from 0.

Lemma 6. Let Y ∈ Rm×λ and D ∈ Rm×n, where D is the Smith normal form of itself and has shape

ρ. If Y = DX , then

X
(i)
0:ρs−i−1

=


Y

(i)
0:ρ0

Y
(i+1)
ρ0:ρ1

...

Y
(i+s−1)
ρs−i−2:ρs−i−1

 ,

for 0 ≤ i < s.

Proof: Note that Y = DX is equivalent to

Y0:ρ0 = X0:ρ0 ,

Yρ0:ρ1 = πXρ0:ρ1 ,

...

Yρs−2:ρs−1
= πs−1Xρs−2:ρs−1

.

From Lemma 10, this implies

X
(i)
0:ρ0

= Y
(i)
0:ρ0

, 0 ≤ i < s,

X(i)
ρ0:ρ1 = Y (i+1)

ρ0:ρ1 , 0 ≤ i < s− 1,

...
...

X(i)
ρs−2:ρs−1

= Y (i+s−1)
ρs−2:ρs−1

, 0 ≤ i < 1,
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from which the result follows.

We are finally ready to present the coding scheme, which is based on the ideas of the two previous

lemmas. For simplicity of exposition, we first address the particular case of one-shot codes. The general

case will be discussed afterwards.

2) Codebook: We start with the codebook construction. Let C0, C1, . . . , Cs−1, where Ci ⊆ Fn×λi , for

0 ≤ i < s, be a sequence of one-shot matrix codes over the residue field F . We will combine these

component codes to obtain a matrix code C ⊆ Rn×λ over the chain ring R. We refer to C0, C1, . . . , Cs−1
to as the component codes, and to C as the composite code.

Denote by ϕ : R → F the natural projection map from R onto F . Also, denote by ϕ̄ : F → Γ the

coset representative selector map, with the property that ϕ(ϕ̄(x)) = x for all x ∈ F . The codebook

C ⊆ Rn×λ is defined by

C =

{
s−1∑
i=0

X(i)πi : Xi ∈ Ci, 0 ≤ i < s

}
,

where

X(i) =
[
ϕ̄(Xi) 0

]
∈ Γn×`. (5)

It should be clear that the codewords in C indeed satisfy the row constraints of Rn×λ (see §II-D). In

addition, from the uniqueness of the π-adic expansion,

R(C) = R(C0) + R(C1) + · · ·+ R(Cs−1). (6)

3) Decoding: We now describe the decoding procedure. Intuitively, the decoder decomposes a single

MMC over the chain ring into multiple MMCs over the residue field. In the following, Mj×k denotes

the upper-left j × k sub-matrix of M .

Step 1. The decoder, which knows the transfer matrix A, starts by computing its Smith normal form D ∈

Rm×n. It also computes P ∈ GLm(R) and Q ∈ GLn(R) such that A = PDQ.

Step 2. Let ρ = shapeA = shapeD. Define X̃ , QX ∈ Rn×λ (which is unknown to the receiver)

and Ỹ , P−1Y ∈ Rm×λ (which is calculated at the receiver), so that Y = AX is equivalent to

Ỹ = DX̃.

From this equation, the decoder can obtain partial information about X̃ . More precisely, it can compute

X̃
(i)
ρs−i−1×λi

, for 0 ≤ i < s, according to Lemma 6.
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Step 3. In possession of X̃(i)
ρs−i−1×λi

, for 0 ≤ i < s, the decoder will then try to decode X based on

the equation

X̃ = QX,

in a multistage fashion. Indeed, similarly to Lemma 5, we have, for 0 ≤ i < s,

X̃(i) −
(
QXi

)(i) ≡π Q(0)X(i).

Considering only the ρs−i−1 topmost rows (since the remaining rows are unknown), and keeping only

the λi leftmost columns (since the remaining columns are already known to be zero), we get

X̃
(i)
ρs−i−1×λi

−
(
Qρs−i−1×nX

i
n×λi

)(i) ≡π Q(0)
ρs−i−1×nX

(i)
n×λi

.

Finally, projecting into F (that is, applying ϕ to both sides), and appending enough zero rows (in order

to obtain an m× n system) gives

Yi = AiXi, (7)

where Yi ∈ Fm×λi and Ai ∈ Fm×n are defined by

Yi =

ϕ(X̃(i)
ρs−i−1×λi

)
− ϕ

((
Qρs−i−1×nX

i
n×λi

)(i))
0

 , (8)

and

Ai =

ϕ(Qρs−i−1×n
)

0

 . (9)

Note that Yi can only be calculated after X0, X1, . . . , Xi−1 are known. Therefore, in this step the decoder

obtains, successively, estimates of X0, X1, . . . , Xs−1 from (7). Finally, it computes an estimate of X

according to (5) and the π-adic expansion.

4) Extension to the Multi-Shot Case: We finally consider the multi-shot case. Let C0, C1, . . . , Cs−1 be

a sequence of N -shot matrix codes (the component codes), where Ci ⊆ (Fn×λi)N , for 0 ≤ i < s. The

codewords of the composite code C are then given by (X(1), X(2), . . . , X(N)) ∈ (Rn×λ)N , where X(j)

is obtained from the j-th coordinates of the codewords of the component codes, similarly to the one-shot

case.

Proceeding similarly to Steps 1 and 2 above, the decoder obtains X̃(i)
ρs−i−1×λi

(j), for 0 ≤ i < s

and j = 1, . . . , N , and Q(j), for j = 1, . . . , N . Step 3 is also similar, with the important detail

that the whole sequence (Xi(1), Xi(2), . . . , Xi(N)) ∈ Ci is decoded from (Yi(1), Yi(2), . . . , Yi(N)) and

(Ai(1), Ai(2), . . . , Ai(N)) by using the decoder of Ci, before proceeding to stage i+ 1.
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5) Computational Complexity: The computational complexity of the scheme is simply the sum of the

individual computational complexities of each component code, plus the cost of calculating the Smith

normal form of A (which can be done with O(nmmin{n,m}) operations in R), the cost of calculating Ỹ

(taking O(m2(m+`)) operations), and the cost of s−1 matrix multiplications and additions in (8) (taking

O(n2`) operations each). As a consequence, if each component code has polynomial time complexity,

then the composite code will also have polynomial time complexity.

C. Achieving the Channel Capacity

From the proposed coding scheme, it is now clear that the i-th component code Ci should be aimed

at CMMC(n,m, λi, pAi
), where Ai ∈ Fm×n is defined in (9). In principle, we could compute the

probability distribution of Ai, provided we have access to the probability distribution of A. Nevertheless,

if we employ a universal coding scheme (see Section V), then the particular probability distribution

of Ai becomes unimportant once we know the expected value of its rank. From (9), we have rankAi =

ρs−i−1, so that, in this case, only the knowledge of E[ρ] is needed. Thus, the proposed coding scheme

is “universal”, provided the component codes are also universal. We next show that the scheme is able

to achieve the channel capacity.

Proposition 7. Let Ci ⊆ Fn×λi be a capacity-achieving code in CMMC(n,m, λi, pAi
), for 0 ≤ i < s,

where Ai ∈ Fm×n is defined in (9). Let C ⊆ Rn×λ be the composite code obtained from C0, C1, . . . , Cs−1.

Then, C is a capacity-achieving code in CMMC(n,m, λ, pA).

Proof: Since each Ci is capacity-achieving in CMMC(n,m, λi, pAi
), and since rankAi = ρs−i−1

[see (9)], we have R(Ci) arbitrarily close to E[ρs−i−1]λi. Thus, from (6), we have R(C) arbitrarily close

to
∑

i E[ρs−i−1]λi, which is the channel capacity. Now, from the union bound, the probability of error

of C in CMMC(n,m, λ, pA) is upper-bounded by

Pe(C) ≤ Pe(C0) + Pe(C1) + · · ·+ Pe(Cs−1),

where Pe(Ci) is the probability of error of Ci in CMMC(n,m, λi, pAi
). Since each Ci is capacity-

achieving, we have Pe(Ci) arbitrarily close to zero. Therefore, Pe(C) is also arbitrarily close to zero.

Recall that the two coding schemes proposed in [9] (see Section V) are universal and have polynomial

time complexity. Consequently, by using them as component codes, we can obtain a universal, capacity-

achieving composite code with polynomial time complexity.
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D. One-Shot Reliable Communication

Our last result is concerned with codes that guarantee reliable communication with a single use of the

MMC, supposing that the “(row) shape deficiency” of the transfer matrix is bounded by a given value. In

this paper, a one-shot matrix code C ⊆ Rn×λ is said to be β-shape-deficiency-correcting if it is possible

to uniquely recover X from (Y,A), where Y = AX , as long as X ∈ C and shapeA � n− β. In other

words, C is b-rank-deficiency-correcting if and only if, for every two distinct codewords X1, X2 ∈ C,

there is no matrix A ∈ Rm×n such that shapeA � n − β and AX1 = AX2. The following result

generalizes Theorem 2.

Theorem 8. A code C ⊆ Rn×λ is β-shape-deficiency-correcting if and only if there are no distinct

X1, X2 ∈ C such that shape(X2 −X1) � β.

Proof: Assume first that C ⊆ Rn×λ is β-shape-deficiency-correcting. Suppose, for the sake of

contradiction, that there exist distinct X1, X2 ∈ C such that shape(X2 − X1) � β. Let A ∈ Rm×n be

any matrix such that rowA = nul(X2 −X1)
T. Then, A(X2 −X1) = 0 so that AX1 = AX2. Also,

shapeA = shape nul(X2 −X1)
T = n− shape(X2 −X1) � n− β,

where we made use of (4). This is a contradiction.

Assume now that there are no distinct X1, X2 ∈ C such that shape(X2−X1) � β. Suppose, for the sake

of contradiction, that C ⊆ Rn×λ is β-shape-deficiency-correcting. Then, there exist distinct X1, X2 ∈ C

and a matrix A ∈ Rm×n such that AX1 = AX2 and shapeA � n − β. We have A(X2 −X1) = 0, so

that col(X2 −X1) must be a submodule of nulA. Thus,

shape(X2 −X1) � shape(nulA) = n− shapeA � β,

where we again made use of (4). This is a contradiction.

We next show that the coding scheme proposed by this work can also provide shape deficiency correc-

tion guarantees. For such, the component codes are chosen to be MRD codes with suitable dimensions.

Proposition 9. Suppose λ0 ≥ n. Let Ci ⊆ Fn×λi be a linear MRD code of dimension n−βi, for 0 ≤ i < s.

Let C ⊆ Rn×λ be the composite code obtained from C0, C1, . . . , Cs−1. Then, R(C) =
∑

i(n− βi)λi, and

C is β-shape-deficiency-correcting.

Proof: We have R(Ci) = (n − βi)λi, so that the expression for R(C) follows from (6). We now

show that C is β-shape-deficiency-correcting. Suppose not. Then, according to Theorem 8, there exists
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two distinct codewords X1, X2 such that δ = shape(X2 − X1) � β. On the other hand, we have

X1 =
∑s−1

j=0 ϕ̄(X1,j)π
j , for some X1,j ∈ Cj , and likewise X2 =

∑s−1
j=0 ϕ̄(X2,j)π

j , for some X2,j ∈ Cj .

Let i such that 0 ≤ i < s be the smallest integer satisfying X1,i 6= X2,i. We then have

X2 −X1 =

s−1∑
j=0

ϕ̄(X2,j −X1,j)π
j =

s−1∑
j=i

ϕ̄(X2,j −X1,j)π
j = πi

s−i−1∑
j=0

ϕ̄(X2,j+i −X1,j+i)π
j .

From Lemma 11 of Appendix A, and from the fact that the 0-th entry of shapeA is rankϕ(A), we

conclude that

δi = rank(X2,i −X1,i) = dR(X1,i, X2,i) ≥ dR(Ci) = βi + 1 > βi,

where we also used the fact that Ci is MRD. This contradicts the fact that δ = shape(X2−X1) � β, so

that C must be β-shape-deficiency-correcting.

Similarly to the finite-field case, if C ⊆ Rn×λ is (n−ρ)-shape-deficiency-correcting for every ρ in the

support of ρ = shapeA, then C is a zero-error coding scheme for CMMC(n,m, λ, pA). In particular,

if the channel is such that ρ = ρ is a constant, the above construction yields a one-shot zero-error

capacity-achieving code whose encoding and decoding procedures have polynomial time complexity.

E. Extension to the Non-Coherent Scenario

So far, we have only considered the coherent scenario, in which the instances of the transfer matrix

are available to the receiver. Nevertheless, we can reuse the coding scheme proposed in this work even

in a non-coherent scenario, by means of channel sounding (also known as channel training). In this

technique, the instances of A are provided to the receiver by introducing headers in the transmitted

matrix X ∈ Rn×λ, that is, by setting X =
[
I X ′

]
, where I ∈ Rn×n is the identity matrix, and

X ′ ∈ Rn×(λ−n) is a payload matrix coming from a matrix code. For this to work, we clearly need

λ0 ≥ n. Note that channel sounding introduces an overhead of n2 symbols. Nevertheless, the overhead

can be made negligible if we are allowed to arbitrarily increase the packet length, that is, the proposed

scheme can be capacity-achieving in this asymptotic scenario.

VII. CONCLUSION

In this work, we investigated coherent multiplicative matrix channels over finite chain rings, which

have practical applications in physical-layer network coding. As contributions, we computed the channel

capacity, and we determined a necessary and sufficient condition under which a one-shot code can provide

shape deficiency correction guarantees. These results naturally generalizes the corresponding ones for
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finite fields. Furthermore, a coding scheme was proposed, combining several component codes over the

residue field to obtain a new composite code over the chain ring. It was shown that if the component

codes are suitably chosen, then the composite code is able to achieve the channel capacity and provide

shape correction guarantees, both with polynomial time complexity.

Several points are still open. The capacity of the non-coherent MMC, a problem addressed in [9], [11]

for the case of finite fields, still needs to be generalized for the case of finite chain rings. Also, designing

capacity-achieving coding schemes for the non-coherent MMC with small λ is still an open problem,

even in the finite-field case.

APPENDIX A

AUXILIARY RESULTS

In this appendix, we mention a few basic results that help us compute with π-adic expansions.

Lemma 10. Let x, y, z ∈ R. Then, for every i, 0 ≤ i < s, we have

1)
(
xπi
)(i+j)

= x(j), for 0 ≤ j < s− i; and

2) (x+ yπi + zπi+1)(i) ≡π x(i) + y(0).

Proof: The first claim follows from the uniqueness of the π-adic expansion. For the second claim,

we have

(x+ πiy + πi+1z)(i) =

s−1∑
j=0

πjx(j) + πi
s−1∑
j=0

πjy(j) + πi+1
s−1∑
j=0

πjz(j)

(i)

(a)
=

 i∑
j=0

πjx(j) + πiy(0)

(i)

=

 i−1∑
j=0

πjx(j) + πi(x(i) + y(0))

(i)

(b)
=
(
πi(x(i) + y(0))

)(i)
(c)
=
(
x(i) + y(0)

)(0)
≡π x(i) + y(0),

where (a) follows because factors of πi+1 do not contribute to the value of the i-th term of the π-adic

expansion, (b) is true from the uniqueness of the π-adic expansion, and (c) follows from the first claim

with j = 0.
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Lemma 11. Let A ∈ Rm×n, and let ρ = shapeA. Then,

shapeπiA = (0, . . . , 0︸ ︷︷ ︸
i

, ρ0, ρ1, . . . , ρs−i−1).

Proof: Let P ∈ GLm(R), Q ∈ GLn(R), and D ∈ Rm×n such that A = PDQ and D is the Smith

normal form of A. Recall that shapeD = shapeA = ρ. Then,

shapeπiA = shapeπiPDQ = shapePπiDQ = shapeπiD = (0, . . . , 0︸ ︷︷ ︸
i

, ρ0, ρ1, . . . , ρs−i−1),

completing the proof.
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[14] C. Feng, R. W. Nóbrega, F. R. Kschischang, and D. Silva, “Communication over finite-chain-ring matrix channels,” Apr.

2013. Submitted to the IEEE Transactions on Information Theory. Available at http://arxiv.org/abs/1304.2523.

[15] B. R. McDonald, Finite Rings with Identity, vol. 28 of Monographs and Textbooks in Pure and Applied Mathematics.

Marcel Dekker, Inc., 1974.

[16] A. A. Nechaev, “Finite rings with applications,” in Handbook of Algebra (M. Hazewinkel, ed.), vol. 5, pp. 213–320,

North-Holland, 2008.

[17] T. Honold and I. Landjev, “Linear codes over finite chain rings,” The Electronic Journal of Combinatorics, vol. 7, 2000.

[18] W. C. Brown, Matrices over Commutative Rings, vol. 169 of Monographs and Textbooks in Pure and Applied Mathematics.

Marcel Dekker, Inc., 1992.

[19] D. S. Dummit and R. M. Foote, Abstract Algebra. John Wiley and Sons, 3rd ed., 2004.

[20] T. M. Cover and J. A. Thomas, Elements of Information Theory. Wiley-Interscience, 2nd ed., 2006.

[21] E. M. Gabidulin, “Theory of codes with maximum rank distance,” Problemy Peredachi Informatsii, vol. 21, no. 1, pp. 3–16,

1985.

August 9, 2021 DRAFT

http://arxiv.org/abs/1304.2523

	I Introduction
	II Background on Finite Chain Rings
	II-A Finite Chain Rings
	II-B Modules over Finite Chain Rings
	II-C Matrices over Finite Chain Rings
	II-D Matrices with Row Constraints

	III Motivating Examples
	III-A MMCs as End-to-End Models for PNC
	III-B Communication via MMCs over Finite Chain Rings

	IV Channel Model
	V Review of the MMC over a Finite Field
	V-A Finite-Field Coherent MMC
	V-B Rank Deficiency Correction Guarantees

	VI The MMC over a Finite Chain Ring
	VI-A Channel Capacity
	VI-B Coding Scheme
	VI-B1 Auxiliary Results
	VI-B2 Codebook
	VI-B3 Decoding
	VI-B4 Extension to the Multi-Shot Case
	VI-B5 Computational Complexity

	VI-C Achieving the Channel Capacity
	VI-D One-Shot Reliable Communication
	VI-E Extension to the Non-Coherent Scenario

	VII Conclusion
	Appendix A: Auxiliary Results
	References

