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Abstract—To provide the predictability required by emerging
applications, operators typically rely on policing and/or shaping
at the edge to ensure that tenants do not use excess bandwidth
that was not accounted for. One of the promises of 6G is to
deploy applications with strict predictability requirements across
subnets and even over the Internet, where policing cannot be
implemented in the end hosts. This paper presents an empirical
study of the ability of modern programmable network devices
to implement predictable traffic policing in the network. We
find out that none of the five investigated hardware switches
can provide accurate traffic policing, a key requirement for
providing predictable service to applications. We observe that
the switches let applications send more than what they should
be allowed to, reaching up to 60% and 100% relative error
for the rate and burst parameters. We further uncover the fact
that switches cannot police arbitrarily low bursts, e.g., not less
than 13 kilobit for one of our switches. We investigate how such
limitations impact the performance of state-of-the-art solutions
for predictable latency such as Chameleon. We observe that, for
ensuring its predictable guarantees, Chameleon rejects around
50% of the tenants it could accommodate if switches were perfect,
hence decreasing by the same ratio the revenue for the operator.
Based on these observations, we discuss solutions toward more
accurate and predictable policing in wide-area networks.

Index Terms—traffic policing, traffic shaping, network pre-
dictability, network measurements, software defined networks

I. INTRODUCTION

For providing their services, modern applications, e.g., re-
lated to health, business, and entertainment, impose more and
more requirements on the networking infrastructure. Generally,
such applications require the network to provide predictability.
Besides ensuring that the performance of their networking
equipment is predictable, that requires operators to make
sure that the traffic sent by their tenants is also predictable.
Indeed, unexpected bursts of traffic entering the network
consumes bandwidth, build up queues, and potentially leads to
unexpected packet losses and hence degraded performance for
other tenants. To avoid that, operators rely on policing and/or
shaping of the traffic at the edge of the network, typically
performed directly on the end hosts [1]–[4].

Nowadays, such applications are mostly deployed in data
centers [5], industrial networks [6], or enterprise networks [7].
6G now introduces the idea of deploying these applications
over the global Internet. The high and global connectivity
offered by the Internet, combined with predictability, enables
an ever-growing plethora of global services like smart cities,
smart grids, or telesurgery. This shift from local area networks

to wide-area networks prevents operators from accessing end
hosts, e.g., for traffic policing. As a result, a key enabler
for predictable performance in 6G networks is the ability
to accurately and predictably perform traffic policing in the
network.

Yet, while traffic policing is a well-known feature of
network switches, the extent to which state-of-the-art pro-
grammable switches perform this task accurately and pre-
dictably has not been investigated in the literature. Motivated
by this observation, this paper presents an extensive measure-
ment study of the policing performance of five OpenFlow
switches from three different manufacturers. We investigate
the processing time overhead induced by configuring policing
on the switches and quantify the policing accuracy and pre-
dictability in terms of the burst and rate parameters typically
used for modeling traffic patterns.

Our observations are rather negative: none of the investi-
gated switches perform policing accurately. While policing
seemingly does not impact the processing time of switches,
we find that the policed traffic deviates by up to 100%
in terms of allowed burst and 60% in terms of rate for
some configurations. Even more concerning, we observe that
switches do not support the configuration of arbitrary burst
values. Some of our switches require a minimum burst size
(e.g., 13 kbits for our Pica8 switches), others do not support
the configuration of a burst value and only perform rate-based
policing.

With the assumption that these inaccuracies can be perfectly
modeled, we investigate how these would impact the perfor-
mance of state-of-the-art solutions for providing predictable
latency in programmable networks. Using the open-sourced
code of the Chameleon system [1], [8] for cloud networks,
we quantify how much these inaccuracies impact the number
of tenants the system can accommodate while still providing
its predictability guarantees. Astonishingly, we observe that
Chameleon reduces the number of tenants it accepts by around
50% compared to a situation where switches are deemed
perfect. This means that the sole limitations of the policing
feature of switches force operators to see their revenue halved.
We accordingly discuss potential solutions and alternatives to
circumvent the aforementioned limitations.

The rest of this paper is organized as follows. In Section II,
we present a background on network predictability and justify
the need for accurate traffic policing. In Section III, we in-
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Fig. 1: Diagram representing token bucket algorithm.

troduce our measurement setup and procedure. After that, dif-
ferent measurement cases along with the results are presented
in Section III-C, followed by a discussion in Section IV. The
related work is summarized in Section V. Finally, Section VI
concludes the paper.

II. BACKGROUND

In this section, we explain the importance of limiting the
rate and burst of traffic flows in predictable networks (see
Sec. II-A). Thereafter, we present in more detail how it is
realized in OpenFlow networks (see Sec. II-B).

A. The Need for Traffic Policing

Providing predictable latency in programmable networks
requires the computation of performance bounds, in particular
delay and throughput, in the network. Deterministic network
calculus (DNC) [9], [10] is the main framework used by
state-of-the-art solutions for predictable latency [1], [2], [5]
to compute performance bounds.

DNC is a system theory for communication networks based
on the min-plus algebra. Based on traffic and node models,
DNC allows to derive (i) the maximum per-packet delay traffic
can experience at a node, (ii) the maximum backlog (e.g.,
amount of data) traffic will generate at a node, and (iii) the
updated traffic model at the output of the node. Altogether,
these bounds enable operators to provide guarantees to their
tenants.

Inevitably, a key requirement for the bounds computed by
DNC to be valid is for the traffic and node models to be
correct worst-case models. In DNC terminology, the traffic
model is referred to as the arrival curve and the node model
is referred to as the service curve. Many works have focused
on determining the service curve of network nodes, e.g., the
recent Loko system [2]. Given a service curve, it is crucial
to ensure that the traffic entering the node is not exceeding
its arrival curve. Indeed, if the traffic violates the arrival
curve used to compute delay and performance bounds, all
the guarantees provided to the applications would vanish. For
example, slightly exceeding the expected traffic envelope can
increase buffer occupancy at some nodes, thereby potentially
reaching the buffer capacity of a node, and hence generating
packet loss, retransmission, and degraded performance.

Tenants requesting predictable performance from the net-
work are expected to provide the arrival curve of the traffic
they wish to send in the network. Because tenants cannot
be trusted, operators must ensure that the traffic sent by the
different tenants does not exceed the agreed arrival curve. This
can be achieved by adding a DNC processing element before
the traffic enters the network and that ensures that its output
traffic respects the agreed arrival curve (see (iii) above). This
can be done by either delaying or dropping packets that would
lead to the arrival curve being violated. This is called shaping
and policing, respectively. We here focus on policing.

B. Traffic Policing in OpenFlow

The metering feature of OpenFlow switches [11] allows to
police traffic and ensure that it respects an agreed arrival curve.
Metering is introduced in OpenFlow v1.3 [11] and it is widely
supported by carrier-grade switches. A (hardware) entity that
performs the policing is called a meter. In OpenFlow, meters
and flow rules are disjoint. Hence, to police a traffic flow, a
meter has to be configured and assigned to the corresponding
flow rule as part of the instructions of the flow rule.

The main type of arrival curve used in the literature is a
token bucket arrival curve. Traffic is modeled using two param-
eters: allowed burst and allowed rate. This corresponds to the
leaky token bucket algorithm (see illustration on Fig. 1) [12].
Initially, the token bucket contains b tokens (i.e., bits or
packets) which determines the maximum burst size of a flow.
The bucket is continuously filled with r tokens per second,
which defines the rate of a flow. When an N -bit packet arrives,
the number of available tokens in the bucket is checked. If this
value is higher than N , the packet is forwarded, and the N
tokens are removed from the bucket. If there are not enough
tokens available (i.e., value is lower than N ), the packet is
either dropped or it is remarked1 and forwarded.

Various metering configurations are supported [11], such as:
i) rate policing (either kbps or packets per second (pps)), ii)
burst size policing (either kbps or pps), iii) different band types
(excess traffic is either dropped or remarked and forwarded),
iv) collecting metering statistics.

The main challenge here is to investigate if the traffic
policing functionality of modern carrier-grade switch matches
the theoretical properties of the leaky token bucket algorithm.
In particular, we focus on the following research questions:

1) How can we properly measure the performance of a
traffic policer?

2) How accurate is the traffic policing feature of carrier-
grade switches?

3) What is the impact of potential traffic policing inaccura-
cies on the performance of systems providing predictable
latency?

III. MEASUREMENTS

In this section, we firstly introduce the measurement setup
and procedure (see Sec. III-A). Then we discuss how the rate

1Packet (priority) remarking refers to lowering the drop precedence of the
DSCP field in IP header.



TABLE I: Specifications of the evaluated switches: names, ASIC, CPU, and ports.

Switch ASIC CPU Ports

HP E3800 HPE ProVision Freescale P2020 48×1G-RJ45 + 4×10G-SFP+
DELL S3048-ON Broadcom StrataXGS undisclosed 48×1G-RJ45 + 4×10G-SFP+
DELL S4048-ON undisclosed undisclosed 48×10G-SFP+ + 6×40G-QSFP+

Pica8 P3290 Broadcom Firebolt 3 Freescale MPC8541CDS 48×1G-RJ45 + 4×10G-SFP+
Pica8 P3297 Broadcom Triumph 2 Freescale P2020 48×1G-RJ45 + 4×10G-SFP+
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Fig. 2: The measurement setup.

and burst size can be derived from the measurement traces
by utilizing the concept proposed in the DNC framework
(see Sec. III-B). The measurement results are presented in
Sec. III-C. In particular, we analyze what policing function-
alities do the considered switches support, and how many
meters they provide (see Sec. III-C1). Afterward, we discuss
the impact of policing on the packet processing time (see
Sec. III-C2). At the end, the accuracy of policing in terms of
rate (see Sec. III-C4) and burst (see Sec. III-C5) is investigated.

A. Setup

In this section, we introduce the measurement setup, param-
eters, and procedure. Table I shows the OpenFlow switches
that we benchmark. To measure the performance of the traffic
policing feature of these switches, we construct the following
measurement setup presented in Fig. 2. In total, we use two
servers, one networking tap, and a device under test (DUT),
i.e., one of the switches from Table I. On the first server (i.e.,
Host 1 in Fig. 2), a Ryu SDN controller [13] is deployed,
running a custom application that configures the DUT with a
certain number of flow rules, and police the traffic based on the
parameters listed in Table II. We note that the parameter values
are chosen based on the related state-of-the-art approaches [1],
[5]. Configuring a DUT (i.e., modifying flow rules and meters)
is done through OpenFlow 1.3 (green dashed line in Fig. 2).
Each inserted flow rule matches the incoming traffic with
a certain unique IP address on port 1. The matched traffic
then passes through exactly one unique meter, and it is
forwarded on port 2 (packets can be dropped depending on
the policing outcome). Additionally, Host 1 runs Moongen
traffic generator [14] to send the data plane pre-policed traffic
(blue line in Fig. 2). This generated traffic is mirrored by the
networking tap device, and it is forwarded to both, the DUT
and the second server which contains Endace DAG 7.5G4
measurement card [15]. Finally, based on the configured rules,
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Fig. 3: An illustration of one time-wise sequence of pre-
policed and policed packets with the corresponding token
bucket state. The scenario depicts two packet groups, where
each one contains at least 3 packets that are not part of the
initial burst.

the DUT forwards the traffic to the Host 2 server (equipped
with a measurement card). Thus, we can obtain traffic traces
of both, pre-policed and policed traffic on the second server.
We do not consider cases if the total pre-policed rate is lower
or equal to the total configured policing rate.

Traffic Generation. Fig. 3 illustrates an exemplary time
series of the generated pre-policed traffic during one measure-
ment run. Host 1 generates multiple randomly-spaced groups
of packets at line rate. The idea behind sending a group of
packets at line rate is two-fold. Firstly, we aim to empty
the token bucket of the corresponding meter to observe the
accuracy of burst policing. Secondly, we strive to observe
the accuracy of the token generation rate after the bucket is
emptied. To achieve these goals, considering the token bucket
rate and burst, the length of the generated packet group has
to be big enough to observe a burst and a few packets (10
packets in our case) policed at line rate.

Further, to explore how the policing behaves with different
initial states of token bucket (i.e., number of tokens), we vary
the time between packet groups ti with a uniform distribution:

ti(r, b) = U(0, 1.5× b

r
), (1)

where
b

r
is the time needed to completely fill the token bucket

of a meter. We multiply it by 1.5 to make sure that the token
bucket can be filled fully again during one measurement run.2

2If multiple meters are used during the same run, the corresponding
generated packet groups (one group belongs to one meter) are interleaved.
In these cases, ti (Eq. 1) separates interleaved packet groups.



TABLE II: Considered Parameters

Parameter Abbreviation Configured on Values
Number of flows n Ryu, MoonGen 1, 10

Policing rate [kbps] r Ryu, MoonGen 10, 102, 103, 104, 105

Burst size [kbits] b Ryu, MoonGen 13, 15, 30, 50, 75, 100, 200, 300, 500, 1000
Packet size [byte] s MoonGen 100, 500, 1000, 1500

B. Deriving Rate and Burst

In this subsection, we explain how the rate and burst size
of a policed flow are derived from the measurements. To
derive the valid rate and burst values, we rely on token
bucket properties and the methodologies provided in the DNC
framework. In DNC, the token bucket algorithm (see Sec. II-B)
constrains the burst b and rate r of a flow with the token bucket
arrival curve [9], [10], defined as γr,b:

γr,b =

{
b+ r × t ,∀t > 0

0 , otherwise
, (2)

where t is time.
To derive a valid (constraining) token bucket curve (rate

r and burst b) from the trace, we start with applying min-
plus self-deconvolution [9], [10] on the measured policed
traffic flow to produce its minimum arrival curve [9], [10]. In
particular, the minimum arrival curve represents a valid flow
model that can be used as an input parameter (flow description)
for providing guarantees with DNC. For a detailed explanation
of the DNC framework, we refer the readers to [9].

There are many ways of deriving a valid (constraining)
token bucket arrival curve from the minimum arrival curve.
Any curve which is above the minimum one represents a valid
solution. In this paper, we first derive the rate of a flow from
a minimal arrival curve. Afterward, we derive the burst size
based on the calculated rate.

Rate. To derive the rate, we take the timestamp of the first
(ta) packet which is not part of the initial part (t < ta) of the
minimum arrival curve (see Fig. 4)3. In our scenario, we can
find the first packet based on the packet inter-arrival times.
We define rate r as the maximal slope of the minimum arrival
curve y between ta and any other time instance t ≥ ta (e.g.,
tb in Fig. 4):

r = max
∀t,t>ta

(y(t)− y(ta)
t− ta

)
. (3)

Burst. To calculate the burst size, we simply find the
minimal b which satisfies the following equation:

b+ r × t ≥ y(t). (4)

Using the previously explained procedure, we ensure that
the derived token bucket arrival curve γr,b is always above
the self-deconvoluted minimum arrival curve. Hence, it is
constraining the flow with rate r and burst b.

3At higher policing rates, switches forward the packets in microbursts (in
line rate). In such cases, we take the timestamp of the last packet of the first
microburst. This effect is presented in Sec. III-C6.
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Fig. 4: An illustration of one time-wise sequence of policed
packets (measured traffic trace) with the corresponding self-
deconvoluted function and the constraining token bucket ar-
rival curve.

C. Results

1) Policing Flags Support: Table III lists the supported
policing flags and the total number of available meters within
each switch. Furthermore, for easier comparison, the table lists
their corresponding flow table size (values are taken from our
previous work [16]). To begin with, we observe that all the
switches do support a traffic policing feature, except the ones
manufactured by Dell (i.e., 1G S3048-ON and 10G S4048-
ON). Therefore, we only consider Pica8 and HP switches
for the measurements. Moreover, considered HP device only
supports rate policing, while Pica8 switches support also
burst policing in addition to rate. As a result, this limitation
significantly constrains the usage of HP switches in predictable
networks. This is discussed in more details in Sec. IV.

As it can be seen in Table III, Pica8 switches support
significantly more meters compared to HP. Since state-of-the-
art approaches rely on a fine-grained flow control [6], the
total number of flows on each switch in the network can
easily grow up to several thousands [1] (e.g., over 2000 flow
rules). Thus, having around 2000 meters may be insufficient
for some use-cases. Furthermore, Pica8 switches are equipped
with more meters than the flow table size. This can facilitate
the deployment of hierarchical traffic policing approaches [17].

Finally, regarding the band types (see Sec. II-B), it is
observed that HP and Pica8 switches support both drop and
packet remarking.

2) Processing Time: To measure the impact of traffic
policing on the packet processing time of each switch, we
perform two sets of measurements, with and without policing.
To disable policing, we do not configure the flow rules to
forward the matched traffic to each corresponding meter. The
processing time of each packet is the difference of a packet’s
timestamp before and after policing it. In order to identify



TABLE III: Supported Policing Flags, and Number of Meters

Switch- Policing Flags Band Type Number of
Type rate pps burst stats drop dscp_remark meters flows
HP E3800 X X × X X X 2047 ca. 4085
Pica8 P3290 X X X X X X 4096 2046
Pica8 P3297 X X X X X X 8192 4094
DELL S3048-ON × × × × × × -/0 1000
DELL S4048-ON × × × × × × -/0 1000
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Fig. 5: Impact of metering on the processing time. All the
measurement data is aggregated.

each packet, each packet has a unique MAC address.
Outcome. The minimal, maximal, and average packet pro-

cessing time of switches are presented in Fig. 5 (the data is
consolidated and based on all the measurement runs). Overall,
there is no statistically significant impact of policing on the
processing time. For instance, the minimal (and maximal)
packet processing time of HP 3800 is the same in both
cases, i.e., tmin ≈ 3 µs (and tmax ≈ 4 µs). To be more
clear, we also illustrate five specific scenarios in an isolated
manner in Fig. 6. These scenarios have the same packet size
of 1000 bytes, but different configured policing rate and burst
size (see Fig. 6). Accordingly, Fig. 6 shows that first, the
processing time of the Pica8 switch is higher than HP. More
importantly, it can be seen that the packet processing time with
and without policing is almost the same, even for different
policing rates. Thus, it can be concluded that the policing is
implemented in hardware (processing time usually varies a
lot in software implementations [16]). Furthermore, it can be
assumed that all the results presented in comprehensive state-
of-the-art hardware measurement studies [16], [18], [19] can
be valid in cases with policing enabled.

3) Verifying the Derived Token Bucket Curves: Fig. 7
depicts the initial part of the policed traffic trace, its min-
plus self-deconvolution (i.e., minimum arrival curve), and
the derived token bucket arrival curve for three different
measurement runs. Since the switches police the traffic ac-
cording to the token bucket algorithm, the initial parts of the
self-deconvoluted function and policed traffic trace are very
similar (see Fig. 7). Furthermore, the derived rate and burst
of each token bucket arrival curve indeed fits well to the
corresponding minimum arrival curve. We note that relying on
the configuration values for generating a valid arrival curve has
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Fig. 6: Impact of metering on the processing time for five
different measurement scenarios.

never been sufficient in our experiments. This means that the
evaluated switches have always forwarded more traffic than
expected.

4) Rate Deviation: Fig. 8 illustrates the relative deviation
of the derived policing rate from the configured one for Pica8
P3290, Pica8 P3297, and HP E3800. Overall, the derived rate
often exceeds the configured one (average deviations is around
∼+1%), hence, the switches can actually forward excess traffic
into the network. This can lead to delay violations and even
packet loss. Furthermore, in the case of lower rates, both
Pica8 switches significantly deviate from the expected flow
rate. For instance, if we configure a meter to police the
traffic with the rate of 10 kbps, the forwarded policed rate
is around 60% higher than expected, i.e., ∼ 16 kbps. This
unexpected inaccuracy can have a significant impact on de-
ploying state-of-the-art solutions, which is further investigated
in the discussion section. Nevertheless, these deviations appear
to be predictable, since, in different scenarios with the same
configured/expected rate, the switches police the traffic with
similar accuracy. In fact, it indicates that these switches can
be used in predictable networks (if the error is accounted for).

5) Burst Deviation: To study the burst deviation, we start
with Fig. 9a which presents the relative deviation of the
derived burst size from the configured one for Pica8 P3297
switch. In this case, we consider four different scenarios with
the same parameters except for the packet size (i.e., number
of flows is 1 and the configured rate is 1 Mbit). Firstly, it
can be observed that the derived burst size is always higher
than the configured/expected one, which can be detrimental
in predictable networks. Also, the relative burst deviation
depends on the configured one. For the higher values, the
inaccuracy is usually below 5%. For example, the relative
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Fig. 7: An initial part of the policed traffic trace, its min-plus self-deconvolution, and the derived token bucket arrival curve
for the considered switches. In all three scenarios, policing rate is 1 Mbps, and the packet size is 500 bytes. The configured
burst size for Pica8 P-3290 is 100 kbits (or 25 500 byte packets) and for Pica8 P-3297 is 50 kbps (approx 12.5 500 byte
packets).
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(a) Pica8 P3297.
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(b) Pica8 P3290.
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(c) HP E3800.

Fig. 8: Achieved accuracy (in terms of relative deviation) of rate policing depending on the configured policing rate. We
consider four different measurement configurations with the following parameters, c1→ (b = 30 kbps, s = 100 bytes, n = 1);
c2 → (b = 100 kbps, s = 500 bytes, n = 1); c3 → (b = 200 kbps, s = 1500 bytes, n = 1); c4 → (b = 75 kbps,
s = 1000 bytes, n = 1). Since it is not possible to configure the burst size on HP E3800, the corresponding parameters is
ignored.

error is always lower than 3% for the configured burst size
of 500 kbits. Surprisingly, for configurations with smaller
burst size, the relative error can even exceed 100%. Moreover,
even for the same configured burst sizes, the relative burst
deviation varies with the packet size. This indicates that it is
not possible to fully compensate for these inaccuracies with
precise modeling. Even if we perfectly model the error of a
device, users might generate flows with dynamically varying
packet sizes.

Further, we note that the absolute burst deviation from the
configured value of Pica8 P3297 does not depend significantly
on the configured one (see Fig. 9b). In fact, the absolute burst
deviation is always between 0 and 16 kbits. This suggests that
each meter introduces a similar amount of excess traffic in
the network, regardless of the configuration. Additionally, it is
not possible to configure a meter of Pica8 P3297 with a burst
value lower than 13 kbits.

The results for Pica8 P3290 follow the same trend, thus we
omit showing them.

Regarding the HP E3800 switch, since it does not support
configuration of the burst size, we present the results without
varying this parameter. Fig. 9c presents the derived burst
size for four different scenarios with varying policing rate.

Even though we cannot configure the burst size of HP, it can
be observed that the burst size is predictable (see Fig. 9c).
That is, runs with different measurement parameters produce
almost identical results. Furthermore, the results show that the
burst size is correlated with the configured policing rate (see
Fig. 9c). For instance, if the configured/expected rate is lower
than 100 kbps, the measured burst size is slightly bigger (i.e.,
∼ 12.5 kbits) than the maximal size of an ethernet packet (i.e.,
1500× 8 bits = 12 kbits)4. For the higher rates, the burst size
corresponds to ∼ 12.5% of the configured rate.

6) Microbursts at High Policing Rate: Fig. 10 illustrates
three very short time snippets taken from different (high-
rate) measurement runs for Pica8 P3297, Pica8 P3290, and
HP E3800. The time snippets show the relative timestamps
of pre-policed and policed traffic (i.e., packets) shortly after
the token bucket is emptied (with an initial burst). In theory,
the token bucket algorithm generates tokens continuously.
Therefore, since the pre-policed traffic is sent at line rate, the
outgoing policed traffic in the depicted scenarios should be
uniformly spaced. For example, in the case of Pica8 P3297

4This is probably done in order to accommodate adding multiple VLAN
tags (one tag is 4 bytes).
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Fig. 9: Derived burst size from the measurements (with different packet sizes s) for Pica8 P3297 and HP E3800. The derived
rate for Pica8 P3297 in all presented scenarios deviates at most 0.5% from the configured value.
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Fig. 10: Microbursts generated by Pica8 and HP devices at
higher policing rates (i.e., r = 100 Mbps) with smaller packet
sizes (e.g., s ≤ 500 bytes).

(see Fig. 10a), the time to generate enough tokens for one
packet is 8 µs (policing rate is 100 Mbps and packet size
is 100 bytes). Hence, an ideal token bucket algorithm should
forward six uniformly separated packets every 8 µs. However,
in practice, we observe that this is not the case. The packets are
actually forwarded in small (micro) bursts (e.g., two packets
for Pica8 P3297, see Fig. 10a). In fact, all the considered
switches exhibit the same behavior (see Fig. 10). However,
this effect is only observable at high policing rates (e.g.,
r ≥ 50 Mbps) with small packet sizes (e.g., s ≤ 500 bytes).
Therefore, we can suppose that the token bucket is discretely
filled with a time interval that can be greater than the time
needed to generate enough tokens for a packet. This effect
can be accounted for by increasing the derived burst size
accordingly.

IV. DISCUSSION

In the previous section, it is shown that even the carrier-
grade switches suffer from some hardware limitations, and
inaccurate traffic policing. Depending on the brand and model

of the switch, these inaccuracies can occur for rate and/or
burst policing. Two approaches can be followed to resolve
these policing issues. Firstly, the hardware implementation of
the switches can be further improved. Secondly, the polic-
ing inaccuracies could be modeled and accounted for in
the network management frameworks. In the second case,
accounting for these policing inaccuracies can lead to lower
performance of such networks (e.g., lower network utiliza-
tion). To discover the impact of these policing limitations on
the network performance, we use the simulation tool from
our previous work, Chameleon [1], a cloud provider system
which delivers strict end-to-end delay guarantees to network
flows. In Chameleon, a flow is characterized by a source-
destination node pair, data rate, burst size, and the required
delay. Chameleon relies on DNC theory, priority queuing, and
a simple greedy algorithm to provide the delay-constrained
path allocation to the incoming traffic flows, with no packet
loss. In particular, given a network and a set of flows, we
are interested to find out how the policing limitation of the
switches can affect the utilization of the network. To do so, we
use a 4-fat-tree network with 10 servers per rack, each hosting
10 virtual machines. The network switches are considered with
four priority queues (each with different assigned delays), and
1 Gbps of link bandwidth. The network flows are generated
randomly according to service types used in our previous
work [1], normally distributed. To show the impact of the
hardware limitation, we compare four cases:

1) Chameleon: The policing is set to be 100% accurate (the
perfect case).

2) PICA-hw: Pica8 P3297 switches are deployed in the
whole network. In this case, we consider the hardware
limitation by setting the minimum burst size to 17 kbits
(based on the results in Section III-C5). However, we
assume that policing inaccuracies are resolved.

3) PICA-hw-inacc.: Pica8 P3297 switches are considered
similar to the previous scenario. In addition to the
hardware limitations (i.e., setting the minimum allowed
burst size to 17 kbits), according to Fig. 9b, the effect
of burst policing inaccuracy is included.

4) HP: The network switches are considered to be
HP E3800, which does not support burst policing. In
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Fig. 11: The role of accurate traffic policing in (a) number of
accepted flows, and (b) network utilization.

this case, we generate a model based on Fig. 9c which
translates the expected burst size and rate to the deployed
policed configurations of the HP switches.

Considering these four cases, we compare the total number of
accepted flows and the achieved network utilization in Fig. 11.
Surprisingly, Fig. 11a shows that the cost of hardware limita-
tion and policing inaccuracy can be very high. In particular,
compared to the perfect policed case (i.e., Chameleon), it can
be seen that the network consisting of Pica8 switches accepts
around 50% less flows. Since the OpenFlow metering feature
in Pica8 switches cannot be configured with a lower burst
size than 17 kbits, the flows with lower burst requirements
are actually being policed with a higher burst. This leads to
the waste of resources in the network, i.e., a lower number of
accepted flows for PICA-hw case. Also, it can be seen that
considering the burst policing inaccuracy (PICA-hw-inacc.)
causes the network to accept even fewer flows than the PICA-
hw case (overall around 35% of the perfect case). For the
HP case, since it does not support configuring burst policing,
the number of accepted flows is very low, around 2% of
the perfect scenario. Similarly, the considered traffic policing
limitations also decreased the network utilization significantly
(see Fig. 11b). These shocking values indicate that traffic
policing plays an important role in the performance of the
networks.

V. RELATED WORK

Recent works in the literature have focused on improving
the host-based traffic policing approaches [1], [4], [5]. Al-
though these solutions can achieve high accuracy [4], they
often cannot support high rates [1], especially if the packet size
is small. Moreover, opposed to our work, these solutions are
not applicable in scenarios where in-network traffic policing
is needed.

The responsible unit to perform the in-network policing
is the network switches. Generally, the measurement and
investigation of different performance metrics of the Open-
Flow switches have been receiving a lot of attention in the
literature [2], [16], [18]–[26], [26]–[35].

On the one hand, some works have studied the mismatch
between the control and data plane states of a device [16],
[18], [20]–[23], [25]–[28]. As an interesting finding, authors
in [16] have shown that inserting a new OpenFlow rule into
the flow table of a carrier-grade OpenFlow hardware switch

can take a significant amount of time (can be over a second).
Worse than that, sometimes the control plane state claims that
a forwarding rule is inserted in the switch, while it has never
been inserted [16], [18], [21]. As we know, to police a traffic
flow, the switch has to use a forwarding rule to match the
traffic and forwards it to the corresponding meter. Therefore,
these mismatching issues can affect the policing function as
well and need to be accounted.

On the other hand, some works have focused on measur-
ing the data plane performance of carrier-grade OpenFlow
switches [2], [19], [26], [29]–[35]. For instance, [2], [16], [19]
have measured the available hardware flow table size of var-
ious SDN-enabled switches and compared their performance.
Durner. et al. [24] have measured and evaluated different
Quality of Service (QoS) metrics in OpenFlow switches such
as the priority queuing. However, to the best of our knowledge,
we are the first work that investigates the performance of polic-
ing feature of the OpenFlow switches. Although the packet
processing time of the switches has been studied in other
works [16], [19], [26], [35], none of them have considered
the impact of traffic policing. In addition to the processing
time, we study the accuracy of the rate and burst policing on
a set of carrier-grade OpenFlow switches.

VI. CONCLUSION

This paper presented the first steps towards measuring
and modeling the performance of in-network traffic policing
in carrier-grade OpenFlow switches. Considering a set of
modern carrier-grade OpenFlow switches, we have measured
the impact of the policing on the packet processing time. Also,
we have proposed a measurement methodology and presented
results for determining the accuracy of rate and burst policing
of network traffic flows. This methodology is generalizable
and can be used for evaluating the policing performance of
other networking switches, if they support traffic policing.

We found that not all the evaluated switches (e.g.,
Dell S4048-ON) support OpenFlow traffic policing feature.
For those who support, the policing feature has almost no
impact on the packet processing time, which is interesting from
the predictability point of view. However, we have observed
these switches have some policing limitations, e.g., it is not
possible to have a burst lower than a certain value in HP and
Pica8 brands. As a result, these switches may not be suitable
for use-cases such as industrial networks, where usually the
burst is small [6]. Additionally, our measurements have shown
that these switches do not perform the policing accurately,
especially for traffic flows with low rate and burst size.

We performed a study to find out what is the impact of these
limitations and inaccuracies in a realistic cloud network set-
tings. To do so, we used the simulation tool from our previous
work [1], which provides predictable latency guarantees using
DNC, in a cloud data center network. The simulation results
indicated that these limitations can actually have a significant
impact on the network, especially in terms of the number of
accepted flows and network utilization.



We see our work as a first step and believe that it opens
several interesting avenues for future research. In particular,
the burst and rate policing inaccuracies can be modeled and ac-
counted for in the predictable network modeling frameworks,
such as DNC. Moreover, it would be interesting to investigate
if more accurate traffic policing can be realized with other
programmable networking technologies, such as P4.
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