
Anticipatory Buffer Control and Quality Selection for
Wireless Video Streaming

Martin Dräxler†, Johannes Blobel†, Philipp Dreimann†, Stefan Valentin‡, Holger Karl†
†University of Paderborn, Germany ‡Bell Labs, Alcatel Lucent Stattgart, Germany

{martin.draexler, johannes.blobel, philipp.dreimann, holger.karl}@upb.de
stefan.valentin@alcatel-lucent.com

ABSTRACT
Video streaming is in high demand by mobile users, as re-
cent studies indicate. In cellular networks, however, the un-
reliable wireless channel leads to two major problems. Poor
channel states degrade video quality and interrupt the play-
back when a user cannot sufficiently fill its local playout
buffer: buffer underruns occur. In contrast to that, good
channel conditions cause common greedy buffering schemes
to pile up very long buffers. Such over-buffering wastes ex-
pensive wireless channel capacity.

To keep buffering in balance, we employ a novel approach.
Assuming that we can predict data rates, we plan the qual-
ity and download time of the video segments ahead. This
anticipatory scheduling avoids buffer underruns by down-
loading a large number of segments before a channel out-
age occurs, without wasting wireless capacity by excessive
buffering. We formalize this approach as an optimization
problem and derive practical heuristics for segmented video
streaming protocols (e.g., HLS or MPEG DASH). Simula-
tion results and testbed measurements show that our solution
essentially eliminates playback interruptions without signif-
icantly decreasing video quality.

Categories and Subject Descriptors
C.2.1 [Computer-Communication Networks]: Net-
work Architecture and Design—Wireless communication;
F.2.2 [Analysis of Algorithms and Problem Com-
plexity]: Nonnumerical Algorithms and Problems—Se-
quencing and scheduling ; H.5.1 [Information Inter-
faces and Presentation]: Multimedia Information
Systems—Video

General Terms
Algorithms, Design, Performance, Measurement

Keywords
Video Streaming, HLS, MPEG-DASH, Scheduling

1. INTRODUCTION
Delivery of video content over wireless broadband

networks is already widely used today and is expected

to increase heavily in the upcoming years. Studies by
Cisco [1] and Akamai [17] indicate that mobile data
traffic will increase by a factor of 25 from 2011 to 2016
with around two-thirds of this traffic being streamed
video traffic. The wireless infrastructure cannot keep
up with this trend by merely increasing data rate. It
is necessary to organize mobile data transmission in a
better way, as also indicated by Akamai [17].

We present an approach to combine buffer control and
video quality selection based on anticipation of wireless
data rates. Our approach and the following motivation
is based on the HTTP Live Streaming (HLS) protocol
[26, 6], but can also be applied to similar video streaming
protocols, like MPEG DASH [18, 32].

In HLS a video is not transmitted as a continuous
stream of data, but it is divided into segments of a
certain duration and then transmitted segment by seg-
ment. These segments are downloaded via HTTP from
the server and are then concatenated by the player ap-
plication for playback. For example, a video of 120 s
and segments of 10 s would be divided into 12 segments.
This implies that for uninterrupted playback, segment
i + 1 has to be downloaded before segment i has been
played to its end in the HLS player application. If a
segment is downloaded before it is needed for playback,
it is buffered at the HLS player application.

Another feature of the HLS protocol is video quality
selection: each segment can be present on the server in
different quality levels. A quality level is determined
by the resolution and/or the encoding bit rate of the
video and is then identified in HLS by the resulting file
size of the video segment. As our approach optimizes
downloading of video segments and the file size has
a direct implication on the required data rate for a
download, we adopt this definition of video quality for
this paper. Nonetheless, this definition of quality should
not be confused with visual video quality metrics like
PSNR or MOS or the pure bit rate of a video codec.

To download a segment, the player application has to
decide in which quality level to download it. This is done
in current HLS-compatible players like VLC [37] or the
Apple iOS and Android media players, but the selection

1

ar
X

iv
:1

30
9.

54
91

v2
 [

cs
.N

I]
 2

2
A

ug
 2

01
4

only relies on the measurement of the current and past
data rates. In order to integrate anticipatory knowledge
of future data rates into our approach we use what we
call channel anticipation. The idea behind this is very
similar to classical channel prediction used for improved
scheduling decisions in mobile access networks, but our
approach works on different time scales and accuracy lev-
els. The time scales in which our approach has to work
are defined by the length of the video segments, which
are usually on the order of tens of seconds, in contrast
to channel prediction for a few milliseconds. Further-
more, we are interested in rough estimates of achievable
data rates and not precise channel quality samples. We
describe this idea in further detail in Section 2.2.

With this idea we extend the default behavior in the
HLS protocol by explicit buffer control and quality selec-
tion based on the anticipated data rates. The motivation
for this extension is straightforward: As long as enough
data rate is available in the future, the HLS video player
should not download and buffer too many segments.
Buffering too many segments in this case has no benefit
for the user’s QoE, but may have the downside of using
wireless resources that could otherwise be used to benefit
other users. We call this problem over-buffering. If there
is a future decrease in available data rate, the HLS player
has to download and buffer more segments in advance.
If the HLS player does not download enough segments
in advance the playback will stall; we call this problem
buffer underrun. In parallel to this decision on when to
download segments is the decision in which quality to
download segments. If the data rate is insufficient to
download segments in a high quality, but a lower quality
is available, the HLS player should switch to the lower
quality to prevent a buffer underrun.

We call this combination of when to download each
segment in which quality a schedule. Hence, such a
schedule is only executed on the application layer. For
the physical layer schedule we assume that a normal,
fair scheduler has already assigned radio resources to
the users. This makes our scheduling independent from
the physical layer scheduling of different wireless tech-
nologies. Additionally this allows us to perform our
scheduling for each user individually, because the physi-
cal resources are already shared and we do not have to
consider any resource sharing. Hence, the anticipated
wireless data rates are actually achievable and effects
like number of users per cell are already incorporated
by the anticipation scheme.

In Section 3, we present an optimization problem to
create such a schedule and introduce heuristic algorithms
to compute schedules in Section 4. There we also
illustrate examples for the described scheduling decisions.
In Section 5, we explain how our scheduling approach
can be integrated into an existing system and describe
how we developed a testbed implementation. We use

this testbed implementation together with a simulation
in Section 6 to evaluate our approach and to present
the results. We conclude our work in Section 7. Before
presenting the optimization problem we first give an
overview of existing related work in the next section.

2. RELATED WORK
In this section we first give an overview of existing

work on adaptive video streaming and then explain
how existing mechanisms can be used to implement an
approach for channel anticipation.

2.1 Adaptive Video Streaming
There is a large body of work on techniques for adap-

tive video streaming. At the application layer, various
control loops adapt video quality [15, 35, 28, 22] to the
end-to-end data rate and channel-aware pre-fetching in-
vokes a traffic burst at high channel gain [7, 27]. At
the link layer, cross-layer schedulers to jointly adapt
video quality and wireless resource allocation have been
proposed [13, 16, 20].

Compared to this work our approach differs twofold.
First, our approach does not adapt video quality or
wireless resources alone. Instead, it joins video quality
adaptation with the allocation of playout buffer size.
Unlike [13, 16], this enables to trade off video quality
against the amount of allocated resources.

Second, our adaptation is anticipative and not re-
active. Unlike any of the above approaches, our joint
buffer-quality allocation is based on a prediction of the
user’s wireless data rate. Using this prediction enables
our scheme to plan ahead, when to download a video
segment at which quality. This enables to compensate
for upcoming channel outages (e.g., when a user drives
through a tunnel) by downloading segments in advance.
Although this idea of anticipation has been applied for
software interfaces [23] and cognitive radios [34], it has
not been proposed for media streaming so far.

Further benefits of our work are its generality and
practical computational complexity. Our heuristics run
on general-purpose hardware at high speed and their
formulation is entirely based on bit rates. This captures
arbitrary variable bit rate protocols for audio and video
streaming without using subjective quality metrics. This
level of tractability is not provided by Utility-based
formulations such as [13].

2.2 Channel Anticipation
To compensate for upcoming channel outages, the

future state of the wireless channel has to be estimated.
We assume this channel anticipation to operate on the
order of seconds, which is three orders of magnitude
above typical channel predictors [21, 31, 4]. At such a
large time scale, error control and resource allocation
already have compensated for and averaged out fast

2

fading leaving user mobility as dominating cause of
channel state variation. As a user moves through the
cellular network, its path loss towards the base stations
becomes time-variant causing interference and channel
gain to vary at a large time scale. Only these large-scale
dynamics need to be accounted for when anticipating
the user’s data rate for tens of seconds in advance.

This anticipation cannot be solely based on PHY mea-
surements such as Channel Quality Indicators (CQIs)
but needs to include information about the user’s envi-
ronment. Such context information usually comes in two
forms, either as a database based on past data collection,
or as live information from handsets and base stations.
In particular, we consider the databases

• Coverage and capacity maps
• Load and interference maps
• Maps of streets and similar features for land navi-

gation (tunnels, railroads, points-of-interests)
• Common patterns of user behavior (e.g. trajecto-

ries, speed, bearing)

and the live input

• Channel state, e.g., from handset
• Load and interference, e.g., from base stations
• Localization information, e.g., from GPS, handset

sensors, and cellular network
• Current and planned trajectory, e.g., from turn-by-

turn navigation

as available information for our anticipation mechanism.
Based on this information, various methods to antici-

pate the data rate of wireless devices have been presented.
Focusing on users with homogeneous trajectories, Riiser
et al. presented accurate predictors in [29] and a pro-
totype in [30]. Based on this work for users in a bus,
train, ferry or car, Yao et al. studied a similar approach
for users in public transport [39] and cars [38, 40]. The
resulting maps have been used by Fardous et al. [11] to
build an anticipation mechanism that incorporates both
live locations and planned trajectories from the car’s
turn-by-turn navigation system. Likewise, future work
may use the trajectories pre-computed by autonomous
vehicles [19] to anticipate wireless data rate.

These studies consistently conclude that data rates of
homogeneously moving users can be accurately antici-
pated for tens of seconds ahead. Further studies point to
a strong spatial and temporal regularity of the user’s tra-
jectories [33, 14, 25], which allows to accurately predict
its position for several seconds in advance [5, 9].

Based on this evidence, we assume accurate rate an-
ticipation for users on highways, in trains, or public
transportation as a basis of this paper. By limiting our
focus to users with homogeneous trajectories we do not
only make reasonable assumptions on rate anticipation.
Moreover, we target scenarios where users naturally have
a high demand for wireless video streaming [24].

3. OPTIMIZATION PROBLEM
The previously introduced scheduling problem can be

formulated as a mixed-integer, quadratically constrained
(MIQCP) optimization problem. We have presented a
simpler version in [10]; here we extend this approach by
also incorporating the buffer fill level into the constraints
and objective of the MIQCP.

3.1 Assumptions
We assume a discrete time model. Time is represented

as a sequence of time slots ti of constant length. For
simplification, we further assume that the length of each
time slot is equal to the playback duration of one video
segment. Thus time slots and segments are unitless
and can be used together in a constraint. Additionally,
each video segment has to be downloaded within exactly
one time slot, i.e. the download of a video segment
must not be spread across multiple time slots. This
implies that for an uninterrupted playback of a video,
the i-th video segment has to be downloaded within
time slot ti or earlier. Downloads in a given time slot
are limited by the data rate for each user in this slot.
Each user is connected to at most one base station per
ti. We assume that the allocation of data rates to the
users is done by an underlying, non-modifiable radio
resource scheduler, limiting our scheduling approach for
the download of video segments to a higher layer. The
file size for each video segment, i.e the required amount
of data to download, is determined by the selected video
quality level. The data rate limits and the video quality
levels are given in the same units.

3.2 Formulation
The optimization problem takes the parameters listed

in Table 1 as input.In principle, two decisions have to
be made in order to solve the scheduling problem.

First, for each video segment s the time slot t in
which to download the segment has to be determined.
This decision has to be taken for each user u and is
represented by the variable ds,u:

ds,u ∈ T, ∀s ∈ S, u ∈ U (1)

Second, for each video segment s one video quality
level q from the set of available qualities Q has to be
selected as variable ps,u for each user u, assuming that
all segments are available in all qualities:

ps,u ∈ Q, ∀s ∈ S, u ∈ U (2)

The amount of downloadable segments per time slot t
is limited by the data rate for each user in the time slot:∑

ds,u=t

ps,u < Cu,t, u ∈ U, ∀s ∈ S,∀t ∈ T (3)

As there is no resource sharing among users on the

3

Table 1: MIQCP input parameters

T set of time slots, t ∈ N
S set of segments to transfer, s ∈ N
U set of users
Cu,t data rate for user u at time t, Cu,t ∈ Q+

Q set of segment video quality levels, q ∈ Q+

application layer, it is sufficient to consider each user
separately.

To include belated downloads of video segments into
the objective function, we need to calculate the lateness
of each segment s as a variable ls,u for each user u. The
lateness of a segment should be 0 if it is downloaded in
time, irrespective of how early it was downloaded:

ls,u = max(ds,u − s, 0), ∀s ∈ S, u ∈ U (4)

We also want to take the number of buffered segments
for each user u in time slot t into account and calculate
it as variable bt,u by summing up the number of down-
loaded segments until t and subtracting t (because up
to time slot t, t segments had to be played out already):

bt,u = min

 ∑
∀s∈S
ds,u≤t

1

− t, 0

 , ∀t ∈ T, u ∈ U (5)

To formulate the objective function we define three
weight factors: Wl for the lateness of video segments,
Wq for the selected quality level of the video segments
and Wb for the number of buffered segments. Now we
can now formulate the objective function as

minimize: Wl ·
∑

s∈S,u∈U
ls,u −Wq ·

∑
s∈S,u∈U

ps,u

+ Wb ·
∑

t∈T,u∈U
bt,u (6)

This formulation allows to define a lexicographical or-
dering of the metrics lateness, video quality, and buffer
usage, which we will do for our evaluation. As an al-
ternative to this objective function it is also possible
to set fixed limits to one or two of the metrics and to
maximize or minimize the remaining ones, deriving a
corresponding Pareto front.

The described formulation of the optimization prob-
lem is not positive semidefinite, but a very compact and
straightforward formulation. We described a positive
semidefinite formulation in [10], which can directly be
solved using a standard solver for mixed integer quadrat-
ically constrained optimization problems.

4. HEURISTICS
We analyze two different types of heuristic algorithms

for our scheduling problem: two greedy scheduling algo-

rithms, which illustrate the behavior of standard HLS
player applications, and the Fill algorithm, which tries
to minimize playback interruptions while keeping buffer-
ing minimal.

Consistent with the optimization problem, all heuris-
tics are offline schedulers, which means the data rates
for all time slots are known in advance and the result
of all heuristics is a complete schedule for all users over
a given number of time slots. The assumptions are the
same as for the optimization problem.

4.1 Greedy Scheduling
Both greedy scheduling algorithms take the available

data rate for each user in each time slot and a maximum
buffer size as their input. Based on their respective
objective, they iterate over all time slots and decide
which segments to download to fill the buffer with video
segments. In each time slot, they consider the currently
available data rate, the current number of buffered seg-
ments and the quality levels of the segments not yet
scheduled.

The greedy algorithms cannot adapt the maximum
buffer size, which can result in unnecessary buffering if
enough data rate is available to play the video without
buffering, or unwanted playback interruptions if the
chosen buffer size is not big enough to continue playback
in phases of insufficient data rate.

4.1.1 BufferFirst Algorithm
The objective of the BufferFirst algorithm is to fill

the entire buffer with video segments. If the buffer is not
completely full in a time slot the algorithm schedules
the download of the maximum possible amount of seg-
ments at the lowest quality supported by the currently
available data rate and free buffer space. If there is
also enough data rate available to download segments
in higher quality levels, it increases the quality for the
downloaded segments. Thus, the algorithm will never
decide to download fewer segments to increase the qual-
ity.

Figure 1: Example for BufferFirst Algorithm

Figure 1 shows an example for the BufferFirst
algorithm with a maximum buffer size of two segments.
The rectangles show the video segments with different
qualities (indicated by their shading) and the solid line
above the rectangles indicates the available data rate.

4

The buffer is filled with segments of medium quality in
the first time slot; in the second and third time slots, one
segment is downloaded to fill the buffer again. With this
schedule the video playback will not be interrupted in the
fourth time slot, but the video playback is interrupted
in the fifth time slot.

4.1.2 QualityFirst Algorithm
The objective of the QualityFirst algorithm is to

download segments with the highest quality possible.
If the buffer is not completely full in a time slot the
algorithm schedules the download of new segments at
the maximum possible quality supported by the currently
available data rate. If there is still free buffer space and
data rate it continues to schedule downloads of further
segments.

As a consequence, this algorithm favors downloading
segments at higher video quality levels at the expense
of buffering segments.

Figure 2: Example for QualityFirst Algorithm

Figure 2 shows an example for the QualityFirst
algorithm with a maximum buffer size of two segments.
As the algorithm favors to download segments with
high quality levels before filling the buffer, there are no
segments in the buffer to avoid a playback interruption
in the fourth and fifth time slot.

4.2 Fill Scheduler
We designed the Fill algorithm to eliminate the short-

comings of a fixed buffer size. Identical to the greedy
scheduling algorithms, the Fill algorithm takes the
available data rate for each user in each time slot as
its parameter and it also iterates over all time slots to
fill the buffer with video segments (independently for
all users). Algorithm 1 shows this main structure. The
function anticipateUserRates(u) returns anticipated
data rates for a user for all time slots based on the under-
lying radio resource scheduler and channel anticipation.

The basic operation of scheduleSegment is illus-
trated in Figure 3. For each time slot there are two
different operations possible, depending on the available
data rate in the time slot.

If there is enough data rate to download a new segment
in the currently examined time slot (Algorithm 2, lines 3
and 4), the Fill algorithm will just schedule this video
segment at maximum possible quality. This behavior

Figure 3: Flowchart for Fill Scheduler

Algorithm 1 fillScheduler(U, T,Q)

1: // users U, times T, qualities Q
2: for all u ∈ U do // schedule all users
3: C ← anticipateUserRates(u) // from channel anticipation

4: s← 0 // initialize couter for scheduled segments
5: for all t ∈ [0..|T |] do // schedule all timeslots/segments
6: s← s+ scheduleSegment(u, t, s,Q,C)
7: end for
8: end for

Algorithm 2 scheduleSegment(u, t, s,Q,C)

1: q ← getBestQuality(Q,C[t])
2: if q 6= false then // enough capacity in current time slot for

new segment?
3: schedule(u, s, t, q) // schedule new segment with maximum

quality for available data rate
4: return 1
5: else // even lowest quality not feasible in time slot t
6: for all g ∈ [t..0] do
7: // enough capacity in range [g..t] for all scheduled segments

and new one?

8: if getBestQualityRange(Q, t − g + 1,
t∑

i=g
C[i]) 6= false

then // going back to g provides enough data rate
9: q ← getBestQualityRange(Q, t− g + 1, C[g...t])

10: p← 0
11: for all r ∈ [g..t] do // reschedule all segments from range
12: n← getSegmentsForQuality(q, C[r])
13: for all v ∈ [(g + p)..(g + p+ n)] do
14: schedule(u, v, r, q)
15: end for
16: p← p+ n
17: end for
18: return 1
19: end if
20: end for // video start reached
21: return 0 // incur lateness for new segment
22: end if

ensures a minimum number of segments in the buffer as
long as there is no need for buffering more segments for
future time slots with insufficient data rate.

If, during the iteration, the anticipated data rate in

5

some time slot t does not suffice to download a new
video segment (Algorithm 2, lines 6 to 22), even at the
lowest video quality level, the Fill algorithm has to
change the schedule for one or more previous time slots
to download and buffer a video segment before time slot
t with insufficient data rate. This part of the algorithm,
as outlined in Algorithm 2, requires the definition of the
following helper functions:

• getBestQuality(Q, c)
Returns the best downloadable quality (out of Q)
for a segment with anticipated available data rate
c, or FALSE if there is not enough data rate even
for the lowest quality
• getBestQualityRange(Q,n, c)

Returns the best possible quality (out of Q) in
which n segments can be downloaded with antici-
pated available data rate c, or FALSE if there is not
enough data rate to download even in the lowest
quality
• getSegmentsForQuality(q, c)

Returns the number of downloadable segments with
quality q and available data rate c
• schedule(u, s, t, q)

Schedule the download of segment s for user u at
time t with quality q

These functions can be easily implemented and their pre-
cise implementation is omitted in this paper to improve
the readability of the algorithm.

From time slot t where a download of a full segment
was not possible, the algorithm goes back time slot by
time slot. In these previous time slots, it downgrades
the video quality of the segments, freeing up capacity
to enable the download of the segment that has to be
playout out in time slot t. It can push up the scheduled
download times of earlier segments in order to fit more
segments into time slots. Once a range of time slots
is found where all segments including the one to be
played out in time slot t fit in (at reduced quality), the
computation of the schedule up to time slot t is complete.
This schedule is then the basis to plan the download for
the segment for time slot t + 1 in the next iteration.

For example, look at the example in Figure 4, there is
not enough data rate in the fourth and fifth time slots to
download a video segment, but in the second time slot
there is enough data rate to download three segments,
so the algorithm will first go back to the third time slot,
determine that only going back to the third time slot
is not sufficient and then also move back to the second
time slot. By doing that the algorithm can resolve the
lack of data rate in the fourth and fifth time slots and
the video can be played back uninterruptedly.

With this behavior, the Fill algorithm efficiently re-
duces the occurrence of playback interruptions. Figure 4
shows the resulting schedule from the Fill algorithm
with the same example as for the previously described

greedy scheduling algorithms: in the second time slot
enough segments can be downloaded and buffered to
play the video uninterruptedly.

Figure 4: Example for Fill Algorithm

The downside of the Fill algorithm is the fact that
the reduction of playback interruptions also comes with
a larger variance in the video quality level. By compar-
ing the example schedule from the Fill algorithm in
Figure 4 with the schedule generated from the optimiza-
tion problem in Figure 5 this behavior becomes obvious:
the Fill algorithm only goes back to the second time
slot and can resolve the lack of data rate in the fourth
and fifth time slots by downloading the segments in the
lowest video quality, whereas going back to the first time
slot and downloading the segments with a medium video
quality level would have provided the optimal average
video quality level. In this toy example one could argue
to allow the Fill to go back a number of additional time
slots to fix that issue. But in a real scenario there is
no way to reasonably limit such a number of additional
time slots to consider, thus the algorithm would not
be much different from a brute force algorithm with an
excessive running time.

Figure 5: Example for MIQCP Schedule

5. SYSTEM DESIGN AND IMPLEMENTA-
TION

In this section we discuss how the previously intro-
duced algorithms can be integrated into a real system,
using existing tools and extending existing protocols
with backwards-compatible extensions as needed. We
first explain the design decisions and their implications
on the system behavior and then continue with the sys-
tem architecture and its interfaces in Section 5.2. We
then explain in Section 5.3 implementation details and

6

adjustments to the HLS protocol necessary to use the
scheduling algorithms. The concrete Testbed implemen-
tation which we used to verify our simulation results is
described afterwards in Section 5.4

5.1 Design Decisions for Download Control
The implementation of the previously introduced sched-

uling algorithms requires changes to an existing system
to control when which segments of a video are down-
loaded by user equipments (UEs). In order to implement
these changes, two design decisions with different advan-
tages and disadvantages/costs have to be made:

• Should the buffering behavior be controlled at the
UE or in the network?
• Should arbitrary or only preselected content provi-

ders be supported?

These design decisions have direct implications on
the buffering behavior of the system regarding over-
buffering and buffer underruns. For every combination
of the design decisions we get the following requirements
and capabilities of our system:

1. No buffer control at UEs and arbitrary content pro-
viders
This implementation requires deep packet inspec-
tion (DPI) on the network in order to separate video
traffic from other traffic, because we do not know
the content providers beforehand. That imposes
additional cost and requires additional processing
for the network operator. When we do not have a
modified UE which allows us to control the buffer,
we assume that the UE will be greedy. In order
to implement our schedule we can only control the
data flow in the network. We can prevent over-
buffering only by limiting the connection speed for
a UE and therefore keep the UE from downloading
more segments than it should. But since we cannot
force a UE to buffer more than it wants to, buffer
underruns cannot be prevented.

2. No buffer control at UEs and preselected content
providers
When implementing the buffer control mechanisms
for preselected content providers which we know
beforehand only, the separation of video traffic
becomes trivial, in contrast to the previous case.
The problem with buffer underruns however still
remains the same.

3. Buffer control at UEs and arbitrary content provi-
ders
When we have a means to control the buffer size
of an UE, i.e. by a modified version of the video
player, we can prevent over-buffering and minimize
buffer underruns by explicitly instructing the UE
from the scheduler how many segments it should
load at a certain time. A modified software could

also support the separation of video traffic from
other traffic, i.e. by sending all video requests over
a special proxy.

4. Buffer control at UEs and preselected content pro-
viders
If we can fully control the buffering behavior and
can easily separate video traffic from other traffic
the implementation of our system becomes most
easy. We then can optimize the buffer sizes on
the UEs with little additional complexity on the
network side.

Although implementing our approach with the maxi-
mum level of control on both the UEs and the content
providers is the easiest way, a trade-off has to be taken
here: Limiting the available content providers to a se-
lected few also limits the usefulness to the users. How-
ever the best performance can only be achieved with
modifications to the UE because otherwise we have no
means to reliably prevent buffer underruns and prevent-
ing over-buffering is difficult to implement.

5.2 Architecture and Implementation
For our implementation we chose to use a modified

video player on the UEs. With that we can fully control
the buffer and we can analyze the performance of the
system. Our implementation supports arbitrary content
providers (in our tests we used our own video source to
eliminate external influences).

Figure 6: Architecture

To implement our schedulers we assume an overall
architecture as depicted in Figure 6. This architecture
does not require any changes to current cellular radio
interfaces and networks (RANs) and can be implemented
in a cellular network as well as in a wireless LAN scenario,
since the scheduler is implemented in higher layers. It
also does not require any changes to the content provider
since all scheduling decisions and the schedule is enforced
in the Anticipatory Scheduling Controller.

The Anticipatory Scheduling Controller, as the central
entity in this architecture, intercepts the requests from
the UEs to the content providers. It can then perform

7

the buffer control and quality selection with the following
three steps:

1. Intercept the video request from the UE and ana-
lyze it (video data rates, available variants)

2. Calculate schedule based on video data and antici-
patory information on future data rates

3. Control the buffering behavior of the UE according
to the schedule

To do so, the Anticipatory Scheduling Controller could
be configured as an HTTP proxy (as HLS video requests
are transported via HTTP). This could be enforced in
cellular networks or done voluntarily by the users. Both
operators and users have incentives to do so (less load
on the network, better QoE for the users).

The Channel Anticipation works based on live data
and previously collected data as explained in Section 2.2.
The anticipated data rates are then provided to the
Anticipatory Scheduling Controller.

5.3 Protocol Extension
We concentrated on HLS (HTTP Live Streaming) [26]

as the streaming protocol for our implementation. It
is available in the stock media players on Android [12]
and iOS [6] and is also available as an open-source im-
plementation in the VLC player [37]. To stream a video
using HLS, regardless of using our extension or not, the
video has to be encoded properly. This encoding is a
CPU-intensive, one-time task. The video input is cut
into independently playable segments with the same
playback duration. URLs to these segments are then
added to a playlist. An example of such a normal HLS
playlist is shown in Figure 7.

#EXTM3U
#EXT-X-VERSION:3
#EXT-X-TARGETDURATION:10
#EXTINF:10,
http://hostname/high/001.ts
#EXTINF:10,
http://hostname/high/002.ts
#EXTINF:10,
http://hostname/high/003.ts
#EXTINF:10,
http://hostname/high/004.ts

#EXTINF:10,
http://hostname/high/005.ts
#EXTINF:10,
http://hostname/high/006.ts
#EXTINF:10,
http://hostname/high/007.ts
#EXTINF:10,
http://hostname/high/008.ts
#EXT-X-ENDLIST

Figure 7: Single variant HLS example with high
quality segments, each 10 seconds long

HLS streams can provide multiple variants of the same
video. Each variant can be encoded using a different
codec, bit-rate, or resolution. HLS players can switch
between different variants because all segments have
equal length and are independently playable. A separate
playlist is created for each variant and additionally a
master playlist with links to all variant playlists is used.
An example of a master playlist with three variants
is shown in Figure 8. The master playlist contains
parameters for each variant to enable HLS players to

#EXTM3U
#EXT-X-STREAM-INF:BANDWIDTH=1000000
http://hostname/low/hls.m3u8
#EXT-X-STREAM-INF:BANDWIDTH=1500000
http://hostname/med/hls.m3u8
#EXT-X-STREAM-INF:BANDWIDTH=3000000
http://hostname/high/hls.m3u8

Figure 8: Multi-variant master playlist with
three variants

select the most appropriate one. We use the BANDWIDTH

parameter, given as a data rate in bit/s, for each variant
for this paper. The created playlists and segments can
then be placed on an HTTP server. An HLS player only
needs the URL to the HLS master playlist. From there,
all variants and their segments are accessible.

To control the buffering behavior of HLS players, we
need a method to pass messages to them. HLS players
have no interface to receive control data besides playlists
and segments via their own HTTP-GET requests. We
intercept the requests for playlists and modify the replies
in the anticipatory scheduling controller.

The controller is aware of the schedule but also needs a
means of inserting buffering instructions in the playlists.
Thus, we introduce two new tags to HLS playlists:
BUFFERSIZE and REFRESH. Both are defined as natu-
ral numbers including 0. These new tags are backwards
compatible because the HLS standard instructs players
to ignore tags which they do not recognize [26].
BUFFERSIZE sets the size of the HLS player buffer to

the given value. Up to this amount of segments, the
player will just greedily try to download more segments.
If there are more segments in the buffer than instructed,
the buffer content is played, and no downloaded segments
are discarded. As soon as there are fewer segments in the
buffer than the given limit, the HLS player downloads
additional segments to fill the buffer.

The REFRESH parameter instructs the HLS player to
refresh the playlists every REFRESH seconds. This will
then update the BUFFERSIZE and REFRESH parameters.
We suggest to set REFRESH to the playback length of a
segment, thus after playing one segment the HLS player
will update its buffering parameters.

The two parameters together solve the over-buffering
and buffer underrun problem by precisely adapting the
HLS player buffer size according to the schedule. This
indirectly influences when an HLS player can download
a segment.

Another property of an HLS stream that the schedul-
ing algorithm needs to decide is which quality to down-
load. In the case of multi-variant HLS streams, the
player would try to download the segments in the qual-
ity it prefers by doing its own local measurements. But
the schedules also include the HLS video quality for each
segment, selected from the available HLS variants.

8

Every time the HLS player requests an HLS master
playlist the anticipatory scheduling controller downloads
the playlists of the scheduled variants and creates a single
variant playlist out of the multi-variant playlist. As
shown in Figure 9, segments from different variants are
being selected and placed in a new single variant playlist
according to the example schedule in Figure 5. Only the
joined (single-variant) playlist is then returned to the
HLS player. The decision which quality to download is
hereby made by the anticipatory scheduling controller
and not by the player anymore. The joined playlist
contains the REFRESH and BUFFERSIZE parameters. Each
time a player refreshes an HLS playlist, it can receive
a different value for the BUFFERSIZE parameter. The
values for each time slot of the BUFFERSIZE in Figure 9
are listed in Table 2 for each refresh of the playlist.

#EXTM3U
#EXT-X-VERSION:3
#EXT-X-TARGETDURATION:10
#EXT-X-BUFFERSIZE: 2
#EXT-X-REFRESH:10
#EXTINF:10,
http://hostname/med/001.ts
#EXTINF:10,
http://hostname/med/002.ts
#EXTINF:10,
http://hostname/med/003.ts

#EXTINF:10,
http://hostname/med/004.ts
#EXTINF:10,
http://hostname/low/005.ts
#EXTINF:10,
http://hostname/med/006.ts
#EXTINF:10,
http://hostname/high/007.ts
#EXTINF:10,
http://hostname/high/008.ts
#EXT-X-ENDLIST

Figure 9: Joined playlist using the MIQCP
Schedule from Figure 5 with REFRESH and BUFFER-

SIZE extensions (BUFFERSIZE set for time slot 1)

Table 2: BUFFERSIZE values for time slots

Time slot 1 2 3 4 5 6 7 8

BUFFERSIZE 2 3 3 0 0 1 1 1

Through both mechanisms, the buffer size (when to
download) and preselection of variants (which quality
to download) can be controlled. Thus, anticipatory
buffering and variant selection based on the previously
described algorithms can be performed by simply ex-
tending the HLS protocol with two small extensions to
the playlist parameters.

5.4 Testbed
In order to analyze our algorithms and to test our

HLS protocol extension in a real system, we developed
a testbed that allows us to run extensive tests with real
hardware and compare the results of these tests with
our simulations. We describe our testbed setup here and
will present the simulation and testbed measurement
results in Section 6.

The testbed is based on the general architecture ex-
plained before. The UEs are smartphones and tablets
with a customized Android operating system and a mod-
ified VLC video player. Our modifications enable VLC

to parse the additional playlist parameters and adapt
its buffer size accordingly. It also outputs extended
information about the buffer size and the downloaded
segments which is used for our measurements.

The radio access in the testbed is implemented with
802.11g wireless LAN [2] without any modifications and
four access points. As explained before, the scheduling
only happens on the application layer, thus changes to
the wireless MAC are not necessary. The access points
are normal PCs with wireless LAN cards and Linux with
hostapd running on them.

A fifth PC serves as central control and measurement
unit and as a host for running the anticipatory sched-
uling controller. All phones are connected to this PC
via USB and are controlled with the Android debug
bridge (ADB); the access points are controlled via an
SSH connection. With the ADB we execute arbitrary
shell commands on the phones and emulate simple user
interaction like starting or stopping a video stream. No
data is transmitted via USB; it only serves to make
experiments repeatable. The resulting overall testbed
architecture and setup can be seen in Figure 10.

(a) Testbed Architecture

(b) Testbed Setup

Figure 10: Testbed

For the HLS video stream content we used the publicly
available movie “Tears Of Steal”1 which we converted

1http://www.tearsofsteel.org/

9

http://www.tearsofsteel.org/

using the VLC framework. The segments and playlists
are served by an unmodified Apache webserver.

The anticipatory scheduling controller, which inter-
cepts and modifies the playlist requests from the UEs,
is implemented as a transparent HTTP proxy using the
Python framework Twisted [36]. The access points redi-
rect all traffic coming from the UEs to the proxy thus it
is not necessary to change any preferences on the UEs.

We wanted to be able to run a lot of repeatable and
comparable tests, which is why the movement of the
UEs is emulated and not done physically. Movement
emulation works by limiting the link speed and enforcing
handovers between access points. We achieve this by
using standard traffic shaping capabilities of Linux on
the access points and on the phone. From a predefined
scenario we get the data rate for every UE and base
station per time slot. These values are then set as
speed limits on our access points at the corresponding
time. Handover events between the access points are
also precalculated from the scenario and then triggered
on the phones. With this setup we can run tests without
the need to physically move the UEs.

We automatically start the video stream via the ADB
connection to the phones and collect information about
the streaming (i.e. when a segment has been actually
loaded in which quality). The results returned by the
testbed runs are in the same format as the simulation
results and allow a direct comparison.

6. SIMULATION AND TESTBED RESULTS
In this section we present both simulation results and

results from measurements with the previously described
testbed. For the simulation we use our own Python
implementation. Before presenting the results we define
the evaluation scenarios.

6.1 Scenario
The basic structure for the evaluation scenario, for

both simulation and testbed measurements, is a line of
base stations with the users moving through the scenario
from the first base station to the last base station as
illustrated in Figure 11. To reduce the available data
rate and to create the need for buffering, we remove cells
from the scenario, as illustrated with base stations B
and D. The more cells we remove, the more gaps without
any available data rate occur and the more segments
have to be buffered to avoid playback interruptions. The
users all move as a group from the first base station to
the last base station (e.g., a train scenario). Apart from
the pattern in which the base stations are removed, the
scenario parameters for the simulation and the testbed
measurements are the same.

The wireless radio is modeled according to 3GPP
Long Term Evolution (LTE) [3]. The base stations are
placed equidistantly with an inter-site distance of 1500

Figure 11: Scenario

meters, which is slightly larger than a normal urban
scenario in order to augment the effects resulting from
removing cells. We consider four active users in the
scenario because the testbed setup only contains four
devices and we want to maintain comparability between
the simulation and the testbed measurements.

The path loss in dB between the base stations and
the users is obtained by 128.1 + 37.6 · log10(d) + Sln [3],
where d represents the distance between the base station
and the user in kilometers and Sln is a normal random
variable with zero mean and standard deviation of 10 dB
to model slow fading.

For the channel capacity we assume an asymptoti-
cally error-free communication channel, modeled by the
Shannon equation with the parameters listed in Table 3.
The maximum data rate for a base station is limited to
30 Mbit/s to account for the small number of users in
the scenario. The allocation of data rates to the users
in each time slot is up to a wireless resource scheduler,
which is in our case a simple proportional fair scheduler.

Table 3: Evaluation Parameters

Channel bandwidth 10 MHz
Transmit power 46 dBm
Antenna isotropic, 0 dB gain
Noise PSD -174 dBm/Hz
Average Interference -149 dBm/Hz

Inter site distance 1500 m
Number of users 4
Number of base stations 44

The weights for the MIQCP objective function, as
described in Section 3, are set to enforce the following
lexicographical order: minimize lateness before maximiz-
ing quality and before minimizing buffering (Wl = 440,
Wq = 10, Wb = 1). The maximum buffer size for the
greedy scheduling algorithms is set to 3 segments, which
corresponds to the default setting for VLC on Android.

The video quality levels and the resulting required
data rates are taken from the test video we generated
from the clip “Tears of Steel”. The resulting segment
sizes for the three video quality levels are 1.77 MB (low),
3.69 MB (medium) and 4.51 MB (high). As the real file
size of all segments varies slightly by a few hundred kilo-
bytes due to the video encoding, we use the maximum

10

0 5 10 15 20
Number of removed base stations

3.0

3.2

3.4

3.6

3.8

4.0

4.2

4.4

4.6
A

v
e
ra

g
e
 V

id
e
o
 Q

u
a
lit

y
 L

e
v
e
l

 [
M

B
/s

e
g
m

e
n
t]

(a) Average Quality

0 5 10 15 20
Number of removed base stations

10

0

10

20

30

40

50

A
v
e
ra

g
e
 L

a
te

n
e
ss

 [
se

co
n
d
s]

(b) Average Lateness

0 5 10 15 20
Number of removed base stations

0.5

0.0

0.5

1.0

1.5

2.0

2.5

3.0

A
v
e
ra

g
e
 B

u
ff

e
r

Le
v
e
l

 [
se

g
m

e
n
ts

]

(c) Average Buffering

MIQCP

Fill

Quality
First
Buffer
First

Figure 12: Simulation Results

size over all generated video segments in one video qual-
ity level as the parameter for the scheduling algorithms.
We use a segment length of 10 seconds, corresponding
to the recommended value in the HLS standard.

6.1.1 Simulation Scenario
For the simulation scenario we are not limited to the

number of physical devices we have in the testbed. Thus
we use a total of 44 base stations and a video length of
44 segments.

To induce the need for buffering we randomly remove
base stations from the scenario. The number of removed
base stations varies from 0 to 20, which means that in
the worst case half of all base stations are removed. The
removed base stations are selected uniformly, whereas
the first and last 2 of the 44 base stations are never
removed to avoid side effects. Removing more base
stations yields infeasible scenarios for MIQCP, because
some segments can never be downloaded and thus violate
the constraints.

6.1.2 Testbed Scenario
In the testbed, which we described in Section 5.4, the

scenario is limited by the number of physical devices
in the testbed. We have again 4 users, the phones and
tablets in the testbed, but in contrast to the simulation
only 4 base stations. The base stations are again ar-
ranged in a line but with only one fixed gap without any
available data rate in the middle .In order to vary the
need for buffering we perform measurements with a gap
equal to the range of 2 and 4 base stations.

6.2 Results
For both the simulation and the testbed measure-

ments, we evaluate three different metrics: the average
downloaded video quality level in MB per segment, the
lateness averaged over all users in seconds and the aver-
age buffer fill level in segments. All plots are based on
multiple simulation or testbed runs and show confidence
intervals at 95% confidence level, small intervals might
be covered by the plot markers.

6.2.1 Simulation Results
The simulation results for the average video quality

are shown in Figure 12a. The dashed lines indicate the
reference value of the high and medium video quality
levels. MIQCP delivers the overall highest video qual-
ity level, which decreases only slightly once more than
10 base stations are removed from the scenario. This
indicates that MIQCP can fully exploit the available
data rate in order to deliver and buffer high quality
segments whenever possible. The QualityFirst algo-
rithm delivers the overall second highest video quality
level, which is only slightly less than the one from the
MIQCP. This corresponds to the expected behavior of
the greedy algorithm. The BufferFirst algorithm
exhibits the opposite behavior and delivers the overall
lowest video quality level, which also corresponds to the
expected behavior. The Fill algorithm provides the
same high video quality level as the MIQCP when only
a small number of base stations is removed and enough
data rate is available. When more base stations are
removed the delivered video quality level from the Fill
scheduler decreases, but is still higher compared to the
BufferFirst algorithm.

Figure 12b shows the results for the average lateness
over all users in the simulation. MIQCP and the Fill
algorithm are able to prevent any lateness. For both the
QualityFirst and BufferFirst algorithms lateness
increases when more than 10 base stations are removed.
Because of the objective to download segments in higher
quality levels instead of buffering more segments, the
QualityFirst algorithm incurs the highest lateness.

The simulation results for the average buffer fill level
are shown in Figure 12c. Both greedy scheduling algo-
rithms always try to fill their buffer up to the maximum
buffer level of 3 segments. Because the greedy scheduling
algorithms have no mechanism to reduce buffer usage,
the buffer levels only decrease when there is not enough
available data rate to fill the buffer entirely as more base
stations are removed from the scenario. The MIQCP
and the Fill scheduler are designed to minimize buffer

11

0 1 2 3 4
Number of removed base stations

1.5

2.0

2.5

3.0

3.5

4.0

4.5

5.0

A
v
e
ra

g
e
 V

id
e
o
 Q

u
a
lit

y
 L

e
v
e
l

 [
M

B
/s

e
g
m

e
n
t]

0 1 2 3 4
Number of removed base stations

0

10

20

30

40

50

A
v
e
ra

g
e
 L

a
te

n
e
ss

 [
se

co
n
d
s]

0 1 2 3 4
Number of removed base stations

0.5

0.0

0.5

1.0

1.5

2.0

2.5

A
v
e
ra

g
e
 B

u
ff

e
r

Le
v
e
l

 [
se

g
m

e
n
ts

]

BufferFirst
(Simulation)
BufferFirst
(Testbed)
QualityFirst
(Simulation)
QualityFirst
(Testbed)

0 1 2 3 4
Number of removed base stations

1.5

2.0

2.5

3.0

3.5

4.0

4.5

5.0

A
v
e
ra

g
e
 V

id
e
o
 Q

u
a
lit

y
 L

e
v
e
l

 [
M

B
/s

e
g
m

e
n
t]

(a) Average Quality

0 1 2 3 4
Number of removed base stations

0

10

20

30

40

50

A
v
e
ra

g
e
 L

a
te

n
e
ss

 [
se

co
n
d
s]

(b) Average Lateness

0 1 2 3 4
Number of removed base stations

0.5

0.0

0.5

1.0

1.5

2.0

2.5

A
v
e
ra

g
e
 B

u
ff

e
r

Le
v
e
l

 [
se

g
m

e
n
ts

]

(c) Average Buffering

MIQCP
(Simulation)
MIQCP
(Testbed)
Fill
(Simulation)
Fill
(Testbed)

Figure 13: Testbed Measurement Results (dashed lines) compared to Simulation Results (solid lines)

usage where possible, thus both start off with very little
buffering and only increase the buffer usage as more base
stations are removed from the scenario. After remov-
ing more than 10 base stations from the scenario the
MIQCP uses more buffer space than the Fill algorithm.
This is caused by the preference of the MIQCP objec-
tive function to download segments with a higher video
quality level before minimizing the buffer level. TheFill
algorithm, on the other hand, will switch to lower video
quality levels before buffering more segments instead.

6.2.2 Testbed Measurements
The plots in Figure 13 show a comparison between

simulation results with the testbed scenario and the
measurements obtained from the testbed. The results
from the simulation are plotted with a solid line and the
testbed measurements with a dashed line, both using
the same markers to distinguish between the schedulers.

Ideally, the simulation results and the testbed mea-
surements should be identical. Differences in the results
are due to the following effects, which are present in the
testbed but not considered in the simulation:

• Continuous time
The simulation is based on a discrete time model
with time slots, whereas the testbed runs in real
time. In order to compare the simulation and
testbed results the measurements are converted
to discrete time. This, for example, implies that
a segment that is actually downloaded after 61
seconds, but should have been downloaded at or

before 60 seconds is treated as equally late as a
segment that is downloaded after 69 seconds.
• Network protocol side effects

The simulation does not consider underlying net-
work protocols for the transport of the HLS seg-
ments. In contrast to that the testbed uses real
HLS over TCP/IP over 802.11g wireless LAN with
its own wireless resource scheduler. We are only
sure that the data rate limits we use in the calcu-
lation of the schedules are not exceeded, but we
cannot ensure that they actually fully achieved in
the testbed. Both TCP congestion control and the
wireless resource scheduler can influence the actual
data rates in the testbed, which result in longer
segment downloads, which are then treated as late.
• Video player issues

In case the video player in the testbed has issues
while decoding the video, the timing between the
downloads from the player and the schedule can
be disturbed. For example, if VLC decides to skip
frames from the video the playback runs ahead of
the calculated schedule, and subsequent segments
are needed for playback before their download was
scheduled to be complete. This can happen because
the video player runs on a real Android device
and has to share the CPU with the system and
background processes.

The measurement results for the average video quality
in Figure 13a show only little differences between the sim-
ulation and testbed. This indicates that our mechanisms

12

for quality selection work in our testbed implementation
as well as expected based on the simulation.

Figure 13b shows the results for the average lateness
in the testbed. The measurement results for the greedy
schedulers again show only a small difference compared
to the simulation, but the measurement results for the
MIQCP and the Fill scheduler show a significantly
higher lateness for the testbed. We discovered that this
is due to the buffer minimization in these two schedulers:
being forced to use a low buffer level makes the video
player more susceptible to the timing side effects we
previously described.

The results for the average buffer fill level in Fig-
ure 13c again show only a small difference between the
simulation results and the testbed measurements.

Taking into account the side effects from the testbed
setup, we can sum up that our testbed implementation
of the anticipatory scheduling works as forecasted by the
simulation results. This agreement of results between
two different and independent evaluation methodologies
lends considerable evidence to the utility and feasibility
of our proposed anticipatory scheduling scheme.

7. CONCLUSION AND FUTURE WORK
We have presented an approach to efficiently exploit

knowledge of a user’s future wireless data rate for wire-
less video streaming. Our simulation results and testbed
measurements consistently show that adapting buffer
and video quality to the anticipated wireless data rate
essentially eliminates playback interruptions while main-
taining a high video quality level.

Of course, the full benefit of this approach can only be
exploited when users request a higher data rate for video
streaming than base stations provide. While, in peak
times, this already happens today [17], such a lack of
resources will clearly intensify in the near future. Then,
our approach will help to utilize the available data rate
more efficiently.

In this paper we explained how user’s wireless data
rates can be anticipated, but we did not elaborate on
how to implement such a mechanism. Recent results
on predicting long-term channel states [9, 8, 5] show
that reliable estimates can be obtained on the order of
seconds, which fits our required time scales. This antici-
pation can be further improved in scenarios with stable
trajectories and known radio propagation maps (e.g.,
highways, railroads). Implementing such anticipation
mechanisms is the focus of our future work.

8. ACKNOWLEDGEMENTS
This work was partly supported by Bell Labs, Stuttgart

within the research collaboration Smarter Phones And
smarter Networks (SPAN).

The research leading to these results has received
funding from the European Union’s Seventh Framework

Programme (FP7/2007-2013) under grant agreement n◦

318115.

9. REFERENCES
[1] Cisco Visual Networking Index: Forecast and

Methodology, 2011-2016.
[2] IEEE Standard for Information

technology–Telecommunications and information
exchange between systems Local and metropolitan
area networks–Specific requirements Part 11:
Wireless LAN Medium Access Control (MAC) and
Physical Layer (PHY) Specifications. IEEE Std
802.11-2012 (Revision of IEEE Std 802.11-2007),
pages 1–2793, 2012.

[3] 3GPP. Further advancements for E-UTRA
physical layer aspects. Technical Report 36.814
V9.0.0, Mar. 2009.

[4] R. A. Akl, S. Valentin, G. Wunder, and
S. Stańczak. Compensating for CQI aging by
channel prediction: The LTE downlink. In Proc. of
the IEEE Global Telecommun. Conf.
(GLOBECOM), 2012.

[5] T. Anagnostopoulos, C. Anagnostopoulos, and
S. Hadjiefthymiades. Efficient Location Prediction
in Mobile Cellular Networks. Int. Journal of
Wireless Information Networks (IJWIN),
19(2):97–111, 2012.

[6] Apple Inc. HTTP Live Streaming.
https://developer.apple.com/streaming.

[7] S.-F. Chang and A. Vetro. Video Adaptation:
Concepts, Technologies and Open Issues. Proc. of
the IEEE, 93(1):148–158, jan 2005.

[8] S. Chen, Y. Li, W. Ren, D. Jin, and P. Hui.
Location prediction for large scale urban vehicular
mobility. In Proc. of Int. Wireless Communications
& Mobile Computing Conf. (IWCMC), 2013.

[9] X. Chen, F. Mériaux, and S. Valentin. Predicting a
User’s Next Cell With Supervised Learning Based
on Channel States. In Proc. of the IEEE Int.
Workshop on Signal Processing Advances for
Wireless Commun. (SPAWC), 2013.

[10] M. Draexler and H. Karl. Cross-Layer Scheduling
for Multi-Quality Video Streaming in Cellular
Wireless Networks. In Proc. of Int. Wireless
Communications & Mobile Computing Conf.
(IWCMC), 2013.

[11] J. Fardous and S. S. Kanhere. On the use of
location window in geo-intelligent HTTP adaptive
video streaming. In Proc. of the IEEE Int. Conf.
on Networks (ICON), 2012.

[12] Google Inc. Android 3.0 Highlights.
http://developer.android.com/about/

versions/android-3.0-highlights.html.
[13] J. Huang, Z. Li, M. Chiang, and A. K. Katsaggelos.

Joint Source Adaptation and Resource Allocation

13

https://developer.apple.com/streaming
http://developer.android.com/about/versions/android-3.0-highlights.html
http://developer.android.com/about/versions/android-3.0-highlights.html

for Multi-User Wireless Video Streaming. IEEE
Trans. Circuits and Syst. Video Technol.,
18(5):582–595, May 2008.

[14] S. Isaacman, R. A. Becker, R. Cáceres,
M. Martonosi, J. Rowland, A. Varshavsky, and
W. Willinger. Human mobility modeling at
metropolitan scales. In Proc. of Int. Conf. on
Mobile Systems, Applications, and Services
(MobiSys), 2012.

[15] J. Jiang, V. Sekar, and H. Zhang. Improving
fairness, efficiency, and stability in HTTP-based
adaptive video streaming with FESTIVE. In Proc.
of the 8th Int. Conf. on Emerging Networking
Experiments and Technologies (CoNEXT), 2012.

[16] S. Khan, Y. Peng, E. Steinbach, M. Sgroi, and
W. Kellerer. Application-driven cross-layer
optimization for video streaming over wireless
networks. Communications Magazine, IEEE,
44(1):122–130, 2006.

[17] W. Law. Delivering Over The Top Video at Scale -
Akamai at OTTCon 2013, 2013.

[18] S. Lederer, C. Müller, and C. Timmerer. Dynamic
adaptive streaming over HTTP dataset. In Proc. of
the 3rd Multimedia Systems Conf., 2012.

[19] J. Leonard, J. How, S. Teller, M. Berger, and et al.
A perception-driven autonomous urban vehicle.
Journal of Field Robotics, 25(10):727–774, 2008.

[20] Z. Lu and G. de Veciana. Optimizing Stored Video
Delivery For Mobile Networks: The Value of
Knowing the Future. In Proc. of the IEEE Int.
Conf. on Comp. Comm. (INFOCOM), 2013.

[21] C. Min, N. Chang, J. Cha, and J. Kang.
Mimo-ofdm downlink channel prediction for
ieee802.16e systems using kalman filter. In Proc. of
the Wireless Communications and Networking
Conference WCNC, 2007.

[22] C. Müller, S. Lederer, and C. Timmerer. An
evaluation of dynamic adaptive streaming over
HTTP in vehicular environments. In Proc. of the
4th Workshop on Mobile Video, 2012.

[23] M. Nadin. Anticipatory computing. Ubiquity, 2000,
Dec. 2000.

[24] NN. Global internet phenomena. Technical report,
Sandvine Inc., Nov. 2013.

[25] A. Noulas, S. Scellato, R. Lambiotte, M. Pontil,
and C. Mascolo. A tale of many cities: universal
patterns in human urban mobility. PloS one,
7(5):e37027, 2012.

[26] R. Pantos, W. May, and Apple Inc. HTTP Live
Streaming. http://tools.ietf.org/html/
draft-pantos-http-live-streaming-11, April
2013.

[27] M. Reisslein and K. Ross. A
join-the-shortest-queue prefetching protocol for

VBR video on demand. In Proc. of Int. Conf. on
Network Protocols, 1997.

[28] H. Riiser, H. S. Bergsaker, P. Vigmostad,
P. Halvorsen, and C. Griwodz. A comparison of
quality scheduling in commercial adaptive HTTP
streaming solutions on a 3G network. In Proc. of
the 4th Workshop on Mobile Video, 2012.

[29] H. Riiser, T. Endestad, P. Vigmostad, C. Griwodz,
and P. Halvorsen. Video streaming using a
location-based bandwidth-lookup service for
bitrate planning. ACM Transactions on
Multimedia Computing, Communications and
Applications (ACM TOMCCAP), 8(3):24, 2012.

[30] H. Riiser, P. Vigmostad, C. Griwodz, and
P. Halvorsen. Commute path bandwidth traces
from 3G networks: analysis and applications. In
Proc. of the 4th ACM Multimedia Sys. Conf., 2013.

[31] J. Schmidt, J. Cousseau, R. Wichman, and
S. Werner. Low-complexity channel prediction
using approximated recursive dct. IEEE
Transactions on Circuits and Systems I: Regular
Papers, 58(10):2520–2530, Oct. 2011.

[32] I. Sodagar. The MPEG-DASH Standard for
Multimedia Streaming Over the Internet.
MultiMedia, IEEE, 18(4), Apr. 2011.

[33] A. Sridharan and J. Bolot. Location Patterns of
Mobile Users : A Large-Scale Study. In Proc. of
the IEEE Int. Conf. on Computer
Communications (INFOCOM), 2013.

[34] J. Tadrous, A. Eryilmaz, and H. E. Gamal.
Proactive Resource Allocation: Harnessing the
Diversity and Multicast Gains.
http://arxiv.org/abs/1110.4703, 2011.

[35] G. Tian and Y. Liu. Towards agile and smooth
video adaptation in dynamic HTTP streaming. In
Proc. of the 8th Int. Conf. on Emerging
Networking Experiments and Technologies, 2012.

[36] Twisted Matrix Labs. Twisted.
http://twistedmatrix.com/.

[37] VideoLAN Organization. VideoLAN.
http://www.videolan.org/videolan/.

[38] J. Yao, S. S. Kanhere, and M. Hassan. An
empirical study of bandwidth predictability in
mobile computing. In Proc. of the 3rd ACM Int.
Workshop on Wireless network testbeds,
experimental evaluation and characterization -
WiNTECH, 2008.

[39] J. Yao, S. S. Kanhere, and M. Hassan. Mobile
Broadband Performance Measured from
High-Speed Regional Trains. In Proc. of the IEEE
Vehicular Technology Conference (VTC Fall), 2011.

[40] J. Yao, S. S. Kanhere, and M. Hassan. Improving
QoS in High-Speed Mobility Using Bandwidth
Maps. IEEE Trans. Mob. Comput., 11(4):603–617,
2012.

14

http://tools.ietf.org/html/draft-pantos-http-live-streaming-11
http://tools.ietf.org/html/draft-pantos-http-live-streaming-11
http://arxiv.org/abs/1110.4703
http://twistedmatrix.com/
http://www.videolan.org/videolan/

	1 Introduction
	2 Related Work
	2.1 Adaptive Video Streaming
	2.2 Channel Anticipation

	3 Optimization Problem
	3.1 Assumptions
	3.2 Formulation

	4 Heuristics
	4.1 Greedy Scheduling
	4.1.1 BufferFirst Algorithm
	4.1.2 QualityFirst Algorithm

	4.2 Fill Scheduler

	5 System Design and Implementation
	5.1 Design Decisions for Download Control
	5.2 Architecture and Implementation
	5.3 Protocol Extension
	5.4 Testbed

	6 Simulation and Testbed Results
	6.1 Scenario
	6.1.1 Simulation Scenario
	6.1.2 Testbed Scenario

	6.2 Results
	6.2.1 Simulation Results
	6.2.2 Testbed Measurements

	7 Conclusion and Future Work
	8 Acknowledgements
	9 References

