
LUND UNIVERSITY

PO Box 117
221 00 Lund
+46 46-222 00 00

Adaptive and Application-agnostic Caching in Service Meshes for Resilient Cloud
Applications

Larsson, Lars; Tärneberg, William; Klein, Cristian; Kihl, Maria; Elmroth, Erik

Published in:
Proceedings of the 2021 IEEE Conference on Network Softwarization (NetSoft)

DOI:
10.1109/NetSoft51509.2021.9492576

2021

Document Version:
Publisher's PDF, also known as Version of record

Link to publication

Citation for published version (APA):
Larsson, L., Tärneberg, W., Klein, C., Kihl, M., & Elmroth, E. (2021). Adaptive and Application-agnostic Caching
in Service Meshes for Resilient Cloud Applications. In K. Shiomoto, Y.-T. Kim, C. E. Rothenberg, B. Martini, E.
Oki, B.-Y. Choi, N. Kamiyama, & S. Secci (Eds.), Proceedings of the 2021 IEEE Conference on Network
Softwarization (NetSoft): Accelerating Network Softwarization in the Cognitive Age (pp. 176-180). Article
9492576 IEEE - Institute of Electrical and Electronics Engineers Inc..
https://doi.org/10.1109/NetSoft51509.2021.9492576
Total number of authors:
5

General rights
Unless other specific re-use rights are stated the following general rights apply:
Copyright and moral rights for the publications made accessible in the public portal are retained by the authors
and/or other copyright owners and it is a condition of accessing publications that users recognise and abide by the
legal requirements associated with these rights.
 • Users may download and print one copy of any publication from the public portal for the purpose of private study
or research.
 • You may not further distribute the material or use it for any profit-making activity or commercial gain
 • You may freely distribute the URL identifying the publication in the public portal

Read more about Creative commons licenses: https://creativecommons.org/licenses/
Take down policy
If you believe that this document breaches copyright please contact us providing details, and we will remove
access to the work immediately and investigate your claim.

https://doi.org/10.1109/NetSoft51509.2021.9492576
https://portal.research.lu.se/en/publications/8ad6fea1-323a-4687-ab77-f5cb7257e816
https://doi.org/10.1109/NetSoft51509.2021.9492576

Adaptive and Application-agnostic Caching in
Service Meshes for Resilient Cloud Applications

Lars Larsson∗, William Tärneberg†, Cristian Klein∗, Maria Kihl†, and Erik Elmroth∗
∗ Department of Computing Science, Umeå University, Sweden

† Department of Electrical and Information Technology, Lund University, Sweden

Abstract—Service meshes factor out code dealing with inter-
micro-service communication.The overall resilience of a cloud
application is improved if constituent micro-services return
stale data, instead of no data at all. This paper proposes and
implements application agnostic caching for micro services. While
caching is widely employed for serving web service traffic, its
usage in inter-micro-service communication is lacking. Micro-
services responses are highly dynamic, which requires carefully
choosing adaptive time-to-life caching algorithms. Our approach
is application agnostic, is cloud native, and supports gRPC. We
evaluate our approach and implementation using the micro-
service benchmark by Google Cloud called Hipster Shop. Our
approach results in caching of about 80% of requests. Results
show the feasibility and efficiency of our approach, which
encourages implementing caching in service meshes. Additionally,
we make the code, experiments, and data publicly available.

Index Terms—Service-mesh, Containerized network functions,
Microservices

I. INTRODUCTION

Micro-services have emerged as the dominant architectural
design pattern for engineering scalable and resilient cloud
applications. Said pattern encourages separation of concerns
and data ownership between micro-services [1], thus, leading
to frequent inter-service requests for data retrieval. In fact, a
single public API request may cause orders of magnitude more
inter-service requests.

Service meshes [2] have emerged to factor out common-
alities in upstream and downstream communication between
micro-services, such as load-balancing, retrying and graceful
timeouts. This paper focuses on the actuator and proceeds
to evaluate caching in service-meshes to improve resilience
in cloud applications. While caching responses is not by
itself novel, we are, to our knowledge, the first to evaluate
using caching in service meshes, specifically gRPC. Indeed,
caching responses is a well-known method for making web
content delivery more responsive by reducing service and
network load [3], [4]. However, with the exception of database
caching, caching in general is not commonly used for inter-
service communication. A key difference between web content
caching and inter-service caching is that the latter has highly
dynamic responses, that become stale after a few seconds, as

This work has been partially funded by the Wallenberg AI, Autonomous
Systems and Software Program (WASP), the ELLIIT strategic research area
on IT and mobile communications, Sweden’s Innovation Agency (VINNOVA)
under the 5G-PERFECTA Celtic Next project, the Swedish Foundation for
Strategic Research under the SEC4FACTORY project.

opposed to days for web content. Hence, a key question is
how the time-to-live (TTL) of a request affects data staleness
and network traffic reduction of a realistic cloud application.

To keep the risk of stale data at acceptable levels, we re-
purpose adaptive TTL estimation algorithms from the web
content delivery field for this new purpose (for differences
between the fields, please see Section II). To provide a
quantitative evaluation of the system, we have selected two
dynamic TTL estimation algorithms from the web content
caching literature. The selection was driven by plausibility to
work in the new context of inter-service communication, which
has different properties than web content caching (Section IV).

To evaluate the two algorithms on a realistic cloud appli-
cation, we implemented a gRPC-based caching infrastructure,
mimicking a service mesh (Section III), and use it to empiri-
cally quantify the applicability of caching using dynamically
estimated TTLs in Section VI. The experiments exposes the
configured algorithms to a realistic micro-service setting (Sec-
tion VI-A). The caching infrastructure is deployed with the
Hipster Shop application developed by Google Cloud Platform
and use their workload generator to subject the system to
simulated e-commerce users. The contributions of this paper
are as follows:

• We design and implementation caching in service meshes,
which works even with gRPC; as expected from service
meshes, the mechanism is application-agnostic and thus
requires no source code changes;

• We demonstrate network traffic reduction with a real
micro-service application.

The results (Section VI-A3) show that about 80% of inter-
service requests could be answered using cached data,
which also caused an overall network traffic reduction by
40%. Our work suggests that caching is a feasible and that
it can be used as an efficient circuit breaker actuator, and
encourages its implementation in service meshes. To facilitate
reproducibility and reuse of results, we make all our source
code and data sets openly available for benefit of the research
community. Implementing additional algorithms is a straight-
forward process and requires very little code.

II. BACKGROUND

Caching is extensively used in web content serving, and
has been for a long time [3]. However, it is not commonly
used in inter-service communication, and we believe there
to be both technical and non-technical reasons for this. The978-1-6654-0522-5/21/$31.00 ©2021 IEEE

technical ones are temporary hurdles to overcome through
engineering: lack of support for caching certain HTTP verbs
(gRPC uses POST for every operation, which is typically
not considered cache-able), failure to communicate using the
right transport protocol (HTTP/1.1 to upstream services rather
than HTTP/2), etcetera. All these can be solved rather easily
and be incorporated in software. While our work focuses on
gRPC, which has no support for caching in its specification
(in spite of nascent support in the Protobuf service descriptor
for marking operations as idempotent [5]), it should be noted
that there are no technical reasons that prevent typical REST-
based services from using well-established HTTP/1.1-based
caching infrastructure. It seems to be not commonly done in
practice. For example, major vendors such as Microsoft does
not mention it in their REST API guidelines [6].

The non-technical reasons are more interesting to us, as the
major hurdle does not seem to be the technical challenges. A
reason that cannot be ignored is that it is non-trivial to a priori
determine TTLs for responses. Software developers cannot
during development reasonably know for how long responses
will be valid, unless the underlying data is known to be stable
for some time (e.g. weather estimates that are updated hourly).
But letting software inspect responses and thereafter estimate
TTLs during run-time is definitely possible.

Determining which operations are possible to cache can also
present a challenge. It is generally considered good API design
to separate operations that can mutate state from the ones
that cannot. REST enforces this via HTTP verb mapping [7].
Because gRPC lacks caching on the protocol level, there is no
such enforcement. Still, it is an ingrained best practice design
pattern and developers and operators are therefore generally
aware of which operations can mutate state and can therefore
inform software of it.

It is a generally accepted practice to use a fast in-memory
key-value store such as Redis in front of databases for read
queries to avoid needlessly straining the database service
with possibly complex queries (e.g., ones requiring multi-
table JOINs) [8], [9]. The application code is then adapted to
always check the key-value store before issuing the possibly
complicated database query, where the results may be cached.
Thus, it is up to application developers to not only decide
which operations to cache but also, possibly, for how long.
The approach we take differs in that we (a) cache in-between
services, not just in front of the canonical database server;
(b) require no application awareness of caching — as, indeed,
gRPC applications have no concept of caching; and (c) object
cache time-to-live is continuously re-estimated. In this way,
applications can get the benefits of caching across micro-
service architectures where calls are performed in many steps
before hitting a database, and application developers need not
make their applications cache-aware.

Services that use gRPC for inter-service communication of-
ten expose a REST interface toward clients. Would it therefore
not be sufficient to cache only the client-facing responses? We
argue that it is not sufficient in a micro-service application, for
two reasons. Firstly, modern services typically have analytics

Figure 1: Caching infrastructure architecture overview show-
ing the old traffic flow as a dotted gray line and the new traffic
flow through Cache and Estimator components in black.

and other batch jobs that rely on direct inter-service requests,
rather than on publicly facing aggregated APIs. Second, TTLs
for aggregated results are bounded by the lowest TTL among
the constituent sub-results. Our results with the Hipster Shop
application show that, on average, a single client request
branches out and requires aggregated data from around 13
inter-service requests (Section VI-A4). Should even a single
of these have low TTL and the others a high TTL, it would
invalidate the aggregated response and all requests would
have to be wastefully re-issued if only client-facing caching
was used. This has been previously explored with regard to
personalized web sites in e.g. [10].

Inter-service communication differs from web content
caching, we therefore regard the following properties as im-
portant differences:

• updates are potentially more frequent, and TTLs there-
fore shorter. Well-designed web applications consist of
immutable and therefore infinitely cache-able static re-
sources, presented via a dynamic HTML page, making
the orders of magnitude smaller (in bytes) HTML page
the only asset that needs a short TTL;

• large variance in object popularity. Unlike web content
caching, where some objects are much more popular than
others due to human preference (70% of objects at a CDN
were requested only once over a multi-day period [11]),
API requests are highly varied and popularity distribution
need not be tied to human preference; and

• calculations and responses must be fast. Because client-
facing requests cause multiple inter-service requests,
caching must not add significant delays, lest the mul-
tiplicative effect be noticeable.

III. CACHING ARCHITECTURE

Service meshes instantiate for each micro-service two prox-
ies: one handling upstream calls and one handling downstream
calls. This allows the service mesh to intercept all inter-
service calls in an application-agnostic way, and offer higher-
level communication functionality, such as circuit breaking.
We hereby propose a system architecture that can readily be
deployed in a service mesh.

Our proposed caching actuator has two components: the
Estimator and the Cache. Respectively, they are responsible
for estimating for how long a response object is valid and for
caching responses for (maximally) that amount of time.

Figure 1 shows the conceptual architecture and traffic flow
in the system. Instead of direct connection between the Client
and Server (dotted gray line), the newly added components are
deployed and configured to intercept the traffic (black lines).

The Estimator and Cache components can be deployed in
different configurations, i.e., in the downstream or upstream
proxy of the service mesh, each favoring different aspects
of a performance and cache coherency trade-off. These are
discussed in Section III-C.

A. Cache component
Unlike HTTP/1.1, where caching is specified as part of the

protocol [12], gRPC has no notion of caching (see also Sec-
tion II). Accordingly, the Cache component in our proposed
system must respond as the Client expects a Server to respond.
This makes the Cache behave indistinguishably from a Server
from the point of view of the Client, thereby allowing for
seamless integration with existing gRPC applications.

It is valid to add metadata in headers for gRPC responses.
We use the Cache-Control header to express the TTL in
seconds, similar to how HTTP/1.1 defines it. If response TTL
is given in the header of a response, the Cache component
will cache the response for the given amount of time. If not,
or the TTL is specified as 0, the response will not be cached.

B. Estimator component
The Estimator component estimates how long a response

to a particular request can be considered valid and therefore
cached. Since gRPC Servers do not typically convey how long
responses are valid, the Estimator can use multiple different
algorithms to estimate object cache validity (see Section IV).

When a request has been made to the Estimator, it will for
a limited duration of time produce response TTL estimates
for subsequent equivalent requests. The time limit is used
for housekeeping purposes: once the time limit is surpassed,
the Estimator will de-allocate the memory used to calculate
estimates for the particular request.

Because the Estimator cannot know when a response to
a request has changed, it has to continuously update its
estimates. The Estimator will contact the upstream Server
whenever it gets an incoming request. The reason for an
incoming request must be that the Cache cannot answer a
Client request from memory, which either means that the
Cache has restarted or the response TTL has been surpassed.
Regardless, the Estimator will contact the upstream Server and
make a new TTL estimate.

C. Component co-deployment
Because the Cache and Estimator components are designed

to seamlessly deploy into the network between Client and
Server, a number of different deployment scenarios are pos-
sible. In this work, we focus solely on the case where Cache
components are co-deployed with Clients, and Estimator com-
ponents with Servers. We defer investigation into the conse-
quences of the different deployment scenarios with regard to,
e.g., cache consistency and traffic reduction to future work. In
practical terms and in the context of this work, co-deployment
means that a sidecar container is started in a Kubernetes
Pod. By definition, this implies that localhost networking can
be used between co-deployed components. This follows an
established pattern of how, e.g., service meshes such as Istio.

IV. TTL ESTIMATION ALGORITHMS

Meeting the requirements stated in the previous section
and cognizant of differences between web content serving
and inter-service request handling, we have implemented to
algorithms that take very little memory and require no large
body of training data to function. For comparison reasons, we
have also implemented a simple static TTL “estimation” as
well. The three TTL estimation algorithms used in this papers
are presented in Table I.

V. IMPLEMENTATION

Our design goals for the implementation are to be extensi-
ble, suitable for research via instrumentation/observability, and
easy to integrate with existing service meshes. This implies an
application-agnostic approach, such that existing gRPC-based
services can benefit from it without source code modifications.

Extensibility is ensured via implementing the Estimator and
Cache gRPC interceptors, i.e., as plugins that capture and
possibly modify requests before they are passed along to the
intended process.

Instrumentation/observability for research is implemented
by letting interceptor output timestamped CSV rows with
nanosecond resolution. All operations output the name of the
invoked method, TTL, timestamp and whether a response had
to be passed upstream to the Estimator or could be answered
using cached data. Together, the data can be used to form a
picture of overall system performance.

Application-agnosticism and the ability to use our caching
infrastructure without source code modification is enabled
by attaching the Cache and Estimator gRPC interceptors to
purpose-built reverse proxies. The code for these is auto-
generated from the Protobuf service descriptor using our
modified version of the gRPC code stub generator.

VI. EVALUATION

The objective of this section is to establish a set of exper-
iments that will validate the proposed caching infrastructure
and its implementation. Further, because caching always in-
troduces a risk of stale data to achieve a reduction in network
traffic, the inherent trade-offs in our proposed system must be
evaluated and addressed. In particular, we must establish which
trade-offs are provided by which algorithm configurations and
whether the dynamic caching and supporting infrastructure
approach work for real micro-service applications.

To validate the caching infrastructure in a real setting, we
perform experiments with a real micro-service application. We
have chosen the “Hipster Store” by Google Cloud Platform.
The focus of this experiment is two-fold: (a) to verify that our
caching infrastructure works for a micro-service application
without any source code modification; and (b) to see what
network traffic reductions can be made using caching and
conservatively configured dynamic TTL estimation algorithms.

Data staleness, while often favorable compared to non-
responsive services, is generally to be avoided. However,
what level of staleness is acceptable is application-dependent:
certain values are never allowed to be stale (e.g. a customer’s

Name Formulation: TTLx = Ref. Description
Static TTL β n/a β is the number of seconds (integer) to always statically respond with as response TTL for each

incoming request. Setting the β parameter to zero implies that no caching should be made
Adaptive
TTL

(t−Mx)× α [13] α is real number that, while technically semantic-free [13], practically signifies a linear “acceptance”
of stale data by the operator. Higher values of α mean longer estimated TTL, and thus, higher risk
of stale data. Mx is the time the object was last modified.

Update-risk
based TTL

−BUDx(K)
K

log(1− ρx) [13] This algorithm takes as a parameter an operator-specified acceptable update risk, ρx ∈ [0, 1), for
a given object x. BUDx(K) is the “backward K-update distance”, the time of the K th most recent
response object update of x.

Table I: The three TTL estimation algorithms used in the for evaluating the proposed caching architecture.

order history), whereas others are less critical (e.g. a product
recommendation). We do not quantify data staleness as part
of the our suite of experiments, but rather, conduct the exper-
iments using only conservatively configured TTL estimation
algorithms to keep staleness as generally low as possible.

For general applicability, we do not explicitly focus on
latency or response times. Latency and response times are
nonlinear functions of the amount of work that a server has
to do [14] and depend on a multitude of factors, such as
application code, its deployment, and the underlying hardware
resources, the confluence of which causes unexpected behavior
in both the application and the control plane [15]. Thus, a more
objective and general measurement on algorithm efficiency and
performance is to consider the number of requests that are
transmitted across the network and, when a specific application
is used, the number of bytes such transmissions consist of.
Unless, of course, caching itself would add considerable
processing time — however, our choice of algorithms and
results strongly indicate that this is not the case here.

A. Quantifying network load reduction in a real application

Although it would be desirable to evaluate data staleness in
this experiment too, this is non-trivial to achieve. For example,
if the client pays for an item to the shopping cart, this not only
affects the Cart micro-service, but also a number of others,
e.g., the ShippingService. Hence, even if we modified the
client to remember the last value set for each API call, side-
effects across micro-services prevent the client from accurately
predicting the freshest value for a different API call.

Hipster Shop, chosen for our evaluation, is a polyglot
application with 11 micro-services that communicate over
gRPC. Note that no source code has been modified in Hipster
Shop, we only modified the Kubernetes deployment manifest.
These modifications are simple and can be automated.

To each service in Hipster Shop, we added an Estimator.
Because not all requests can be cached, we blacklisted certain
requests (see also Section VI-A2). The Estimator components
were all given the same configuration, depending on which
algorithm was under test.

Cache components were added to the three services in
Hipster Shop that perform inter-service calls over gRPC: Fron-
tend, CheckoutService, and RecommendationService. Adding
a Cache component to other services would not affect them in
any way, apart from wasting resources on a component that
would be dormant. Note that we do not cache non-gRPC
traffic, i.e. the HTTP responses to the Load Generator and
the Redis communication initiated by the CartService.

1) Load generation: Hipster Shop ships with its own
load generator. The load generator operates in closed-loop
manner [16] and waits a random amount of time (uniform
distribution) before issuing the next request. The set of pos-
sible requests is pre-defined, and weights are attached to the
requests, which affects the probability that a particular request
is randomly chosen more or less often than the others.

2) Cacheable subset of operations: Not all operations
in Hipster Shop can be cached without introducing sig-
nificant application-level errors. Caching, e.g., a call to
AddItem(user_id, item) such that a repeated call
would be ignored by the CartService would be highly detri-
mental to the application.To mitigate this, we used cache
black-listing to disallow caching of state-modifying calls.

3) Results: network traffic reduction for a real micro-
service application: The results of the experiments are pre-
sented below, followed by an analysis in Section VI-A4. Based
on the results obtained by the previous sets of experiments, we
deployed Hipster Shop in a Kubernetes cluster (minikube in-
stance) with our caching infrastructure. The two most conser-
vative dynamic TTL estimation algorithm configurations were
deployed (“dynamic-adaptive-0.1” and “dynamic-updaterisk-
0.1”) as well as the no-caching baseline (“static-0”).

Figure 2 shows the amount of network traffic for the three
algorithm configurations, averaged in 15-second increments
during the three experiment repetitions. The amount of net-
work traffic is visibly clearly reduced when caching is used, in
comparison to when it is not. Both caching algorithms achieve
a traffic reduction of about 40%, with the very slight advantage
going to the Adaptive TTL algorithm.

What caused the traffic reduction is the use of cached
data. The total number of requests in the application are very
similar across experiments (differences related to randomness
in the load generator, see Section VI-A1) and both dynamic
algorithms manage to cache about 80% of responses. As stated
in Section VI-A2, not all requests can be cached. Service
responses are of course also not equal in size, which explains
why an 80% reduction in requests could translate into a 40%
reduction in network traffic.

4) Traffic analysis: Analysis of the Hipster Shop experi-
ment log files show that 12% of requests were not initiated
by the Frontend service. Two other services (Recommenda-
tionService and CheckoutService) also make requests to carry
out their work. This implies that inter-service requests that can
be answered from cache between these services and the ones
they request data from benefit from not only caching at the
publicly facing Frontend.

Figure 2: Network traffic over time (bytes/second) in Hipster Shop for when no caching is used (static-0), and for the two most
conservative dynamic estimation algorithm (dynamic-adaptive-0.1 and dynamic-updaterisk-0.1). Outgoing traffic is shown
as positive, incoming as negative. Thinner overall shape therefore implies less traffic.

Although we purposefully did not seek out to include
response time analysis in these experiments (for good reason:
the minikube Kubernetes cluster is far from a production-
ready or realistic execution environment), it is worth noting
that response time for most operations was cut in half with
caching enabled compared to when it was not (not shown for
briefness and to not place undue focus on it in this evaluation).

VII. CONCLUSION

The micro-services paradigm dictates a separation of con-
cerns and strict data ownership, which implies that services
must interact frequently with each other across the network.
Such communication is increasingly dealt with by service
meshes, which uniformly implement features such as load-
balancing and retrying.

In this work, we proposed caching for service meshes. We
estimate cache TTLs for responses dynamically using adaptive
algorithms from the literature on serving web content. We have
evaluated our approach and found that in spite of frequent
updates, conservative configuration of dynamically estimated
TTL estimation algorithms could keep data staleness at 0–3%
while reducing load by up to 30%. When used in a realistic
off-the-shelf e-commerce micro-service application, 80% of
the requests were served cached responses with 40% fewer
bytes transferred.

OPEN SOURCE AND OPEN DATA NOTICE

The source code and data sets used in this work are available
in the following locations:

• https://github.com/llarsson/grpc-caching-interceptors,
hosts the gRPC interceptors that implement the Caching
and TTL Estimation.

• https://github.com/llarsson/protobuf, contains a modified
Protobuf compiler that provides a reverse proxy server.

• https://github.com/llarsson/hipster-shop, is the Hipster
Shop application and our scripts and Kubernetes mani-
fests for running experiments.

• https://github.com/llarsson/hipster-shop-experiments,
contains the data set from the second suite of experiments.

REFERENCES

[1] J. Lewis and M. Fowler, “Microservices,” 3 2014,
library Catalog: martinfowler.com. [Online]. Available:
https://martinfowler.com/articles/microservices.html

[2] W. Li, Y. Lemieux, J. Gao, Z. Zhao, and Y. Han, “Service mesh:
Challenges, state of the art, and future research opportunities,” in Int.
Conf. on Service-Oriented System Engineering (SOSE). IEEE, 2019.

[3] A. Chankhunthod, P. B. Danzig, C. Neerdaels, M. F. Schwartz, and
K. J. Worrell, “A hierarchical internet object cache.” in Annual Technical
Conf. USENIX, 1996.

[4] A. Iyengar and J. Challenger, “Improving web server performance by
caching dynamic data,” in Symposium on Internet Technologies and
Systems. USENIX, 1997.

[5] gRPC Authors, “gRPC over HTTP/2 (ver-
sion 1.28.x),” 12 2019. [Online]. Available:
https://github.com/grpc/grpc/blob/v1.28.x/doc/PROTOCOL-HTTP2.md

[6] Microsoft, “Microsoft REST API guidelines,” 2020, visited
March 26, 2020. [Online]. Available: https://github.com/Microsoft/api-
guidelines/blob/master/Guidelines.md

[7] R. T. Fielding, “Architectural styles and the design of network-based
software architectures,” Ph.D. dissertation, University of California,
Irvine, 2000.

[8] B. Familiar, “Iot and microservices,” in Microservices, IoT, and Azure.
Springer, 2015.

[9] K. Brown and B. Woolf, “Implementation patterns for microservices
architectures,” in Conf. on Pattern Languages of Programs. The Hillside
Group.

[10] W. Shi, R. Wright, E. Collins, and V. Karamcheti, “Workload charac-
terization of a personalized web site and its implications for dynamic
content caching,” in Int. Workshop on Web Caching and Content
Distribution (WCW’02), 2002.

[11] S. Basu, A. Sundarrajan, J. Ghaderi, S. Shakkottai, and R. Sitaraman,
“Adaptive TTL-Based Caching for Content Delivery,” in Int. Conf. on
Measurement and Modeling of Computer Systems. ACM, 2018.

[12] R. Fielding, J. Gettys, J. Mogul, H. Frystyk, L. Masinter, P. Leach, and
T. Berners-Lee, “ Hypertext Transfer Protocol – HTTP/1.1 ,” Internet
Requests for Comments, The Internet Society, RFC 2616, 6 1999.
[Online]. Available: https://www.rfc-editor.org/rfc/rfc2616.txt

[13] Jeong-Joon Lee, Kyu-Young Whang, Byung Suk Lee, and Ji-Woong
Chang, “An update-risk based approach to ttl estimation in web caching,”
in Int. Conf. on Web Information Systems Engineering, (WISE). IEEE,
2002.

[14] J. Cao, M. Andersson, C. Nyberg, and M. Kihl, “Web server performance
modeling using an M/G/1/K*PS queue,” in Int. Conf. on Telecommuni-
cations, (ICT). IEEE, 2003.

[15] L. Larsson, W. Tärneberg, C. Klein, E. Elmroth, and M. Kihl, “Impact
of etcd deployment on kubernetes, istio, and application performance,”
Wiley, Software: Practice and Experience, 2020.

[16] B. Schroeder, A. Wierman, and M. Harchol-Balter, “Open versus closed:
A cautionary tale.” USENIX, 2006.

