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Abstract—Distributed Denial of Service (DDoS) attacks disrupt
global network services by mainly overwhelming the victim
host with requests originating from multiple traffic sources.
DDoS attacks are currently on the rise due to the ease of
execution and rental of distributed architectures such as the
Internet of Things (IoT) and cloud infrastructures, which could
potentially result in substantial revenue losses. Therefore, the
detection and prevention of DDoS attacks are currently topics
of high interest. In this study, we use traffic flow information to
determine if a specific flow is associated with a DDoS attack. We
used traditional Machine Learning (ML) methods in developing
our DDoS detector and applied an exhaustive hyperparameter
search to optimize their detection capability. Using lightweight
approaches is suitable for resource-constrained environments
such as IoT to reduce computing overhead. Our evaluation shows
that most algorithms provide satisfactory results, with Random
Forests achieving as high as 99% of detection accuracy, which
is similar to the performance of current deep learning solutions
for DDoS detection.

Index Terms—DDoS Detection, Machine Learning, Network
Security

I. INTRODUCTION

Denial of Service (DoS) is a well-known cyberattack that
targets a victim host (e.g., network servers, resources, or
nearby infrastructures) mainly through excessive flooding of
network requests to overload the victim that becomes unable
to execute its usual services [1]. A DoS attack becomes more
difficult to detect when the source is distributed over the
network, which is known as Distributed DoS (DDoS). Over
the years, DDoS attacks have grown due to the increase of
distributed architectures such as the Internet of Things (IoT),
distributed service paradigms (e.g., [2]), and the ease of renting
resources. For instance, the MIRAI Botnet [3] was recently
used to deploy a large-scale DDoS attack that has infected
around 600,000 IoT devices worldwide.

With the growing sophistication of cyberattacks such as
DDoS, traditional monitoring tools become inadequate to
meet the required detection and mitigation strategies to pro-
tect critical network infrastructures. In this respect, DDoS
detection based on Machine Learning (ML) (e.g., [4]) has
become popular due to the increased detection performance
with today’s availability of data and computing resources.

Recent studies are leveraging Deep Learning (DL) solutions
(e.g., [5], [6]) to further increase the detection performance.
On the other hand, DL methods are usually more strenuous to
deploy in real-world scenarios [7] and typically require much
more input data and computational power than traditional
ML methods. It becomes a concern in lightweight execution
environments such as IoT. Thus, we aim to create a light ML-
based DDoS detector using traditional ML methods and utilize
traffic flow information as input data streams.

In developing our detector, we used grid search for finding
the best hyperparameters to enhance the accuracy, which is
a novelty compared to existing ML-based DDoS detectors. A
similar approach has been used in [8] to improve accuracy
but for BGP anomalies. While current trends focus on DL
methods (e.g., [6]), this study looks into improving the ca-
pabilities of lightweight ML methods to their full potential
using hyperparameter optimization. We evaluate classification
techniques such as Naive Bayes, Logistic Regression, Decision
Trees, Random Forests, K-Nearest Neighbors, Support Vector
Machines, and Neural Networks to represent our detector.

We trained and evaluated the ML methods using the Cana-
dian Institute of Cybersecurity (CIC) datasets1. These datasets
are used for both research (e.g., [6], [9]) and industrial
purposes. We utilized datasets from 2012, 2017, 2018, and
2019 that include DoS and DDoS attacks. This data includes,
among others, the number of incoming and outgoing packets
in a flow, packet inter-arrival times, header flag counts, and
so on. The statistics include the ratio, total, mean, minimum,
and maximum of every flow feature aforementioned.

Our results show that DDoS attacks can be detected using
traditional ML algorithms with optimized hyperparameters,
reaching an accuracy of over 98% by using Random Forests
and Decision Trees across all the datasets. These results are
similar to current DL approaches. Thus, tuning hyperparameter
in traditional ML allows for increased performance similar to
DL approaches with fewer resources needed.

The remainder of the paper is organized as follows. The
next section, Section II, discusses related work on the current

1The details on the CIC datasets can be found on the website: https://www.
unb.ca/cic/datasets/index.html978-1-6654-0522-5/21/$31.00 ©2021 IEEE
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ML techniques for DDoS detection. Then, Section III presents
the methodology and experimental setup. Section IV provides
a detailed data analysis of the data features used in this
study. Section V presents the paper evaluation results and the
concluding remarks are discussed in Section VI.

II. RELATED WORK

Early comparison of traditional ML methods for DDoS
detection is conducted by Bhamare et al. [4]. Using the UNSW
dataset, Logistic Regression achieved best in terms of accuracy
(i.e., 89%) with a 97% True Positive rate. Additionally, when
these trained models were tested on another dataset (ISOT
dataset), both J48 Decision Tree and Logistic Regression have
achieved the best with 95% accuracy but had significantly
reduced the True Positive rate.

He et al. [10] also studied DoS attacks but focused on the
scenario in which the cloud environment is used for launching
the attacks. They used hypervisors/virtual machine information
and the results show that Support Vector Machines with a
linear kernel performed best with 99.73% accuracy.

Given the increasing number of cyber attack types, Salman
et al. [11] propose a two-step approach to identify the types of
attack. First, they used ML to detect anomalies and proceed to
a rule-based identification process to determine the attack type.
Using Random Forest and Linear Regression, they achieved
99% of detecting anomalies while they achieved 93.6% accu-
racy in classifying the attack type.

With the increasing popularity of Neural Network (NN),
Yuan et al. [9] adopted different DL methods such as Convo-
lutional NN (CNN) and Recurrent NN (RNN) for DDoS attack
detection called DeepDefense. They evaluated their classifier
using the ISCXIDS (2012) [12] and showed a substantial
reduction of error from using traditional approaches. For in-
stance, the 7.5% error rate from Random Forests was reduced
to 2.1% using DL methods.

Furthermore, Yao et al. [13] developed a DL feature ex-
tractor, DeepGFL, to classify attack and traffic flow through
graph representation. It aims to detect various network attack
types. For DoS Hulk, it reached 94.05% of F1-measure in the
evaluation using CIC-IDS (2017) [14].

Doriguzzi-Corin et al. [6] also proposed LUCID DDoS
detector, which is based on CNN. Using the ISCXIDS (2012)
[12], CIC-IDS (2017) [14], and CSE-CIC-IDS (2018) [14]
datasets from the CIC, they achieved high detection rates of
up to 99.87% accuracy. Similarly, Roopak et al. [15] utilized
CNN + Long Short-Term Memory (LSTM) for the detection
of DDoS in IoT systems, reaching 97.16% accuracy tested on
the CIC-IDS (2017) dataset.

Min et al. [16] also developed a Text-CNN and Random
Forest-based Intrusion Detection System (TR-IDS) for IoT
DDoS detection. Word embedding and Text-CNN are used for
feature extraction of network traffic, which is fed to Random
Forests for the final classification. It achieved 99.13% accuracy
using the ISCXIDS (2012) [12] dataset.

Finally, Sanchez et al. introduce DLDDoS [5], which uti-
lizes a 2-hidden layer feed-forward NN approach coupled with

TABLE I: The attack samples taken from CIC Datasets

Date Duration Event attack type attacks benign

15/06/2010 60 mins. DDoS IRC Botnet 34760 34760

05/07/2017
05/07/2017
05/07/2017
05/07/2017
07/07/2017

17 mins.
13 mins.
23 mins.
21 mins.
20 mins.

DoS
DoS
DoS
DoS
DDoS

Hulk
GoldenEye
slowloris
SlowHTTPtest
LOIC (TCP)

231073
10293
5796
5499
128025

440031
-
-
-
97686

15/02/2018
15/02/2018
16/02/2018
16/02/2018
20/02/2018
21/02/2018
21/02/2018

43 mins.
41 mins.
34 mins.
56 mins.
65 mins.
60 mins.
34 mins.

DoS
DoS
DoS
DoS
DDoS
DDoS
DDoS

GoldenEye
Slowloris
Hulk
SlowHTTPTest
LOIC (HTTP)
HOIC (TCP)
LOIC (UDP)

8851
2417
30287
30391
125130
400
360

2334
-
97040
-
124914
77876
-

12/01/2019
12/01/2019
12/01/2019
12/01/2019
12/01/2019
12/01/2019
12/01/2019
12/01/2019
12/01/2019
12/01/2019
12/01/2019
12/01/2019

13 mins.
10 mins.
9 mins.
10 mins.
10 mins.
11 mins.
10 mins.
24 mins.
5 mins.
220 mins.
4 mins.
11 mins.

DDoS
DDoS
DDoS
DDoS
DDoS
DDoS
DDoS
DDoS
DDoS
DDoS
DDoS
DDoS

DNS
LDAP
MSSQL
NTP
NetBIOS
SNMP
SSDP
UDP
TCP-SYN
TFTP
UDP-lag
WebDDoS

27065
12798
15981
115149
13530
12072
6016
17085
3025
202160
29635
39

2690
1280
1573
11454
1374
1198
615
1702
320
20250
2989
-

feature selection to reduce input data. The study used the most
recent CIC datasets and achieved high detection performance.

The literature clearly shows that ML approaches do not im-
plement hyperparameter optimization and recent works adopt
DL models instead. This transition has increased the detection
performance. However, DL methods are usually difficult to
deploy in real-world scenarios [7] and typically require much
more input data and computing capability than the traditional
ML methods. This becomes a bottleneck for lightweight
execution environments (e.g., IoT) and in centralized security
architectures (e.g., [2]) that requires lightweight data collecting
agents.

In this work, different from the DL trends, we focus on
lightweight and traditional ML models and utilize hyperpa-
rameter search to obtain their optimum parameters that yield
higher detection performance. This work also uses recent CIC
datasets and reports a comparison of current DL approaches
in detecting DDoS attacks.

III. SYSTEM MODEL

In this section, the datasets and ML models in this study are
discussed, followed by the training and evaluation procedures.

A. Datasets

The datasets used in this study are from the CIC, University
of New Brunswick (UNB), which have been used in numerous
studies (e.g., [5], [6]). We used the latest datasets that con-
tain both DoS and DDoS attacks, namely, ISCXIDS (2012)
[12], CICIDS (2017) [14], CSE-CIC-IDS (2018) [14], and
CICDDoS (2019) [17], which are reported in Table I. The
same set of datasets has also been used in [5]. The attacks
extracted are composed of a Botnet attack, DoS attacks such as
Hulk, GoldenEye, sloworis and slowHTTPtest, network stress
testing tools such as Low Orbit Ion Cannon (LOIC), and DDoS
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attacks from utilizing different protocols and applications (i.e.,
DNS, LDAP, MSSQL, NTP, NetBIOS, SNMP, SSDP, UDP,
TCP (Syn), TFTP, UDP-lag, and WebDDoS).

Table I shows that ISCXIDS (2012) includes an Internet
Relay Chat (IRC) Botnet DDoS attack [12]. This dataset was
generated using the IBM QRadar appliance. Also, multiple
DoS and DDoS attacks from the CICIDS (2017), CSE-CIC-
IDS (2018), and CICDDoS (2019) include flow features,
which are generated by the CICflowmeter tool [18]. Given the
tool differences, the real data traces in PCAP format of the
ISCXIDS (2012) dataset was used to generate flow features
using the CICflowmeter tool to have similar data features
across all datasets.

Each data sample contains information about traffic flow
statistics. The complete description of these features is pro-
vided in the documentation of the CICflowmeter [18]. The 76
features include the header information, number of incoming
and outgoing packets, Inter-Arrival Times (IAT) of these
packets, packet length information, and so on. The statistics
include the ratio, total, mean, minimum, and maximum of
every flow information. The use of flow statistics for DDoS
detection means that it has to wait for the flow to finish before
the classification. However, a DDoS attack is composed of
numerous flows. For instance, the 2012 botnet attack produced
34,000 attack flows for a 60-minute duration. In this case, the
detector can evaluate flows that have been completed from the
first few seconds and can still provide an early alarm trigger.

B. Training Configuration

Each dataset in Table I is randomly distributed into 75%
training and 25% test sets. Furthermore, 10% of the training
samples are used as the validation set during the training
phase. The table shows that only the 2019 dataset has a data
imbalance, where there were more attack samples than benign
samples. We preprocessed the training data by removing noise
and scaling the features. We used the z-score normalization
[19] for the feature scaling to have similar ranges for all
features using the scikit-learn’s standard scaler function2. It
transforms individual feature mean to zero and unit variance.

We compared multiple classification techniques, namely,
Logistic Regression (LR), Naive Bayes (NB) classifier, Deci-
sion Trees (DT), Random Forests (RF), K-Nearest Neighbors
(KNN), Support Vector Machines (SVM), and Multi-layer
Perceptron (MLP). The output binary classes include anomaly
and benign, which stands for the DDoS attack and regular
traffic flows, respectively.

Each of the ML algorithms has its own set of hyperparam-
eters that needs to be fixed before training except for the NB
classifier, which does not have a tuning parameter and will
be used as a benchmark. These hyperparameters are reported
in Table II. For LR, we explore Ridge (L1) and Lasso (L2)
regression [20] for regularization, which prevents overfitting
and reduces model complexity. The C parameter [21], which

2StandardScaler function: https://scikit-learn.org/stable/modules/generated/
sklearn.preprocessing.StandardScaler.html

TABLE II: GridSearchCV hyperparameter values

Algorithm Hyperparameters

NB None

LR penalty: [Ridge (L1), Lasso (L2)],
C : [0.001, 0.01, 0.1, 1, 10, 100]

KNN K: [10, 20, 30, 40, 50, 60, 70, 80, 90, 100],
metric: [euclidean, manhattan, chebyshev, minkowski]

DT impurity :[gini, entropy], max depth: [1:20]

RF impurity :[gini, entropy], max depth: [1:20],
no. of trees: [10, 20, 30, 40, 50, 60, 70, 80, 90, 100]

SVM C: [0.001, 0.01, 0.1, 1, 10, 100]

MLP activation: [logistic, relu, tanh],
solver: [lbfgs, adam , sgd],
hidden layers size : [20, 40, 60, 80, 100]

is the inverse of regularization strength, is also explored for
LR. Similarly, we also explore the C parameter for the SVM.

For KNN, we explore different values of K neighbors,
together with the different metrics for computing the distances
among samples. For DT, we use different criteria for com-
puting the impurity such as Gini impurity [22] and entropy
[22], with tree depth up to 20 levels. RF also takes the
same hyperparameters with the addition of the number of
tree estimators ranging from 10 to 100. We explore different
sizes of hidden layers for MLP together with their activation
functions such as logistic [23], rectified linear unit (relu) [23],
and hyperbolic tangent (tanh) [23]. We also explore differ-
ent weight optimizers, which include the Limited memory
Broyden-Fletcher-Goldfarb-Shanno (LBFGS) algorithm [24],
Stochastic Gradient Descent (SGD) [24], and Adam optimizer
[25]. The hyperparameter search is conducted using scikit-
learn’s GridsearchCV function3. The model training and vali-
dation are implemented using 3-fold cross-validation.

C. Test Evaluation

In addition to Accuracy (Ac), the evaluation measures
also include the F1-score (F1), which is a more appropriate
measure for imbalanced datasets such as the 2019 dataset since
it is derived from Precision (Pr) and Recall (Rc). The formulas
for the evaluation measures are the following:

Accuracy (Ac) =
TP + TN

TP + FP + TN + FN
(1)

Precision (Pr) =
TP

TP + FP
(2)

Recall (Rc) =
TP

TP + FN
(3)

F1− score (F1) =
2 ∗ PR ∗RC

PR + RC
(4)

3GridSearchCV function https://scikit-learn.org/stable/modules/generated/
sklearn.model selection.GridSearchCV.html
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Fig. 1: The number of forward versus backward packets of regular and attacks flows

In the equations above, the True Positives (TP) and True
Negatives (TN) are the numbers of traffic flows correctly
classified as DDoS attacks and regular flows, respectively.
Otherwise, incorrectly classified traffic flows are counted as
False Positives (FP) and False Negatives (FN) for DDoS
attacks and regular flows, respectively.

Each ML model is also evaluated using the Receiver Op-
erating Characteristic (ROC) curve. This curve graphically
illustrates the classification capability of the ML model by
plotting the TP and FP rates for various thresholds. The Area
Under the ROC Curve (AUC) ranges from zero to one (i.e.,
∈ [0, 1]), in which larger values signify better classification
capability. These metrics are mostly used in evaluating binary
classification approaches (e.g., [5], [8]).

IV. DATA ANALYSIS

DDoS attacks are known to overwhelm the server victims
with both incoming traffic (e.g., volumetric attacks) and out-
going traffic (e.g., reflection attacks) that are more than they
can handle. As a first step, we investigated the total packet
flows for both forward (attacker to the victim) and backward
(victim to the attacker) directions. These features are included
among the multiple features used in this study.

Figure 1 shows the total forward versus backward packets
in a flow differentiated according to regular and DDoS flows.
Even only showing these two features, we can see a pattern for
the different DDoS attacks. Normal traffic mostly has an equal
number of forward and backward traffic, even for Figure 1c,
where we skewed the figure to show a large difference between
incoming and outgoing traffic.

Figure 1a shows the DDoS Botnet from 2012, which has
a slightly increased number of backward packets versus the
forward packets. In this scenario, seven users managed to
infiltrate the servers and force them to download and run
the HTTP GET command, which resulted in full and partial
inaccessibility [12].

For DoS attacks (e.g., Hulk, GoldenEye, slowloris, and
slowHTTPtest), the features do not show significant change
as depicted in Figure 1b. The same goes for DDoS LOIC
(TCP) attacks. However, these attacks affected the servers in
terms of the number of TCP flows in a small duration. For
instance, DoS Hulk only happened for 17 minutes and pro-
duced 230,124 attack flows. Similarly, GoldenEye, slowloris,

and slowHTTPtest attacks have caused thousands of flows in
only 13, 23, and 21 minutes, respectively. The DDoS LOIC
(TCP) attack also occurred in under 20 minutes. We do not
show the DoS attacks in the 2018 dataset since they have the
same pattern as in the 2017 DoS attacks.

The difference between the number of forward and back-
ward packets is more evident in the 2018 LOIC (UDP and
HTTP) attacks. Figure 1c shows a clear separability between
DDoS and regular flows. Note that for a single regular flow,
the largest number of forward packets only achieved 20,000
packets. A single attack flow can reach up to 200,000 forward
packets for an HTTP attack and up to 300,000 forward packets
for a UDP attack. These are respectively 10 and 15 times the
maximum number of forward packets in a regular flow.

Similarly, DDoS attacks of the 2019 dataset also show
similar characteristics to the 2018 LOIC attacks. The total
number of forward packets has a vast difference compared
to the number of backward packets, which is shown in Figure
1d. For instance, a single DDoS traffic flow using the DNS
protocol reached a maximum of 100,000 packets. Thus, we
expect high detection rates for these datasets given their clear
separability, even when using traditional ML methods.

V. EXPERIMENTAL RESULTS

We report the training evaluation of the ML models during
the hyperparameter search in this section. Then, we show the
classification results of all the ML methods using both the
accuracy measures and the ROC curves of the final testing
evaluation. Finally, we compare our work with the existing
DL solutions utilizing the same datasets.

The ML models are developed and evaluated using the
tools from scikit-learn4. The system running the experiments
is composed of 32 CPU cores and 64 GB of RAM.

A. Training Evaluation

The training evaluation is shown in Figure 2, depicting the
average training and validation accuracies for each hyperpa-
rameter. Figure 2 shows only the result for the ISCXIDS 2012
dataset, which has patterns similar to the other datasets.

For the DT, the figure shows that choosing either Gini or
entropy to measure node impurity does not incur a significant

4https://scikit-learn.org/stable/index.html
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Fig. 2: ML model hyperparameter trends affecting accuracy (showing only results for ISCXIDS 2012)

change in detection accuracy. On the other hand, the depth of
the tree plays a huge role in improving the accuracy. As the
depth increases, the training and validation accuracy increases.
However, the validation accuracy stops earlier, which means
that tree depth also tends to overfit. The optimum value chosen
by GridSearchCV is at max depth = 11, where the validation
accuracy is the highest (instead of the training accuracy). The
same pattern can be observed for the other datasets.

For the RF, similar patterns can be seen for the depth and
criterion from DT, as shown in Figure 2d. The number of
estimators does not have a strong influence on increasing
accuracy. The patterns for these three hyperparameters are also
similar to the other datasets.

For the KNN, the number of neighbors, K, has more
influence on accuracy than the distance metric. As K increases,
the accuracy decreases, which is the same on all datasets.
Thus, K=10 is optimum for all the KNN models. For the
distance metric, Manhattan achieved the best accuracy while
Chebyshev achieved the least. This result is also the same for
the 2017 and 2019 datasets, while Chebyshev achieved best
for the 2018 dataset.

For the LR, both L1 and L2 regularization parameters have
a minuscule effect on accuracy. In contrast, the C parameter
has a significant influence on accuracy across all datasets. For
the SVM, the C parameter is uniform across all the datasets,
where accuracy decreases as the C parameter increases.

For MLP, the weight optimizer has more influence on
accuracy than the hidden layer numbers and their activation
functions. For the optimizer, SGD always achieved the least
among all the datasets. Adam optimizer achieves best for
2012 and 2017 datasets while LBFGS achieves best for the
remaining datasets. Although the differences are minuscule,
relu has achieved the highest for the 2017 dataset while tanh

achieved best for the remaining datasets.
Finally, the average fitting and validation time during the

training phase is shown in Figure 3 using the logarithmic
scale. SVM, MLP, and KNN have to take a large training time
while DT, RF, and LR have a significantly lesser training time.
For the validation time, KNN takes a larger time compared
to the rest given its non-parametric nature. KNN does not
learn parameters during training (i.e., lazy learner) and uses
the training data for prediction. Thus, large numbers of training
samples increase the time for a prediction. The figure shows
only the results for the 2017 dataset since it has the most
number of samples, although the patterns are similar across
all datasets.

B. Testing Evaluation

Table III shows the results of ML models for the four main
test datasets, reporting the overall accuracy (Ac), F1-measure
(F1), precision (Pr), and recall (Rc). For the 2012 dataset,
the best result was achieved by RF, reaching 98.3% Ac using
entropy with a tree depth of 14. Similarly, DT also provides
high Ac, which reached 98.2% using Gini and a tree depth of
11. Linear SVM and LR both achieved 96.3% Ac using a C

LR DT RF SVM MLP KNN

101

102

103

se
co

nd
s

fitting time

LR DT RF SVM MLP KNN
10−1

100

101

102

103

validation time

Fig. 3: CICIDS2017 training time evaluation
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TABLE III: Evaluation Results of different ML methods for each test dataset

ML Models
ISCXIDS 2012 CICIDS 2017 CSE-CIC-IDS 2018 CICDDoS 2019

Ac F1 Pr Rc Ac F1 Pr Rc Ac F1 Pr Rc Ac F1 Pr Rc
Naive Bayes 70.601 77.198 63.079 99.460 63.418 69.173 53.248 98.688 91.800 91.932 90.446 93.468 98.337 99.080 99.726 98.441

Logistic Regression 96.332 96.391 94.928 97.901 96.157 95.441 94.186 96.730 98.682 98.697 97.539 99.883 99.797 99.888 99.921 99.855

Decision Trees 98.230 98.221 98.787 97.661 99.952 99.942 99.908 99.975 99.988 99.988 99.993 99.983 99.972 99.985 99.990 99.979

Random Forest 98.335 98.329 98.760 97.901 99.927 99.912 99.877 99.947 99.890 99.890 99.817 99.963 99.979 99.988 99.996 99.980

K-Nearest Neighbors 97.652 97.647 97.949 97.347 99.839 99.807 99.729 99.885 99.928 99.928 99.902 99.955 99.920 99.956 99.962 99.950

Support Vector Machines 96.430 96.496 94.794 98.261 95.573 94.640 95.317 93.972 97.508 97.565 95.329 99.908 99.792 99.885 99.900 99.870

Multi-Layer Perceptron 97.547 97.570 96.730 98.426 98.949 98.751 97.605 99.924 99.878 99.878 99.784 99.972 99.933 99.963 99.967 99.959
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Fig. 4: Evaluating ML model robustness using ROC curves and AUC values (showing only the distinct values)

parameter of 0.01 and 0.1, respectively. All of the algorithms
yield high accuracy except for NB.

For the 2017 dataset, DT, RF, and KNN reached over 99%
Ac. DT achieved the highest with a maximum tree depth
of 14. RF also achieved high Ac through a maximum tree
depth of 20 levels and 100 tree estimators. Furthermore, MLP
reached 98.9% Ac with relu as the activation function in the
hidden nodes and Adam weight optimizer. LR and SVM also
achieved high Ac with a C parameter equal to 10 and 0.001,
respectively. NB still performed the least in this dataset.

All of the algorithms yield high detection Ac in the 2018
dataset. NB reached 91.8% Ac while the rest achieved greater
than 97.5%. DT achieved best with 99.9% Ac followed closely
by KNN. RF also achieved 99.8% Ac using 20 tree estimators.
Both DT and RF used entropy with a maximum tree depth of
17 and 20 levels, respectively. MLP also reached 99.8% Ac
with 100 hidden layers. Linear models, SVM and LR achieved
97.5% and 98.6% accuracy using 0.001 and 0.1 of the C
parameter, respectively.

The models yield the highest detection accuracy using the
2019 DDoS dataset. NB achieved 98.3% Ac while the rest
obtained over 99%. RF achieved best, which reached 99.97%
Ac followed closely by DT. RF and DT models use 20
and 19 levels of tree depth, respectively. MLP also achieved
99.93% using 80 hidden layers with tanh activation function
and LBFGS weight optimizer. Linear models, LR and SVM
reached the same accuracy of 99.79% using a C parameter
value of 100 and 0.1, respectively.

The results have shown accordance with the analysis in
Section IV where the 2018 and 2019 datasets show clear
separability for the number of forward and backward packets,
allowing them to have better Ac results compared to the others.

C. ROC curves

In addition to accuracy metrics, the AUC of each ML model
is also reported in Figure 4, showing only the distinct values.
Figure 4a shows the AUC of the ML models for the 2012
dataset and shows high AUC values for most of the ML models
except for NB. It confirms the results of the accuracy metrics
and also shows that RF is the most robust classifier. MLP,
KNN, DT, and LR also achieved 0.99 of AUC.

For the 2017 dataset, Figure 4b shows that RF has achieved
the largest AUC, which also achieved the highest detection
accuracy for this dataset. DT, RF, MLP, and KNN also
achieved similar results. NB still has the least performance
in detection confidence.

Figure 4c also shows that RF achieved the highest AUC for
the 2018 dataset, which also achieved the highest Ac of over
99% for this dataset. DT, KNN, and MLP have also achieved
similar results with RF. Finally, Figure 4d shows the robustness
of all ML models for the 2019 DDoS dataset, which achieved
greater than 0.98 of AUC.

The accuracy metrics and AUC evaluation show that RF and
DT achieved outstanding results for DDoS attack detection. On
average, DT outperformed RF only by 0.002% Ac while RF
outperformed DT only by 0.002 on average AUC. Since RF is
an ensemble method composed of multiple DTs to overcome
DT’s tendency of overfitting, we choose RF to represent our
DDoS detection scheme.

D. Literature Comparison

The evaluation concludes with the comparison of current DL
approaches that utilize the same dataset. As shown in Figure
5, our results using RF, called MLDDoS, are comparable to
current approaches. For the 2012 dataset, DLDDoS [5] use
Deep Neural Networks (DNN), LUCID [6] and TR-IDS [16]
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Fig. 5: Comparison with current Deep Learning models

used CNNs, while we show the best result of DeepDefense [9]
using LSTM. The figure shows that our approach has similar
detection performance to existing DL methods.

For the 2017 dataset, we have outperformed DLDDoS [5],
LUCID [6], DeepGFL [13], and the DL approach from [15]
using CNN+LSTM. For the DeepGFL, we reported the result
for detecting DDoS Hulk in the figure. LUCID, DLDDoS,
and MLDDoS have similar detection performance in the 2018
dataset. Finally, only DLDDoS and MLDDoS have utilized the
most recent 2019 dataset at the time of writing, which both
achieved high detection performance.

VI. CONCLUSION

In this paper, we show that DDoS attacks can be detected
with high accuracy using only traditional ML algorithms.
The search for the optimum hyperparameters also supported
the development of the ML models to yield high detection
performance. Our results show that RF and DT achieved
the best performance and worst for NB since it does not
have hyperparameters for tuning. We adopted RF as our
DDoS detector since it is an ensemble technique composed of
DTs that would combat a single DT’s overfitting tendencies.
We also compared our results to existing approaches in the
literature that utilize DL methods with the same datasets. This
paper also provides detailed data and model analysis, which
are missing in most ML studies. We found patterns from
attacks by analyzing the raw data and understand the ML
model parameters that are important for tuning to increase
detection performance. For future work, we will extend the
detection to multiclass to identify the type of attack and deploy
it in a real-world environment.
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