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Abstract—As the adoption of softwarized network functions
(NFs) keeps growing, we evaluate the performance benefits
of SDN-aware data-plane implementations when compared to
diverse acceleration and process-based NFV frameworks. Typical
network functions have been implemented using four alternative
frameworks scenarios, an SDN-aware software switch (data-
plane), a virtual machine (VM), a Data-Plane Development
Kit (DPDK) NF, and a containerized NF. Results from our
experiments show that the data-plane NF implementation yields
much higher bandwidth and packets per second (pps) rates. The
bandwidth obtained is 14% more than the user-space scenario
while retaining CPU utilization. The DPDK NFs in our evaluation
can process packets at a much higher rate for 64B packets, on a
single CPU core, which is 7 times higher than the containerized
NF implementations, also tied to a single core. Our results also
show the performance gains from deploying virtual network
functions on heterogeneous frameworks.

Index Terms—SDN, Data-plane, Network Function Virtualiza-
tion, Network Softwarization, Containerized Network Functions,
DPDK, Virtual Network Functions, Virtual Machines, Perfor-
mance Comparison, NFV frameworks.

I. INTRODUCTION

The flexibility offered by network function virtualization
(NFV) and software-defined networking SDN allows service
providers to deploy Virtual Network Functions (VNFs) in a
flexible and scalable manner, with the simple goal of meeting
the packet processing requirements of applications. The impor-
tant components that must be present for NFV to be imple-
mented are: (i) the NFV Infrastructure (NFVI), which consists
of a virtualization layer for hosting VNFs; (ii) the abstracted
network function, which runs on the NFVI; (iii) the NFV
Management and Orchestration framework (NFV-MANO) for
the management and orchestration of virtualized resources and
the VNF lifecycle [1].

The data-plane of the network serves as a suitable alter-
native for implementing VNFs. Hence network operators can
leverage the data-plane as well as process-based NFV frame-
works for deploying softwarized network functions. Doing so
comes with the benefit of cost reduction on procuring high-
end servers for NFV deployment, and reduction also on the
overheads for compute-bound network functions (Table I).
Typically, VNF deployment is carried out using VMs [2], con-
tainers [3], Unikernels [4], Click-based processing elements,
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and Data-Plane Development Kit (DPDK) which uses zero-
copy and kernel bypass to speed up packet processing [5].

At the same time, service providers need to understand
how to leverage the network data-plane for the deployment
of network functions. In this paper, we carry out a practical
performance evaluation on a real testbed to compare the
implementation of representative network functions as part of
an SDN-aware data-plane against having such functionality
abstracted and implemented as a VNF running on a commodity
server — using heterogeneous VNF execution frameworks. One
of the problems is to find out where to best implement these
functions, which should allow for faster service deployments
and for specific applications to be deployed using the suitable
processing pipeline in the network.

We make the following contributions:

« We present a classification of virtual network functions
(Table I) based on the type of operations they perform
on packets. After motivating the need for data-plane
NF deployments, we designed a testbed that is suitable
for getting comparative results (for both scenarios, i.e.,
software switch and separate virtualized functions on
commodity servers).

o A significant difference in the performance of hetero-
geneous virtualized packet processing frameworks was
identified. We achieved this by carefully evaluating pack-
ets of various sizes at the data-plane, compared to having
equivalent network functions on commodity servers.

e Our discussion in §II and §IV sheds light on what net-
work functions are suitable for both scenarios, based on
our evaluation. We analyzed and presented our findings,
with packet processing acceleration frameworks, using
Intel DPDK and lightweight containers, which shows
a significant improvement in the performance of the
network functions evaluated.

Next, we present the design of the testbed used for the first
performance evaluation, which also contains a classification of
network functions and their complexity. The evaluation of both
scenarios is presented in Section III. A high-performance setup
and the results obtained using this approach are presented in
Section III-C, with DPDK and Docker containers. In Section
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Figure 1. An overview of the operation of I/O-bound NFs, e.g., ACL/Firewall,
Header Classifier, and caching. Their tasks involve IP header lookup and data
store access.

IV, we shed some light on what network functions are ideal
for deployment using the environments considered, including
some design implications. We present the related work in
Section V, and conclude the work in Section VI.

II. DESIGN - VNF CLASSIFICATION AND COMPLEXITY

In Table I, we capture some of the most popular NFs that
can be abstracted and implemented in software, and their
classification as discussed below. We classify NFs based on
how they process packets and the typical operations they carry
out along the processing pipeline. We use Figure 1 to illustrate
how packets traverse representative NFs that perform similar
operations on received packets, such as an ACL/ Firewall.
These NFs perform IP header lookups to read fields such as
source and destination addresses and port numbers, and the
protocol in use. In the case of an ACL/Firewall, packets are
checked against predefined match-action rules to either discard
or forward them.

Figure 2 illustrates the typical mode of operation of the
second group of representative NFs (Table I), i.e., NFs that
perform operations beyond basic packet header lookup against
predefined match-action rules. Packets traversing these NFs
go through more fine-grained inspection of payload data,
depending on the type of NF. A typical operation might
involve performing regex matches, compression parameters for
Quality of Service optimizations or encryption parameters.

We arrived at the conclusion of Table I after carefully
considering the behavior of virtual network functions and
frameworks that were implemented in notable works such as
[6]-[9], where representative virtual network functions such as
IDS/DPIs and L3 routers exhibit compute-bound characteris-
tics, while others such as ACL/firewalls are I/O-bound due to
the nature of operations they carry out on packets traversing
them [10], [11].

Answering the question about what network functions are
suitable for data-plane deployments is important, because the
SDN-aware data-plane has some limitations alongside benefits
in terms of its capabilities which we explore in the remainder
of the paper.

A. Testbed design

We describe the testbed we designed to evaluate the per-
formance of heterogeneous VNF execution frameworks. We
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Figure 2. An overview of the operation of compute-bound NFs, e.g., NAT, IDS
and QoS optimization. Their tasks involve more complex types of processing
performed on packets.

started our design first by identifying the NFs that can be
equally deployed at the data-plane level of an SDN-aware
software switch and as a separate user-space VNF entity in
the network. Looking at Table I, with their typical mode of
operation and complexity in mind, NFs that are I/O-bound can
be deployed using both approaches for a fair evaluation. Also,
for any significant performance degradation/improvement to
be observed, at least two different VNF implementations can
produce comparable results.

Two typical scenarios are a Longest Prefix Match (LPM)
router and a stateless firewall that, on the one hand, are
configured using predefined match-action rules on a virtual
switch, and on the other hand having the same functionalities
running as separate entities (i.e. VNFs) in the network. This
aspect of our testbed represents the required abstracted NF
component of the ETSI NFV specification [1].

B. Virtual switches

SDN-aware virtual switches such as the Open vSwitch
(OvS) have a data-plane component that handles traffic for-
warding. In terms of NFV implementations, the network data-
plane can be represented using a production-grade virtual
switch [12]. Virtual switches can be configured to emulate typ-
ical middlebox functionalities such as firewall/access control,
Network Address Translation (NAT), routing, and switching.
When functioning as a router, it matches the longest source
and destination IP prefix and forwards packets, using specified
ports. Firewall functionality matches IP addresses and specific
TCP/UDP port numbers, and denies or permits packets (based
on match-action flow rules).

C. Data-plane scenario design

For performance reasons, hosting all VNFs (middleboxes)
in a single server can lead to resource contention [13]. This
informed our decision to isolate the NFs from the packet
generator (Figure 3) by making use of multiple (two) physical
servers in our first testbed. We investigated both NFs using two
servers which are connected back-to-back to also eliminate
overheads that are caused by switches. NIC speeds were set
to 1000Mbps for consistency throughout our evaluations.

The testbed is depicted in Figure 3. We configured an OvS
virtual switch on a physical server running Linux kernel 5.4.0-
59-generic, on Ubuntu 20.04 (DUT in Figure 3). The CPU



Table 1
VIRTUAL NETWORK FUNCTIONS OPERATIONS AND CLASSIFICATION

VNF Description Compute-bound  1/0O-bound
DPI — IDS/IDP Traffic logging and inspection, stateful/stateless security v X
Virtual Private Network User traffic encryption and security v X
Network Address Translation (NAT) Private to public IP translation and vice versa v X
WAN Optimizer ISP traffic optimization for QoS v X
Router Packet routing based on L3 details v X
L2 Switch Packet switching based on MAC addresses v X
Load Balancer Traffic load balancing, based on application level policies X v
ACL/Firewall Device or application level access control X v
Caching Performance improvements for better QoS/QoE X v
IPv4/IPv6 proxy IPv4 to IPv6 connections proxy X v
Header Classifier Classification, based on IP header fields X v

is an Intel® Core™ i7-8700 @ 3.20GHz, with 6 CPU cores.
Virtual interfaces are set to 1GB speeds for the software switch
scenario. For the firewall NF configuration, up to 15 different
match-action firewall rules were pre-installed on the virtual
switch to process HTTP (port 80) traffic that is destined for
the web-server or the FTP server (ports 20 and 21) at any
given time in our scenario. Paravirtualised (virtio-net) NICs
were used on the VMs for better performance. Packets destined
for the HTTP and FTP servers were filtered to allow or drop,
based on protocol type, data link and transport layer protocols.
We reused the same setup for the router NF tests this time by
creating match-action rules to route packets coming from the
packet generator and destined for the FTP and HTTP service
based on layer 3 information using LPM lookup.

Virtual switch

Dataplane /

General-purpose Server

Figure 3. Ingress packets destined for the FTP and HTTP services on VM2,
are made to traverse the data-plane or user-space network function at any given
time. User-space function runs on VM1 while data-plane rules are inserted
on the virtual switch.

D. VNF scenario design

For a comparable scenario to be achieved, the commodity
server (DUT) hosting the network functions setup as our NFVI
is the same server used for the data-plane scenario (§II-C).
VMs running on Kernel-based Virtual Machine (KVM) with
minimal versions of the Linux kernel 3.10.0 were used, with
virtual network interfaces set to 1GB speeds. We configured
a kernel-based firewall function on VM1, an implementation
of equivalent functionality to the data-plane firewall rules in
terms of the operations carried out on received packets, i.e.,
matching packets based on source and destination ports or IP
addresses. A simple webserver rendering a webpage on port 80

and an FTP server listening on ports 20 and 21 (VM?2) is also
configured to receive requests. We configured the router NF,
a simple Linux kernel-based router to route packets between
two separate networks, with the packet generator and DUT
server connected back to back (Figure 3).

ITI. ASSESSING VIRTUAL NETWORK FUNCTIONS
PERFORMANCE

We now present the results from the first testbed in our
work, described in the previous section. We measure repre-
sentative performance parameters such as throughput, packet
rate and CPU utilization for each scenario. The presented
bandwidth measurements in Figure 4 are averaged over 10 runs
each using iperf3 (varying the len option to accommodate
different packet sizes).

A. Data-plane performance

The supported bandwidth achieved on the data-plane fire-
wall scenario was observed to be only 226Mbps for 64B
packets. Meanwhile, the largest packets (1500B) were trans-
ferred at a bandwidth of 957Mbps, which is about 96% of
the line rate. The data-plane router NF can process 185Mbps
at small packet size (64B), and 905Mbps for large ones
(1500B). To put the results into perspective, Table II and
Figure 4 summarize the bandwidth for the data-plane and user-
space implementations of firewall and router NFs, with various
packet sizes. The data-plane implementation outperforms the
user-space scenario, yielding about 14% more bandwidth for
1500B packets (Figure 4). Both NFs (router and firewall) pro-
duced a reasonably high bandwidth when compared with the
user-space VNF implementations. The drop in performance,
which was observed with small packet sizes is due to the
increase in packet-per-second processing rate, which is seen
as a drawback in most software-based middleboxes.

B. VNF performance

Like the data-plane scenario, the performance while sending
various packet sizes to the HTTP and FTP services with pack-
ets traversing the user-space network function was measured
and plotted in Figure 4. With the firewall functionality in place
and the client machine (packet generator) attempting to gain
access to the server hosting the services (VM?2), the bandwidth
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Figure 4. Mean bandwidth rates for data-plane and user-space deployments
of network functions. The data-plane functions (both firewall and router),
consistently outperforms user-space functions in this scenario.

Table 1T
MEAN BANDWIDTH RATES (IN MBPS) FOR DATA-PLANE AND VNF
DEPLOYMENTS.
Packet size (B) | DP-FW  VNF-FW  DP-Router VNF-Router
64 226 150 185 120
128 448 330 400 290
256 794 700 750 650
512 886 750 830 700
1024 939 800 880 740
1500 957 830 905 800

peaked at 150Mbps (for 64B packets), which is a significant
decrease from 226Mbps observed in the data-plane scenario.
Similar tests were carried out for the router NF, producing
a bandwidth of 120Mbps for 64Bytes packets. MTU-sized
packets produced 800Mbps, which is about about 11% below
the bandwidth reached in the corresponding data-plane router
scenario i.e, 905Mbps.

For MTU-sized packets, bandwidth of 830Mbps (for the
firewall NF scenario) was achieved, which is 13% less than the
data-plane firewall scenario. For this first set of experiments,
we observed that the data-plane scenarios outperform our user-
space VNF implementations, in terms of maximum bandwidth
and CPU utilization, this also holds true for the packets per
second rates (Figure 4).

CPU utilization of the commodity server hosting the testbed
is depicted in Figure 5, which gives the processing cost of
having the NFs deployed in both scenarios. By implication, in
terms of CPU utilization cost, the data-plane implementation
of our firewall requires less resources.

The CPU utilization for VNF and data-plane scenarios
were observed for the router and firewall NFs used in our
evaluations. CPU spikes were much higher in the firewall VNF
scenario (up to 120%, which is exactly 10% of the overall CPU
cores on the server. Higher CPU utilization was achieved for
smaller packet sizes, which decreases as packet size increases
(Figure 5).
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Figure 5. CPU utilization of the DUT — data-plane firewall and router (grey
and yellow lines) maintain much lower CPU utilization, when compared with
user-space functions (blue and red lines).

C. DPDK And Containerised Network Functions

In this section, we present our findings using an implemen-
tation that handles line-rate packet generation and processing.
This helps in finding out the behaviour of the same representa-
tive network functions on a high performance vNF execution
framework and lightweight containers. We carried out this part
of the experiment using the Intel Data-Plane Development Kit
(DPDK)! framework and compared the packet processing rates
with containerized NFs scenario which involves the deploy-
ment of the same network function on Docker containers.

N
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Figure 6. DPDK and Containerised NFs testbed - packets are generated and
made to traverse the containerised NF or Dataplane NF at any given time.
Match-action rules are inserted, based on type of functionality (a router or
firewall function).

This part of our evaluation leverages the OpenNetVM NFV
framework, which is ideal for building high-speed vNFs that
can handle line-rate packet processing using zero-copy and
the DPDK poll-mode driver, rather than interrupts [5]. The
OpenNetVM manager represents the NFV MANO component,
as it is responsible for NF life-cycle management. We made
use of a commodity servers (depicted in Figure 6), one as a
packet generator with pktgen packet generator, the other as
the Device Under Test (DUT), with network functions built
on the OpenNetVM framework. The CPU on the DUT is an
Intel(R) Core(TM) i7-8700 CPU @ 3.20GHz, with 6 cores
(without hyper-threading), for improved performance per core.

Thttps://www.dpdk.org/



We made use of pktgen-dpdk?, which generates packets at line-
rate, and observe the packet processing rate per second, as
packets are processed by the firewall NF. Note that our ability
to scale the number of NFs in this part of our evaluation,
depends on the number of available CPU cores, as each NF is
assigned a single CPU core to run. As with the DPDK NFs,
we also restricted our containerized NFs to run on single CPU
cores for a fair comparison.
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Figure 7. Million Packets Per Second — DPDK and Containerized NF. The
DPDK firewall NF processed about 2Mpps. All NFs are tied to separate CPU
cores, for performance isolation and measurement consistency.

We run the NFs as depicted in Figure 6, for the firewall
NF scenario, we initialised the NF by creating an initial batch
of 16,000 packets from the packet generator, which increases
while the NF runs, and the packets are sent back to the
RX queue of the generating NF (for measurements). This
scenario was first carried out for the firewall NF, and using
the router LPM NF. The results are as shown in Figure 7,
where the packets per second rates obtained are depicted for
the minimum-sized (64B) and MTU-sized (1500B) packets.

IV. DISCUSSION AND RECOMMENDATIONS

For us to fully appreciate how deployment choices by
network operators can affect NFV performance, we carried
out our evaluation with multiple physical commodity servers.
Also, containerized and DPDK NF scenarios benefited from
our design choice of running NFs on separate CPU cores.

Another design consideration worth mentioning is the be-
haviour of NFs that are built using kernel-bypass frameworks
such as the Intel DPDK library, the number of available CPU
cores is especially relevant when service providers decide to
adopt this approach. This is even more so as NFs are often tied
to available cores, and depending on the scenario, some cores
need to be made available for the NF manager or controller.

In our first testbed (Figure 3), although this is not a claim
that is generalizable for all dataplane implementations out
there, the data-plane deployment consistently outperforms the
user-space VNF when it comes to achieved bandwidth in

Zhttps://git.dpdk.org/apps/pktgen-dpdk

the environment we have evaluated in our work. This is
particularly noticeable with larger packet sizes, and more so in
the case of the firewall VNF tests. This consistency also holds
true for CPU utilization. By implication, service providers can
leverage the data-plane of the network, especially in situa-
tions where compute-intensive NFs are deployed. The overall
performance of network functions evaluated increased signif-
icantly using DPDK, even for 64B packets. Service providers
can also leverage this for deploying compute-intensive vINFs
such as a stateful IDS, for faster packet processing.

The mode of operation of some network functions in Table
I such as WAN optimisers involves carrying out tasks such
as traffic compression/decompression, caching, floating-point
operations and sometimes content duplication [14]. Such oper-
ations are not readily supported by current data-plane technol-
ogy hence service providers can leverage other heterogeneous
deployment options.

One of the practical scenarios that would benefit from the
results of our work is a network service provider that provides
a set of network functions comprising a gateway firewall and
an Intrusion Detection System (IDS). This chain of network
functions which are currently being implemented at the user-
space of the network can be split in a hybrid manner between
the data-plane and user-space to improve performance and
reduce processing and service deployment costs.

A network function such as an IDS which is stateful,
requires the use of security modules, and is computation-
ally intensive [9]. This will benefit from the available re-
sources (memory, CPU and I/O) at the user-space of com-
modity servers while having the firewall functionality or other
lightweight functions deployed at the network data-plane.
Also, in some existing and emerging Edge network use cases
such as e-healthcare, self-driving cars and mixed reality (MR),
depending on application profiles and requirements, a hybrid
deployment scheme can be employed. We can achieve better
performance by delegating simple, time-critical operations to
the data-plane and leaving only more complex stateful and
resource-hungry processing for user-space vNFs; which should
also help eliminate processing redundancy.

V. RELATED WORK

The effect of having concurrent NFs run on a commodity
server was characterized by Pitaev et al. [15], using OvS-
DPDK, SR-IOV, and FD.IO VPP. They were able to show
that having multiple VNFs deployed on a single host produces
some performance bottlenecks, especially as the number of
VNFs are increased. We evaluated our NFs implementation
using two physical servers connected back-to-back, and report
on some of the benefits of doing so. We carried out our
experiments in the context of SDN, where match-action rules
are inserted to the data-plane of virtual switches.

Rasoul et al. [16] evaluated the performance of virtualiza-
tion technologies (unikernels, VMs and containers) for NFV
deployments, with a focus on edge networks. They deployed
two services (Redis and Apache) to examine the behaviour
of these virtualization environments. They recommended the



use of unikernels for applications with high context switching
between userspace and kernel-space. VMs and containers
demonstrated stable performance behaviour when compared to
unikernels, with VMs having additional hypervisor overheads.
We take a different approach by considering not only the
effect of NF deployment on VMs and containers but using
heterogeneous execution frameworks with commonly used
network functions (a router and a firewall).

SDN-VNF performance was analysed by Gedia et al. [17],
in the context of VM and container implementations. They
considered parameters such as CPU and memory utilization,
service provisioning time and throughput. In their work, an
ONOS SDN controller was deployed using containers and
VMs, they attempted to answer a question that would help
network operators in choosing the ideal platform for hosting
VNF/SDN services. Their results show much better perfor-
mance using the containerised NF approach. This informed
our decision to further explore what is obtainable using a
high performance packet processing approach such as DPDK
and consider the implementation of NFs that incorporates the
typical behaviour of middleboxes found in service provider
environments rather than controllers.

VI. CONCLUSIONS

We have evaluated the performance of different VNF im-
plementation alternatives and motivate the deployment of
network functions as part of the SDN-aware data-plane of the
network for better service delivery, especially where latency-
sensitive and bandwidth-intensive network functions are to be
implemented. Two unique testbeds were carefully designed,
to implement commonly used network functions (a firewall
and a router) using the data-plane component of a production-
grade virtual switch, and network functions deployed on
separate virtualized processing elements. We also considered
a high-performance scenario, by using DPDK and Docker
containers for deploying the same network functions, which
shows a significant increase in the performance of the network
functions considered.

There are different ways in which this work could be built
upon. Firstly, the dimensions of the evaluation can be extended
by evaluating the data-plane scenario on a programmable hard-
ware switch, which provides the option of offloading packet
processing to SmartNICs, and also provides more in-network
processing options, as these technologies are gradually gaining
traction in service provider networks. Secondly, we envisage
hybrid deployment scenarios where service providers deploy
NFs using both data-plane and user-space processing elements,
depending on application profiles, NF complexity and resource
availability in the network infrastructure. In such circum-
stances, the outcomes of our work can be used to build a
knowledge base to be used by a deployment decision support
system.
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