
Live Demonstration of Service Function Chaining
allocation in Fog Computing

José Santos∗, Tim Wauters∗, Bruno Volckaert∗ and Filip De Turck∗
∗ Ghent University - imec, IDLab, Department of Information Technology

Technologiepark-Zwijnaarde 126, 9052 Gent, Belgium
Email: josepedro.pereiradossantos@UGent.be

Abstract— In recent years, cloud computing is evolving to-
wards a distributed paradigm called Fog Computing, aiming to
provide a distributed infrastructure by placing computational
resources close to end-users. To fully leverage on Fog Com-
puting, proper resource allocation is needed to cope with the
demanding constraints introduced by IoT (e.g. low latency, high
mobility). One of the main challenges that remain is Service
Function Chaining (SFC). Services must be connected in a
specific order forming an SFC allowing providers to benefit
from the high flexibility and low operational costs introduced
by network softwarization. In the demonstration, an SFC con-
troller able to optimize the placement of service chains in Fog-
cloud environments will be presented. The SFC controller has
been implemented on the Kubernetes platform, an open-source
orchestrator for the automatic deployment of micro-services. Our
approach allows Kubernetes to deploy micro-services based on
up-to-date information on the current status of the network
infrastructure. The demonstration will show how application
developers could use our approach to set up service chains for
their services. Then, performance outcomes of our SFC controller
will be shown, especially in terms of container deployment times.

Index Terms—Resource Provisioning, Fog Computing, Service
Function Chaining, IoT, Kubernetes

I. INTRODUCTION

Smart Cities [1] powered by the Internet of Things (IoT)
have become quite popular in the past decade. Cloud com-
puting is also evolving towards a distributed paradigm called
Fog Computing [2], aiming to provide resources at the edges
of the network to solve the demanding constraints introduced
by IoT (e.g. low latency, high mobility). However, several
challenges remain to fully benefit from Fog Computing tech-
nologies. One important challenge is called Service Function
Chaining (SFC) [3], [4]. Services must be connected in a
specific order forming an SFC that each user has to traverse
to achieve a particular Network Service (NS). SFC allows
cloud providers to dynamically reconfigure softwarized NSs
without having to implement changes at the hardware level.
Thus, providing a flexible and cost-effective alternative to
today’s static network environment. Furthermore, containers
are currently revolutionizing the way developers build their
software applications [5]. An application is decomposed in
a set of small micro-services, which can be deployed across
a large number of servers instead of the single monolithic
application. In fact, containers are a tremendous alternative
to the traditional Virtual Machines (VMs), due to their low
overhead, high efficiency and increased portability.

In this paper, we present an SFC controller 1 to optimize
the allocation of container-based service chains in Fog-cloud
environments. The proposed approach has been accepted for
publication in [6], where further details about SFC allocation
in Fog-cloud environments are discussed. The current paper
focuses on the testbed implementation and how developers
could use our SFC controller in their experiments. In the
live demonstration, we will set up a Kubernetes cluster with
multiple Raspberry Pis. Then, we will explain how our SFC
controller can be deployed in the Kubernetes platform and how
to write configuration files to deploy container-based service
chains based on our approach. Finally, we will analyze the
chosen allocation schemes for each of the individual containers
in the service chain and see the performance outcomes of our
SFC controller in terms of container deployment times, ex-
pected service latency and load balancing. The proposed demo
shows how SFC can be applied in a Fog-cloud environment
while optimizing the resource allocation scheme in terms of
low latency and bandwidth conservation.

II. THE SFC CONTROLLER - DESIGN AND
IMPLEMENTATION OVERVIEW

The SFC controller has been implemented as an extension
to the Kubernetes platform. To fully understand our approach,
two concepts coming from Kubernetes are essential, Pods and
Services [7]. On one hand, a pod represents the collection of
containers and storage (volumes) running in the same execu-
tion environment, meaning that micro-services in Kubernetes
are often coupled together forming a group of containers. On
the other hand, a Service is an abstract way to define a logical
set of Pods and expose the applications running on them [8].
By using these two abstractions, there is no need to use a
service discovery mechanism since pods have their own IP
address, which makes load-balancing a straightforward process
across them. The rationale behind these abstractions comes
from the pods’ volatility as they may be terminated, meaning
that pods running at a certain moment may be different than
the ones which are providing the service a few days later. Thus,
users must not need to be aware that pods have been terminated
and new ones have been deployed. An example of how
container-based service chains can be deployed in Kubernetes
based on these two abstractions is shown in Fig. 1. The

1https://github.com/jpedro1992/sfc-controller



component that makes decisions in terms of pod allocations
in Kubernetes is called Kube–Scheduler (KS). The KS is the
default scheduling feature in the Kubernetes platform, which
is responsible for deciding on which nodes pods should be
allocated. Our SFC controller has been implemented as a
“scheduler extender” process that the KS calls out as a final
step when a scheduling decision is needed. The scheduling
decision process in Kubernetes by applying our SFC controller
is shown in Fig. 2. Essentially, every pod requiring allocation
is added to a waiting queue, which is continuously monitored
by the KS. If a pod is added to the waiting queue, the KS
searches for an adequate node for the placement. Firstly, KS
executes the node filtering operation, where KS verifies which
nodes are capable of running the pod by applying a set of
filters. Inadequate nodes are already removed from the list
of candidate nodes by applying these filters. Then, KS calls
out the SFC controller to make the final decision on which
cluster node the service must be provisioned based on the
remaining set of nodes. The SFC controller gathers allocation
information through labels defined on the pod configuration
file. These labels are listed in Table I. In Fig. 3, an example
of a pod configuration file with SFC information is shown. The
SFC controller makes use of these labels to choose the best
candidate node from the filtered ones to the desired scheduling
policy. The provisioning algorithm is then selected based on
the Policy label. Two policies are currently supported: Latency-
aware and Location-aware. On one hand, if Latency-aware
is preferred, the SFC controller selects the best candidate
node based on the calculation of Dijkstra’s shortest path
algorithm. Provisioning records are kept of the previously
allocated pods based on the Network Service Header label.
If any of those corresponds to the same NS, the shortest
paths will be calculated for each of the possible nodes. Thus,
the node with the lowest combined shortest paths will be
selected. On the other hand, if the Location-aware policy is
chosen, the node selection is based on minimizing latency
depending on the Target Location label, since certain pods
may be preferred to be deployed on a certain Fog location or
even in the Cloud, as they require a high amount of resources.
Regarding bandwidth, for both strategies each candidate node
is checked to confirm that it has enough bandwidth to support
the given pod based on the Min Bandwidth label. After
completion of each request, pod information is stored as a
provisioning record to be consulted in further requests and
the node’s available bandwidth is updated. Thus, the SFC
controller knows exactly the available bandwidth between
requests, which allows it to make informed decisions based
on latency and bandwidth information. If no suitable node is
found after policy execution, link costs are calculated. The
node with the maximum residual bandwidth link adequate
to support the expected minimum bandwidth is selected to
allocate the pod. Otherwise, it is not possible to allocate the
service without compromising bandwidth and, thus, an event
is triggered due to the failed pod deployment. Further details
on how the SFC controller has been implemented and on its
respective provisioning algorithms have been explained in [6].

Fig. 1: An example of a container-based Service Function
Chain deployment in Kubernetes.

Fig. 2: The scheduling decision process in Kubernetes by
deploying the SFC controller.

TABLE I: Adding labels to the pod configuration file with
SFC information.

Label Description
Network Service Header The specific SFC identifier (String).
Chain Position The position of the given pod in the SFC.
Total Services The total number of services in the SFC.
Target Location The preferred location for the deployment.
Policy The preferred allocation policy.
Min Bandwidth The minimum expected bandwidth.
Prev Service The previous service in the SFC.
Next Service The next service in the SFC.

Fig. 3: An example of a pod configuration file.

III. DEMONSTRATION SETUP

In this paper, we propose a demonstration of an SFC con-
troller running on a Kubernetes cluster set up using multiple
Raspberry Pis with Weave Net [9] as a network overlay as
illustrated in Fig. 4. In the live demonstration, the following
features will be shown:



Fig. 4: The Kubernetes cluster used in the demo.

• SFC controller installation: The demo starts by showing
how our SFC controller can be deployed in Kubernetes.
Logs can be accessed to confirm its proper deployment.

• Allocation requirements: Then, explanations will be
given on how to set up service requirements for each
of the individual containers in the service chain and how
the SFC controller will make use of that information in
the scheduling process.

• Service chain deployment: Service chains based on
the use cases presented in [6] will be deployed on the
Kubernetes cluster. Several service requirements will be
used (e.g. preferred location, minimum bandwidth, CPU
and RAM requests). Two schedulers will be evaluated:
the KS and the SFC controller.

• Performance outcomes: After chain deployment, per-
formance outcomes will be analyzed to prove that our
SFC controller is able to cope with all the predefined
requirements. Results in terms of pod deployment times,
expected service latency and load balancing will be
compared with the ones obtained by KS as demonstrated
in Fig. 5 and Fig. 6.

The demonstration highlights the importance of SFC issues
in Fog-cloud environments. Several studies have been con-
ducted in recent years, but most research has been focused
on theoretical modeling and simulation studies, which limit
their applicability to real deployments. Our demo will exhibit
a practical testbed implementation of SFC provisioning in a
real-world scenario by extending Kubernetes with network-
aware mechanisms, enabling allocation decisions based on the
current status of the network infrastructure.

IV. CONCLUSIONS

In this paper, we propose a demonstration of SFC allocation
in Fog Computing. The presented SFC controller has been
validated on the Kubernetes platform. Our approach allows
application developers to set up requirements, especially in
terms of bandwidth, which will help our SFC controller to
allocate micro-services based on latency and location. In
the live demonstration, we will explain how to deploy our
SFC controller in the Kubernetes platform, how to write
configuration files to deploy container-based service chains

Fig. 5: Results in terms of pod deployment times and expected
service latency.

Fig. 6: Results in terms of load balancing.

with our approach and, then, see performance outcomes in
terms of container deployment time and allocation scheme.
Our demo shows how SFC can be applied in a Fog-cloud en-
vironment while focusing on latency reduction and bandwidth
conservation.

ACKNOWLEDGMENT

This research was performed within the project ”Intelligent
DEnse And Longe range IoT networks (IDEAL-IoT)” under
Grant Agreement #S004017N, from the fund for Scientific
Research-Flanders (FWO-V).

REFERENCES

[1] H. Arasteh, V. Hosseinnezhad, V. Loia, A. Tommasetti, O. Troisi,
M. Shafie-Khah, and P. Siano, “Iot-based smart cities: a survey,” in
2016 IEEE 16th International Conference on Environment and Electrical
Engineering (EEEIC). IEEE, 2016, pp. 1–6.

[2] R. Mahmud, R. Kotagiri, and R. Buyya, “Fog computing: A taxonomy,
survey and future directions,” in Internet of everything. Springer, 2018,
pp. 103–130.

[3] D. Bhamare, R. Jain, M. Samaka, and A. Erbad, “A survey on service
function chaining,” Journal of Network and Computer Applications,
vol. 75, pp. 138–155, 2016.

[4] Y. Xie, Z. Liu, S. Wang, and Y. Wang, “Service function chaining resource
allocation: A survey,” arXiv preprint arXiv:1608.00095, 2016.

[5] S. Newman, Building microservices: designing fine-grained systems. ”
O’Reilly Media, Inc.”, 2015.

[6] J. Santos, P. Leroux, T. Wauters, B. Volckaert, and F. De Turck, “Towards
delay-aware container-based service function chaining in fog computing,”
in NOMS 2020-2020 IEEE/IFIP Network Operations and Management
Symposium. Accepted for publication, April 2020.

[7] K. Hightower, B. Burns, and J. Beda, Kubernetes: up and running: dive
into the future of infrastructure. ” O’Reilly Media, Inc.”, 2017.

[8] (2019) Kubernetes, automated container deployment, scaling, and
management. [Online]. Available: https://kubernetes.io/

[9] (2020) Weave net, network containers across any environment. [Online].
Available: https://www.weave.works/oss/net/


